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Robust 3-D Plane Segmentation From Airborne Point
Clouds Based on Quasi-A-Contrario Theory

Xianzhang Zhu , Xinyi Liu , Yongjun Zhang , Yi Wan, and Yansong Duan

Abstract—Three-dimensional (3-D) plane segmentation has been
and continues to be a challenge in 3-D point cloud processing. The
current methods typically focus on the planar subsets separation
but ignore the requirement of the precise plane fitting. We propose
a quasi-a-contrario theory-based plane segmentation algorithm,
which is capable of dealing with point clouds of severe noise level,
low density, and high complexity robustly. The main proposition
is that the final plane can be composed of basic planar subsets
with high planar accuracy. We cast planar subset extraction from
the point set as a geometric rigidity measuring problem. The
meaningfulness of the planar subset is estimated by the number
of false alarms (NFA), which can be used to eliminate false-positive
effectively. Experiments were conducted to analyze both the planar
subset extraction and the 3-D plane segmentation. The results show
that the proposed algorithms perform well in terms of accuracy
and robustness compared with state-of-art methods. Experimen-
tal datasets, results, and executable program of the proposed al-
gorithm are available at https://skyearth.org/publication/project/
QTPS.

Index Terms—A-contrario, airborne point cloud, number of false
alarms (NFA), supervoxel segmentation, three-dimensional (3-D)
plane segmentation.

I. INTRODUCTION

THREE-DIMENSIONAL (3-D) point clouds acquired by
airborne LiDAR system (ALS) and multiview stereo

(MVS) techniques have been widely used in georegistration [1],
object extraction [2], and surface reconstruction [3]. Explicit
features or shapes extracted from discrete points, especially
planar features, provide crucial clues for subsequent applications
including building information model reconstruction [4]–[6],
simultaneous localization and mapping [7], and point cloud
registration [8]. Despite decades of exploration, the robustness
and efficiency of the existing 3-D plane segmentation methods
still cannot meet the requirements of various point clouds, which
are frequently contaminated with noise, outliers, and occlusion.

Most of the existing plane segmentation methods focus on the
planar points subset separation but ignore the requirement of the
precise plane fitting. However, when dealing with point clouds
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Fig. 1. Array of planar points in (a) is embedded into an array of discrete
points in (b), where planar points are shown in red, discrete points are shown in
blue, and the plane is shown in yellow. The planar structure is less recognizable
in (b) compared with that in (a) because of the much lower proportion of planar
points. If we move some of the planar points to make the planar structure less
accurate as in (c), the planar structure becomes barely perceptible by human
eyes. It can be concluded that the strength of a planar gestalt is affected by the
number (or scale) and precision of the planar points.

of severe noise level, the planar parameters may be imprecise,
which introduces errors for subsequent applications such as
building reconstruction.

The a-contrario theory can be employed to model the
structures as gestalts perceived by human eyes based on the
Helmholtz principle and the definition of ε-meaningful events,
where the Helmholtz principle supplies a probabilistic view
about why some gestalts can immediately draw human’s visual
attention [9]. Fig. 1 illustrates an example to explain why some
planar gestalt is strong enough to be visually perceived. In
this article, we offer a probabilistic definition for the planar-
rigidity of a set of points and propose a quasi-a-contrario
theory-based plane segmentation (QTPS) algorithm to segment
accurate planes from dense ALS point cloud, sparse ALS point
cloud, and MVS point cloud. The proposed algorithm first
segments the point cloud into planar structures by multiscale
supervoxel segmentation [10] and saliency features [11]. As the
crucial technique of QTPS, a-contrario theory is employed to
extract the planar subset from the planar structures and further
evaluate the meaningfulness. Since a nonrigorous white noise
background is adopted in the proposed algorithm, the name
quasi-a-contrario being coined for the difference. The ultimate
planes are generated by a region growing process. The main
contributions of this article are as follows:

1) The proposed algorithm casts planar subset extraction
from the point set as a geometric rigidity measuring prob-
lem, which does not require presetting hard threshold.

2) A criterion is established to evaluate the meaningfulness
of the planar subset.

3) The proposed algorithm significantly reduces the influ-
ence of noise points and obtains precise planar parameters.
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The remainder of this article is organized as follows. Section II
reviews the related works. Section III introduces the crucial
theory for the extraction of the planar subset. Section IV de-
scribes the methodology of the proposed 3-D plane segmentation
approach in detail. Section V evaluates the proposed algorithm in
experimental studies. Finally, Section VI concludes the article.

II. RELATED WORK

A. Plane Segmentation

Plane segmentation is the process of clustering points that are
continuous in space into different groups, each of which forms
a planar shape. The basic geometric-based plane segmentation
methods can be generally divided into three categories: 1) region
growing, 2) model fitting, and 3) feature clustering.

Region growing-based methods are mostly implemented with
alternative and iterative processes [12]–[16]. In each iteration,
one or more seed points are selected from the point cloud based
on the curvature of each point; then, the neighboring points
(determined by the k-nearest neighborhood algorithm mostly) of
each seed point are examined to extend the growing region based
on some predefined similarity criteria (e.g., normal vector and
curvature). Xiao et al. [17] proposed a hybrid region growing
(HRG) approach for organized point clouds considering two
kinds of growth units: a single point or a subwindow. The region
growing-based methods are usually capable of preserving the
boundaries of planes, but they are very sensitive to noise because
the segmentation quality relies on the selection of the seed point.

Model fitting-based methods estimate the planar parameters
from the point clouds using voting techniques. Hough transform
[18] and random sample consensus (RANSAC) [19] are the
two most popular methods in this category. Hough transform
applies accumulative voting on point clouds to extract planes,
while RANSAC aims to find the planar model with the maximum
number of inliers within a distance threshold. Tarsha-Kurdi et al.
[20] combined both of these methods to 3-D building roof plane
detection and claimed that RANSAC is much more efficient
to detect planes, while Hough transform is very sensitive to
the segmentation parameters. Numerous improved RANSAC
methods for plane segmentation from 3-D point clouds have
been proposed as well [21]–[24]. However, these algorithms
are still limited by the quality of the input point cloud and the
parameter settings. Moreover, in the case of detecting multiple
planes, the inaccuracies in detecting the first plane can heavily
affect the subsequent planes [5].

Feature clustering-based methods group the neighboring
points based on the similarity of some geometric attributes such
as the normal vector, Euclidean distance, and density. K-means
clustering [25], fuzzy clustering [26], and mean-shift clustering
[27] are the three commonly used clustering methods in 3-D
point cloud processing. Strongly emphasizing robustness and
efficiency, Kim et al. [28] defined the neighborhood by con-
sidering both the 3-D proximity between the points and shapes
of the surfaces, and the point attributes are calculated by the
defined neighboring points. Then, the dimensionally reduced
attribute space is employed for the clustering process. However,

the feature clustering-based methods are sensitive to noises
and outliers and are commonly influenced by the neighborhood
definition. To develop a robust segmentation method, complex
clustering criteria can be intensively applied. However, it will
greatly increase the computational cost [29].

In addition to the above three classical categories, some 2-D
geometric primitive extraction methods can be extended for 3-D
point clouds, such as scanline analysis [30] and global energy
optimization [31]. Scanline analysis-based 3-D segmentation
approaches [32], [33] segment point clouds into different scan
profiles using some certain geometric constraints, such as the
distances between consecutive points [32] and direction vec-
tor [33]. Thereafter, a merging operation is applied to group
the scan profiles based on certain similarity criteria. Scanline
analysis is fast and stable, but the segmentation results depend
on the preferred orientation and its applicability is limited to
structured point clouds. Energy optimization-based 3-D seg-
mentation methods [34]–[36] utilize the basic geometric-based
method aforementioned to generate the first initial plane set.
Then, an energy function is constructed [37], [38] minimized by
refining the points’ labels. Energy optimization can effectively
suppress the influence of noise and outliers in some cases, but it
is restricted by the initial segmentation results and may easily fall
into the local optimum. Furthermore, the computing efficiency
is too low.

Recently, the utilization of 3-D voxels has become a trend
in many point cloud applications to improve computational
efficiency. Researchers proposed different supervoxel segmen-
tation methods to better preserve object boundaries, such as
voxel cloud connectivity segmentation [39], boundary-enhanced
supervoxel segmentation [40], and toward better boundary pre-
served supervoxel segmentation (TBBP) [41]. Mahmoudabadi
et al. [42] transform superpixel to supervoxel and then calculate
the best-fit plane of the supervoxels by using a linear regression
model. Voxel-based 3-D segmentation organizes point clouds
into voxels or supervoxels and estimates their geometric fea-
tures. Ultimate planes are generated by a merging process (e.g.,
region growing and clustering) [10], [43]–[45]. Vo et al. [43]
use voxel as the only basic unit to generate the final plane,
which greatly improves the segmentation efficiency. But the
plane fitting of voxels is not imprecise when the input point
cloud has a severe noise level. Dong et al. [10] introduced a
robust and efficient 3-D plane segmentation method (REPS).
They utilize a combination of multiscale planar supervoxels
and individual points as the basic units and refines the initial
plane set, which is generated by HRG, based on a global
energy optimization framework. However, the planar super-
voxels determined by the saliency features [11] still contain
points on different planes and noisy. Furthermore, global energy
optimization still requires large computational expense as the
number of data increases. Fatemeh et al. [45] used the RANSAC
algorithm to establish the most likely local plane from each
predivided cell, which improved the geometric accuracy of
the gridded-cell effectively. But it is still difficult to obtain
precise local planes from the point cloud with the severe noise
level.
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B. A-Contrario Theory

In the context of a-contrario theory, the occurrence of any
basic structures and grouping laws, so-called Gestalt, is in-
dependent in the null-hypothesis background scene, and the
occurrence of a gestalt is determined to violate the Helmholtz
principle if the expected value of the occurrence times, number
of false alarm (NFA), is less than 1 [9]. Hence, the meaning-
fulness of a certain structure can be measured by estimating its
NFAs. Desolneux et al. [46] and Desolneux et al. [9] initially
applied this theory for image structure detection, which detects
meaningful structures that cannot happen by chance under the
null-hypothesis. In the field of the 2-D image, von Gioi et al.
[47] employed a-contrario theory to segment lines from 2-D
images and achieved convincing performance. Furthermore,
a-contrario has been widely used in many other low-level
structure detections, such as vanishing points [48], rigid sets
of point matches [49], [50], histogram gaps [51], contrasted
boundaries [52], junctions [53], 3-D point alignment [54], 3-D
line segment [55]–[56], etc. Bughin and Almansa [57] intro-
duced an a-contrario criterion, which serves as an automatic
and parameter-free validation method, to detect planar patches
from disparity maps. This is a very novel idea of 3-D plane
detection but is only designed for disparity maps with a small
number of planes.

III. EXTRACTION OF PLANAR SUBSET

A 3-D point is always considered to belong to a plane when the
distance is less than a preset distance threshold. But it is difficult
to balance between the accuracy and the integrity of the plane
if only a hard threshold is used to determine the attribution of
points. This problem can be solved in a probabilistic way based
on a-contrario theory [57]. In this section, the planar-rigidity of
a 3-D point set is treated as a gestalt that is at play and measured
from the probabilistic point of view. The meaningfulness of a
planar subset is defined as the expected number of subsets having
the same planar-rigidity in a random distribution of the 3-D
point set. Different from [57], the proposed quasi-a-contrario
model defines a nonrigorous white noise background and the
calculation of NFA is associated with the planar-rigidity of each
point, which is robust to various 3-D point sets.

A. Measuring Planar-Rigidity

To compute the probability of the occurrence of a planar point,
we define a null-hypothesis H0 [9], which means that all the
planar structures are in a random and uniform distribution. In
other words, the points in the 3-D point set are assumed to be
randomly distributed rather than on the same plane.

We define dist(p,P) as the Euclidean distance between the
point p and the planar model P and a distance tolerance value
τ is used to indicate that a point p can be the inlier point of P
only when dist(p,P) is less than τ . It is highly noted that the
setting of τ is related to the precision of the input point set.
The tolerance inlier region of the given point set changes with
the P, which means that the defined situation is a nonrigorous
white noise background.

Fig. 2. Schematic representation of the planar model P and its tolerant inlier
region. Points within the tolerant inlier region are shown in red, while others are
shown in blue.

For an input point set and planar model P, points within the
tolerance inlier region are first obtained and denoted as S. Define
an atom event ei(d) as the occurrence of point pi of which the
point-plane distance dist(pi,P) is less than d, which satisfies

d ≤ τ. (1)

Since pi is randomly distributed in the tolerant inlier region
under H0, the probability of ei(d) satisfies

Pb (dist (pi, P) ≤ d|H0) ≤ d/τ. (2)

Denote the distance ratio between pi and P as

DistRatio (pi, P) = dist (pi, P) /τ. (3)

For a particular P with constant distance tolerance value
τ , DistRatio(pi, P) is an incremental function of variable
dist(pi,P). As DistRatio(pi, P) can better reflect the rela-
tionship between pi and the tolerant inlier region, it is used to
measure the geometric consistency of the points in this article.
A schematic representation of P and its tolerant inlier region is
illustrated in Fig. 2. The P-rigidity of pi is defined as

αP (pi) = DistRatio (pi, P) . (4)

Set s as an arbitrary subset of S. To ensure the accuracy of
measurement, the P-rigidity of s is defined as the maximum of
αP(pi):

αP (s) = max
pi∈s

αP (pi) (5)

which makes αP(s) very sensitive to non-P points. The global
P rigidity of the input point set should be defined with a planar
model P that minimizes αP(s).

It is quite computationally expensive to check all the potential
planar models. Hence, P is determined by one of the possible
three-subsets of the input point set, and a definition for the global
planar-rigidity of 3-D points set can be given as follows:

Definition 1: A subset s with k points is α-rigid if there exists
a planar model P associated with a subset of three points of s
and satisfies

αP (s) ≤ α (6)
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where α is a positive value. Under H0, such an α-rigid subset
s satisfies

Pb(αP (s) ≤ α|H0) ≤ αk−3. (7)

Proof of (7): According to the definition of αP(s) in (5),
with a planar model P that is associated with a three-subset
of s, αP(pi) ≤ α is satisfied with every pi in s if s is α-rigid.
For the three-subset of s that is associated with P, these three
points satisfy {

αP (pi) = 0
Pb (αP (pi) ≤ αH0) = 1.

(8)

Besides, denote dist (pα, P) = α · τ as the solution of equa-
tion DistRatio (pα, P) = α. Hence, the other k−3 points can
be deduced by combining (2)–(4):

Pb (αP (pi) ≤ αH0) = Pb (DistRatio (pi, P) ≤ αH0)

= Pb (dist (pi, P) ≤ dist (pα, P)H0)

≤ dist (pα, P) /τ = α. (9)

Then, by combining (8) and (9), it can be concluded that

Pb (αP (s) ≤ α|H0) =
∏
pi∈s

Pb(αP (pi) ≤ α|H0) ≤ αk−3.

(10)

B. Measuring the Meaningfulness of the Planar Subset

Once the planar-rigidity of a random point has been defined,
the meaningfulness of the planar subset can be measured by
computing its NFA; and thus, the most meaningful rigid planar
subset can be obtained. Under H0, the NFA of an α-rigid subset
s ⊆ S is defined as

NFA(αP (s) ≤ α|H0) = Ns · Pb (αP (s) ≤ αH0) (11)

where Ns denotes the number of s of S. The smaller the
NFA(αP(s) ≤ α|H0), the more meaningful α-rigid s is (i.e.,
the less likely it is to appear in S under null-hypothesis H0). We
define α-rigid s is ε0-meaningful if and only if NFA(αP(s) ≤
α|H0) ≤ ε0. Due to the complication of NFA computation, a
simpler equation, which is less than or equal to NFA(αP(s) ≤
α|H0), is also used to prove ε0-meaningful [49]. For an α-rigid
subset s ⊆ S of k points, define

ε (α, n, k) = (n− 3) ·
(
n
k

)
·
(
k
3

)
· αk−3. (12)

Proposition 1: Set S has n points, and an α-rigid subset s ⊆ S
of k points is ε0-meaningful as soon as it satisfies ε(α, n, k) ≤
ε0.

Proof of proposition 1: In, (n−3) is the number of choices
of k, (nk ) is the number of subsets with k points from n points S,
(k3 ) is the number of possible three-subsets of s used to calculate
the planar model. Hence, we can easily deduce the following
equation:

Ns ≤ (n− 3) ·
(
n
k

)
·
(
k
3

)
. (13)

Combining with (11), we have

NFA(αP (s) ≤ α|H0) = Ns · Pb (αP (s) ≤ αH0)

≤ (n− 3) ·
(
n
k

)
·
(
k
3

)
· αk−3

= ε (α, n, k) .

(14)

It is obvious that NFA(αP(s) ≤ α|H0) ≤ ε0 is valid if
ε(α, n, k) ≤ ε0, so Proposition 1 is proved.

C. Algorithm

According to Proposition 1, for any subset s, the meaning-
fulness of s can be measured by calculating ε(α, n, k). Hence,
the most meaningful planar subset can be detected and it can be
determined whether it is a meaningful plane by the smallest
ε(α, n, k). Denote the optimal planar subset that under the
planar model P as s̄(P), which has k̄(P) points. To find such
s̄(P) efficiently, the points in S are sorted according to their
P-rigidities. Then, the subsets are constructed from the first
k points and denoted as S(P, k). The P-rigidity of S(, k) can
be denoted as αP(S(P, k)). Since P is associated with the first
three points, the number of points of the optimal subset and the
corresponding s̄(P) are defined by{

k̄ (P) = argmin
k=4→n

(ε (αP (S (P, k)) , n, k))

s̄ (P) = S
(
P, k̄ (P)

)
.

(15)

In this article, the three-subsets associated with differentP are
randomly sampled from S. Denote s̄ as the global optimal planar
subset of S, the optimal planar model P, the optimal number of
points k̄, and the corresponding s̄ are defined by⎧⎪⎨

⎪⎩
P = argmin

P

(
ε
(
αP

(
S
(
P, k̄ (P)

))
, n, k̄ (P)

))
k̄ = k̄ (P)
s̄ = S

(
P, k̄

)
.

(16)

Furthermore, the maximum iteration number itmax is adjusted
according to the planar point ratio, which is denoted as λ =
k̄/n [58]. itmax is adjusted if lgε̄(P) < lgε̄ and is written as

itmax =

{
lgη/ ln

(
1− λ3

)
, if

[
lgη/ ln

(
1− λ3

)]
> 10

10, if
[
lgη/ ln

(
1− λ3

)] ≤ 10
(17)

where η is the tolerance of failure, which is set as 0.01. The
minimum iteration time is set as 10 to prevent exiting the loop
while finding the suboptimal planar subset at the beginning of
the iteration.

The pseudocode of extracting planar subset from a 3-D point
set is described in Algorithm 1 as follows:

IV. METHODOLOGY OF QTPS ALGORITHM

As discussed before, existing attempts to segment planes with
voxels/supervoxels are effective but strongly limited to accu-
rately estimate the geometric features of the voxels/supervoxels
when there exists a large number of noisy points. We address
this challenge by embedding a-contrario into a supervoxel from
which we extract the planar subset as fine planar supervoxel
(FPS). The proposed algorithm consists of four main steps:
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Fig. 3. Overview of the proposed 3-D plane segmentation algorithm.

Algorithm 1: Extraction of Planar Subset.
Input: point set, parameters itmax and τ
Output: s̄, CSs̄, k̄, lgε̄, P

1. Initialization: s̄← ∅; lgε̄←∞; iter ← 0;
2. while j < itmax do
3. sampling 3-subset to get S and P;
4. lgε̄(P)←∞;
5. compute the αP(pi) of each point in S with τ ;
6. sort according to αP(pi) in ascending order;
7. for k = 4 → n do
8. construct S(P, k) with the first k points of S;
9. compute NFA (lgε(α, n, k)) according to (12);
10. if lgε(α, n, k) < lgε̄(P) do
11. s̄(P)← S(P, k); k̄(P)← k; lgε̄(P)← lgε(α, n, k);
12. end if
13. end for
14. if lgε̄(P) < lgε̄ do
15. s̄← s̄(P); k̄ ← k̄(P); lgε̄← lgε̄(P); P← P;
16. end if
17. j ← j + 1; adjust itmax according to (17)
18. end while

multiscale supervoxel segmentation, FPS generation, FPS op-
timization, and FPS-based region growing. Fig. 3 illustrates the
overview of the proposed 3-D plane segmentation algorithm.

A. Multiscale Supervoxel Segmentation

TBBP [41] has been proven to be capable of generating better
boundary-preserved supervoxels with adaptive resolution from
point clouds of different densities. Supervoxel planar classifica-
tion and repetitive downscaling segmentation for nonplanar su-
pervoxels can be employed to generate coarse planar supervoxels
[10]. In this article, we employ TBBP to over-segment the input
points into supervoxels from maximum scale rmax to minimum

scale rmin , and the supervoxels are classified into planar super-
voxels and nonplanar supervoxels at each scale. Downscaling
supervoxel segmentation with r · rΔ then is continually used
for the points that are classified as nonplanar supervoxels.

For each supervoxel SV = {p1, . . . , pn} with n points,
we calculate its covariance matrix M3×3, the eigenvalues
λ1, λ2, λ3; (λ1 ≥ λ2 ≥ λ3), and eigenvectors e1, e2, e3 ofM3×3
are further obtained. The saliency features g1, g2, g3 [11] and
curvature fs of the supervoxel can be computed by{

g1 =
√

λ1−
√

λ2√
λ1

, g2 =
√

λ2−
√

λ3√
λ1

, g3 =
√

λ3√
λ1

fs =
λ3

λ1+λ2+λ3
.

(18)

Then, SV is classified by the following equation:

hSV =

{
planar, if(g2 > g1 ∧ g2 > g3 ∧ fs < φ)
nonplanar, else

(19)

where φ is the threshold of curvature for a valid planar su-
pervoxel. The supervoxels that are classified as nonplanar and
have more than κ points will continue to implement TBBP
supervoxel segmentation at a decreased scale, while supervoxels
with fewer than κ points are grouped into the independent point
set I. Finally, the original input points are segmented into coarse
planar supervoxel sets C and I.

B. FPS Generation

Since the coarse planar supervoxels generated in the last
section are planar structures, there is a high probability that a
fine planar subset can be detected from each of them. In this
section, each CPS in C is taken as the input point set to employ
Algorithm 1 to get the corresponding s̄, CSs̄, k̄, lgε̄, and P. The
points in CSs̄ are grouped into I directly. As mentioned before,
the smaller the lgε̄, the more meaningful the s̄ is. Hence, lgε̄
can be used as a criterion to justify whether the extracted s̄ is
meaningful or not. In this article, εt is denoted as the threshold
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of lgε̄, s̄ is classified as follows:

hs̄ =

{
FPS, if

(
k̄ ≥ κ

) ∧ (lgε̄ ≤ εt)
nonplanar, else.

(20)

Those points within nonplanar s̄ are grouped into I. The planar
parameters of FPS are directly determined by the P. After all
the CPSs have been processed, the original input points are
segmented into FPS set F and I. To prepare for the subsequent
process, the geometric features of each FPS are calculated as
follows:⎧⎨

⎩
ns (as, bs, cs) = e3
ds = − (as · ps (x) + bs · ps (y) + cs · ps (z))
Fs = {ps, ns, ds, fs}

(21)

where ns is the normal vector, ds is the parameter of the tangent
plane, and Fs denotes the geometric features of the FPS.

C. FPS Optimization

I is composed of independent points from each of the su-
pervoxels. However, some of the points in I are planar points
for two reasons. First, some of the independent points from one
supervoxel may belong to another FPS and therefore have not
been detected as planar points. Second, the points belonging
to the same planar structure are segmented into different CPSs
so that the planar structure is missed. A two-step strategy is
implemented to optimize F.

In the first step, for each point that is segmented into an FPS,
its adjacent points from I are searched by a given neighborhood
search radius γ. Then group them into a candidate point set of
FPS, denoted as {Ω}. Set pΩ as a candidate point in {Ω}, the
distance between pΩ and FPS can be denoted as dist(pΩ, FPS).
Point pΩ will be removed from I to the FPS if it satisfies

dist (pΩ, FPS) ≤ δ (22)

where δ is the threshold of dist(pΩ, FPS). For the newly added
points, their adjacent points from I are continuously searched
and regrouped until there is no newly added point for the FPS.

The next step is to find undetected planar structures by an
iterative process. We take the remaining I as new inputs and
process the previous steps repeatedly until no new FPS is gener-
ated. The points in the remaining I are considered as nonplanar
points. Finally, the original input points are segmented into F

and nonplanar point set {NP}.

D. FPS-Based Region Growing

Region growing can effectively connect adjacent units with
similar characteristics, but calculating the unit’s characteristics
is vulnerable to internal or external noise. FPS is considered as
the basic unit for the region-growing process. The first FPS in F

is selected as seed unit ς and removed from F to a plane 𝓅. The
adjacent FPSs of ς are searched by computing the 2-D concave
hull of each FPS. Those adjacent FPSs with a distance less than
γ are considered as the candidate growing units of 𝓅, denoted
as {�}. Set � as a candidate unit in {�}, and denote ϕ(�, ς),
θ(�, ς) as the tangent plane distance and angle of normal vectors
between � and ς, respectively. � will be removed from F to if

Fig. 4. Illustration of different steps’ results. (a) Result of multiscale super-
voxel segmentation. (b) Result of FPS Generation. (c) Result of FPS optimiza-
tion. (d) Final plane segmentation result.

it satisfies {
ϕ (�, ς) ≤ ϕ
θ (�, ς) ≤ θ

(23)

where ϕ and θ are the threshold of ϕ(�, ς) and θ(�, ς), respec-
tively. Those newly added FPSs are regarded as new seed units
and continue to grow the 𝓅 until no new FPS is added.

E. Algorithm

The pseudocode of the complete QTPS algorithm is described
in Algorithm 2. To construct a robust and reliable growth unit,
the input points are segmented into C first. Since CPS is a planar
structure, the algorithm described in Section III, extraction of
planar subset, is used to generate FPS from CPS according to
the most meaningful planar subset’s NFA, which makes FPS has
very high planar accuracy. Then, F is optimized to ensure the
integrity and recall rate of the planar structures. Finally,F is used
as the growth unit set to obtain the final plane set. Fig. 4 shows a
comparison of the results of multiscale supervoxel segmentation,
FPS generation, FPS optimization, and the complete QTPS
algorithm, where different supervoxels or planes are shown in
different colors and key areas are shown in the small graphs.

V. EXPERIMENTS

To evaluate the performance of the proposed algorithm, ex-
periments were conducted with different types of point cloud
datasets. All experiments were implemented using C++ and
run on one core of an AMD RT 2950X @ 3.50 GHz CPU, with
128 GB memory.

A. Planar Subset Extraction

1) Evaluation With Simulated Data: In this section, the
planar subset extraction algorithm described in Section III is
evaluated with simulated data. The simulated data were created
from a random planar model with 50 random 3-D points for
which the plane range was controlled within 6 m∗3 m. The
distances from each planar point to the planar model were
less than 0.01 m. Then, random planar points and noise points
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Algorithm 2: QTPS Plane Segmentation Algorithm.
Input: point cloud PC, parameters itmax , rmax, rmin, rΔ,

κ, φ, τ , εt, γ, δ, ϕ, and θ
Output: plane set {𝓅}

1. Initialization: F← ∅; {𝓅} ← ∅;
2. process Multi-scale Supervoxel Segmentation with

rmax, rmin, rΔ, κ, φ to get C and I;
3. foreach CPS in C do
4. process Algorithm 1 with itmax and τ ;
5. I← I ∪ CSs̄
6. if (k̄ ≥ κ) ∧ (lgε̄ ≤ εt) do
7. FPS← s̄; F← F ∪ FPS;
8. end if
9. else
10. I← I ∪ s̄;
11. end else
12. end for
13. foreach FPS in F do
14. Optimize FPS from I with γ and δ;
15. end for
16. set I as new input to process steps 1–15 repeatedly

until no new FPS is generated;
17. while F �= ∅ do
18. select the first FPS as seed point ς;
19. 𝓅← ς; F← F \ ς;
20. search for {�} of ς from F with γ;
21. foreach � in {�} do
22. if ϕ(�, ς) ≤ ϕ) ∧ (θ(�, ς) ≤ θ) do
23. 𝓅← �; F← F \�;
24. end if
25. end for
26. select newly added � as ς and continue to growP;
27. {𝓅} ← {𝓅} ∪ 𝓅;
28. end while

were added and randomly distributed. The distances from each
noise point to the planar model were less than 0.3 m and
larger than 0.01 m. The number of error points was increased
from 0 to 950 while keeping the total number of points to 1000.
In other words, the noise point ratio, which is denoted as p̂ ,
increased from 0% to 95%.

To investigate the influence of the distance tolerance τ , four
groups of simulation experiments were carried out by setting the
τ value to 0.05, 0.1, 0.15, and 0.2 m. itmax was set as 500. The
process of data simulation and Algorithm 1 were conducted 100
times in each group. For each group, the extracted planar subset
s̄ was evaluated in terms of the following four values:

1) The average value of lgε̄ from 100 times of data simulation
and planar subset extraction.

2) The average recall rates. The recall rate was calculated
as Nps/Np, where Nps denotes the number of simulated
planar points in s̄ and Np denotes the total number of
simulated planar points.

Fig. 5. Statistical curves of the groups of simulated experiments.

3) The average accuracy rates. The accuracy rate was calcu-
lated as Nps/Ns̄, where Ns̄ denotes the number of points
in s̄.

4) The average number of extracted noise points Nns.
Fig. 5 illustrates the statistical curves of the simulation ex-

periments, which are shown in different colors. The Helmholtz
principle states that when noise with increasing variance is
added, the NFA value of meaningful segment increases. And the
segment is no longer detected if the NFA becomes larger than
1 [9], [47]. As can be seen in Fig. 5, the lgε̄ and the number of
detected noise points were increased along with the increase of p̂,
while the recall rate and accuracy rate were the opposite. When τ
was set as 0.05, the recall rate and accuracy rate decreased much
faster when compared to the other three settings, which means
that the proposed algorithm was sensitive to the increase of p̂ if
τ was set to be too low. Moreover, although a higher setting of τ
had a higher recall rate and accuracy rate with any given ratio of
noise points, it was more likely to incorporate noise points into
the optimal planar subset s̄, especially when p̂ reached more than
75%. The results also show that when the value of lgε̄ gradually
rose to approximate 0 or even exceeded 0, the recall rate and the
accuracy rate began to decrease dramatically and more noise
points were detected in s̄.

In conclusion, if the required planar accuracy was less than
0.01 m, the optimal setting of τ is between 0.05 and 0.15 for
improving the correctness of s̄, especially when p̂ reached more
than 75%. Additionally, the recall rate and the accuracy rate
begin to decrease significantly when lgε̄ reach to 0, so that
1-meaningful (i.e., ε0 = 1) that introduced by Desolneux et
al. [9] is verified to be able to justify whether a planar shape
is meaningful or not. Hence, the criterion of lgε̄ < 0 can be
used to justify the correctness of s̄, the smaller lgε̄ is, the more
meaningful s̄ is.

2) Evaluation With Real Data: In this section, eight repre-
sentative CPSs, which were generated from dense ALS point
cloud and airborne MVS point cloud by using the multiscale su-
pervoxel segmentation, were chosen to establish the real dataset
1. These point clouds have high point density and severe noise
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Fig. 6. Results for extracting planar subset from the 3-D point set, where the
extracted planar points are shown in red and the nonplanar points are shown in
blue. (a) Extraction results in dense ALS point cloud. (b) Extraction results in
airborne MVS point cloud.

levels. Detailed data information will be described in Section
V-B. Since RANSAC is the most effective geometric model-
fitting algorithm, Algorithm 1 is compared with RANSAC to
demonstrate its superiority. The value of τ and the distance
threshold of RANSAC were both set as 0.1 m.

Fig. 6 illustrates the visual comparison between the results of
Algorithm 1 and RANSAC, where the extracted planar points are
shown in red color. The planar subsets extracted by the proposed
algorithm represent well the planar structure of these diverse
point sets, while the plane fitting results of RANSAC obtained
incorrect planar parameters in some cases. Although RANSAC
is found to be capable of improving the accuracy of extracting
planar subset by reducing the distance threshold, it cannot avoid
extracting incorrect planes when the noise level is very high, and
the result is strongly limited by the distance threshold. The most
important is that Algorithm 1 cannot only extract the correct
planar subsets but also can obtain precise planar parameters even
if the given point set contains many noise points.

To further evaluate the quantitative performance of the results,
we derived the geometric features of each extracted planar subset
and then calculated the distances between each inlier planar
point to its planar model. The planar parameters are calculated
according to the extraction results, so that the point distance
obtained by RANSAC may be larger than the preset threshold.
The quantitative statistical results are listed in Table I, including
the ratio of extracted point number (k̄/n), the maximum and
mean value of the point distance. The maximum and mean values
of the point distance obtained by Algorithm 1 are found to be
much lower than those of the RANSAC. Although RANSAC
can improve the accuracy by reducing the distance threshold,
it is still constrained by the hard threshold and cannot avoid
extracting incorrect models.

B. 3-D Plane Segmentation

To evaluate the performance of the proposed QTPS algorithm
for 3-D plane segmentation, a comparison with three state-of-
the-art 3-D plane segmentation methods was conducted. The first
method is the Efficient RANSAC (ER) [21], which is the most ef-
ficient and widely used method for 3-D shape detection. The sec-
ond method is octree-based region growing (ORG) [43], which is
proved to be effective on both terrestrial and aerial LiDAR point

TABLE I
QUANTITATIVE RESULTS OF PLANAR SUBSET EXTRACTION

clouds. The third method was REPS [10], which is proved robust
on both high-quality TLS point clouds and low-quality RGB-D
point clouds. ER was implemented by using the public source
code in CGAL.1 ORG was implemented by using the duplicated
program. The REPS results were provided by the authors.

1) Data Overview: Three different types of challenging
datasets of varying noise level, density, and complexity were
selected to conduct the experiments. The first dataset is dense
ALS point cloud data for Dublin City Center that was obtained by
Laefer et al. [59]. The second dataset is a sparse ALS point cloud
that was captured at a rather high altitude in Ningbo, China. The
third dataset is an airborne MVS point cloud that was generated
from multiview images from the ISPRS benchmark of image
orientations [60] by using MVE [61]. The points density, noise
level, and structural complexity of the Dublin dataset are much
higher than that of the Ningbo dataset due to different flight
altitudes, flight paths, and LiDAR equipment. The Dortmund
dataset has a much higher point density and noise level. The
overview of the input point clouds and their corresponding aerial
images are shown in Fig. 7.

2) Parameter Settings: For QTPS, the settings of rmax, rmin,
and rΔ comply with the recommendations of REPS [10]. The
rest of the parameter settings and representations are listed in
Table II. Among them, γ was set according to the average
point distance μ. γ determines the independence and integrity
of the planar structure. Increased μ means finer structures, and
the distance between the points that belong to the same plane
becomes smaller. Hence, the setting of γ is proportional to μ.
We also consider the partial deficiency of points. γ is set as 7μ
but greater than or equal to τ . τ and εt were set as 0.1 m and
0, respectively. Additionally, δ and ϕ were set as τ/2 and τ,
respectively, which is used to ensure the integrity and accuracy
of the final planes.

1Online. [Available]: https://www.cgal.org/

https://www.cgal.org/
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Fig. 7. Overview of the input point clouds and their corresponding aerial images. (a) Three ALS building point clouds from the Dublin dataset are denoted as D1,
D2, and D3 from left to right. (b) ALS building-cluster point cloud from Ningbo dataset denoted as NB. (c) Airborne MVS point cloud of Dortmund city center,
denoted as DCC.

TABLE II
PARAMETER SETTINGS AND REPRESENTATIONS

For ER, some of the parameters are set to refer to QTPS,
including the minimum number of points of a shape (refer to
κ), maximum tolerance Euclidean distance from a point and
shape (refer to τ ), the maximum distance between points to be
considered connected (refer to γ). The probability to control
search endurance and maximum tolerance normal deviation
from a point’s normal to the normal on a shape at the projected
point is set to the default values. For ORG, rth , θth, dI , and
dmin are set as 0.25 m, 13.0°, 1.0 m, and 0.2 m, respectively,
according to the original paper.

3) Qualitative Analysis: Figs. 8 –10 illustrate the visualiza-
tion comparison results of the four methods from one global
view and two close-up views that are corresponding to the
red rectangles in the global views. All the segmented planar
points are in color according to the RGB values, where the
points belonging to the same plane are shown in the same color.

More critical areas from different views can be seen in the
supplementary material.

As can be seen in Fig. 8, in the Dublin dataset, the proposed
QTPS segmented more precise planes, and more fine planar
structures (e.g., eaves and windowsill) were preserved well.
ER produced lots of under-segmentations, where some of the
nonadjacent planes were merged through many noise points and
some of the adjacent planes with small planar distances were
merged due to the threshold problem. ORG produced lots of
over-segmentations, where the geometric features of the voxel
unit are strongly influenced by the noise point, which makes
some of the voxels could not be merged into the corresponding
planes. REPS missed a lot of planar points, especially for some
planar structures with sparse points or small structures, which
probably be removed in the optimization process.

The façade points of the Ningbo dataset are missing due to the
situation of dense buildings and high flight altitude. In Fig. 9,
both QTPS and ORG have good performance of segmenting
roof planes effectively. The performance of ER and REPS was
unsatisfactory. A lot of wrong planes and over-segmentations
were shown in the result of the ER. REPS fails to segment sparse
point clouds due to the strict optimization strategy. Furthermore,
QTPS was also applied to the USGS open source point cloud,2

which has a much lower point density, to verify its ability to pro-
cess sparse point clouds. This part is shown in the supplementary
material.

2Online. [Available]: http://www.usgs.gov/

http://www.usgs.gov/
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Fig. 8. Comparison of various 3-D plane segmentation results for Dublin dense ALS point clouds (front view). (a) Results of D1. (b) Results of D2. (c) Results
of D3.

In Fig. 10, all four methods obtained a lot of correct planar
structures from the Dortmund dataset. QTPS preserved more
true positives but also segmented some pseudo planes that are
constructed by noise points. ER mixed many noise points with
planar points and caused the blurred boundary. ORG retained
much less fine planar structures and the boundary is not ac-
curate enough, but ORG avoided much of the pseudo planes
and merged them into adjacent large planes. REPS was well
adapted for dense point cloud segmentation but still limited

to a large number of noise points in some complex structural
parts (e.g., dome).

4) Quantitative Analysis: To evaluate the quantitative per-
formance of the four methods, we compared the plane seg-
mentation results of the four methods with those manually
marked reference planes in terms of the following four metrics
[i.e., completeness, correctness, segmentation cross-lap (SCL)
rate, and reference cross-lap (RCL) rate], which are com-
monly used for the evaluation of segmentation result [36], [62].
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Fig. 9. Comparison of various 3-D plane segmentation results for Ningbo sparse ALS point cloud (NB).

Fig. 10. Comparison of various 3-D plane segmentation results for Dortmund airborne MVS point cloud (DCC).

Completeness (comp) and correctness (corr) are defined as the
number of correctly segmented planes concerning the total
number of planes in the reference and segmentation results,
respectively, as the following equation:

comp =
TP

TP + FN

corr =
TP

TP + FP
(24)

where TP is the number of true positives (planes found both
in the reference and segmentation), FN is the number of false
negatives (reference planes not found in segmentation), and
FP is the number of false positives (segmented planes not
found in the reference). To be a true positive, a minimum
overlap of 80% with the reference is required [10]. SCL rate
is defined as the percentage of segmented planes that over-
lap multiple reference planes. RCL rate is defined as the per-
centage of reference planes that overlap multiple-segmented

planes, as follows:

SCL =
Nscl

Ns

RCL =
Nrcl

Nr
(25)

where Nscl is the number of segmented planes that overlap
more than one reference plane, Nrcl is the number of reference
planes that overlap more than one segmented plane, Ns and Nr

are, respectively, the number of segmented planes and reference
planes. Since the used datasets are too complex to label all the
planes, we only marked the reference planes on the point clouds
of D1 and NB for quantitative analysis, as shown in Fig. 11.

Table III lists the properties of input point clouds and their
corresponding quantitative statistics. It is found that QTPS seg-
mented the largest number of true positives in both D1 and NB
point clouds.

For D1, although the building structure is not much compli-
cated, it has a severe noise level. Fig. 12 shows a close-up view of
the multiscale supervoxel segmentation result and QTPS result.
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TABLE III
DATA PROPERTIES AND QUANTITATIVE STATISTICS

Fig. 11. Reference planes. (a) Reference planes of D1. (b) Reference planes
of NB.

Fig. 12. Close-up view of D1. (a) Result of multiscale supervoxel segmenta-
tion, where independent points are shown in white color. (b) Result of QTPS.

A large number of noise points are distributed under the roof and
around the façade [Fig. 12(a)], and they are eliminated by QTPS
[Fig. 12(b)]. ER produced the largest number of SCL, which
indicates that the ER is more likely to combine multiple uncon-
nected planes for the point cloud with high density and severe
noise levels. ORG produced the largest number of RCL because
some of the voxel units were not merged into the corresponding
planes due to the low precision of planar parameters caused
by noise points. Although REPS generally avoided segmenting
more incorrect planes, nevertheless it missed many reference
planar structures.

For NB, the μ value reached 0.1682 m and most of the planar
structures are constructed by sparse points. The performances
of QTPS and ORG verified that they are robust in sparse point
cloud processing. ORG can obtain voxels with higher planar
precision in a low noise level point cloud.

To further evaluate the planar precision of the segmented
planes, we calculated the point-plane distance from each seg-
mented planar point to its corresponding plane, where the planar
parameters of each segmented plane were calculated by (21). We
calculated the maximum distance (dmax), mean distance (dmean)
and RMSE of each segmented plane. Then, the average value of

TABLE IV
STATISTICS OF PLANAR PRECISION AND RUNTIMES

dmax, dmean, and RMSE of all segmented planes were further
calculated and denoted asdmax,dmean, andRMSE, respectively.
The statistical values of dmax , dmean, RMSE, and the runtime
are listed in Table IV.

As can be seen in Table IV, QTPS provided the smallest values
of dmax, dmean, and RMSE in each of the input data, which
indicates that QTPS obtained the most precise plane fitting
result.

In terms of runtime, ER had the shortest runtime in the
Dublin dataset, while ORG had the shortest runtime in the
Ningbo dataset and the Dortmund dataset. It should be noted
that the runtime of the four methods was not only determined
by the number of points, but also by the complexity of the point
distribution and the number of planar structures in the point
cloud.

5) Sensitive Analysis: The distance tolerance value (τ ) is
an essential parameter in the proposed plane segmentation ap-
proach. In Section V, we have analyzed the influence of τ on
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Fig. 13. Segmentation results of QTPS under different settings of τ . (a) τ =
0.05 m. (b) τ = 0.1 m. (c) τ = 0.15 m. (d) τ = 0.2 m.

the extraction of planar subset. A large τ results in low precision
FPSs and further produces incorrect final planes, whereas a small
one probably reduces the integrity of FPSs and miss some planar
structures, which reduces the completeness of the final planes.

Different values of τ are used for the Dublin1 point cloud in
Fig. 13. When τ is set to 0.05 m, the segmented planes have
higher planar precision, but some fine planes are lost. When τ is
set to 0.15 and 0.2 m, respectively, some of the noise points are
segmented into the final planes, which make the planar precision
much lower. It is seen that the eave is over segmented when
τ is set to 0.2 m. In general, the results of the four-parameter
settings all segmented a large proportion of true positives, which
indicates that QTPS is not sensitive to the parameters when the
segmentation targets are large planar structures.

6) Limitations: Although QTPS segments a large proportion
of planar structures, nevertheless lots of pseudo planar struc-
tures, which are constructed by noise points and lay beyond
the meaningfulness of subsequent applications, were also seg-
mented from dense point clouds with severe noise levels. This
problem can be solved by decreasing the value of τ and εt
but at the expense of missing some of the fine planes, which
makes it a difficult choice to balance. To handle the limitation
mentioned above, it is better to consider more constraints (e.g.,
mesh topology) and make some of the parameter settings locally
adaptive. Furthermore, the efficiency of QTPS is still not high
enough compared to some of the existed methods.

VI. CONCLUSION

This article proposed a novel 3-D plane segmentation algo-
rithm that can be applied to multiple types of point clouds. The
ultimate purpose of plane segmentation is to get an accurate
boundary and precise planar parameters. Based on this idea, the
crucial technique of the proposed QTPS algorithm is to extract
fine planar structures as basic units from presegmented coarse
planar structures. A quasi-a-contrario theory-based algorithm
is proposed to extract planar subset and a criterion is established
to measure the extraction result, which can ensure the planar
accuracy and prevent false-positive effectively. This result was
supported by a synthetic experiment in Section V-A.

The comprehensive experimental results in Section V-B
demonstrated that the proposed QTPS algorithm is robust to seg-
ment a large proportion of true positives with precise planar pa-
rameters from various airborne point clouds. The performances
are favorable against state-of-the-art algorithms in the challeng-
ing problems of low point density and severe noise levels.

Our future work will focus on analyzing the topological rela-
tions between the segmented planes, thus eliminating redundant
pseudo-planar structures.
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