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Abstract— Due to its wide applications, remote sensing (RS)
image scene classification has attracted increasing research inter-
est. When each category has a sufficient number of labeled
samples, RS image scene classification can be well addressed
by deep learning. However, in the RS big data era, it is
extremely difficult or even impossible to annotate RS scene
samples for all the categories in one time as the RS scene
classification often needs to be extended along with the emergence
of new applications that inevitably involve a new class of RS
images. Hence, the RS big data era fairly requires a zero-
shot RS scene classification (ZSRSSC) paradigm in which the
classification model learned from training RS scene categories
obeys the inference ability to recognize the RS image scenes
from unseen categories, in common with the humans’ evolu-
tionary perception ability. Unfortunately, zero-shot classification
is largely unexploited in the RS field. This article proposes
a novel ZSRSSC method based on locality-preservation deep
cross-modal embedding networks (LPDCMENs). The proposed
LPDCMENs, which can fully assimilate the pairwise intramodal
and intermodal supervision in an end-to-end manner, aim to
alleviate the problem of class structure inconsistency between
two hybrid spaces (i.e., the visual image space and the semantic
space). To pursue a stable and generalization ability, which is
highly desired for ZSRSSC, a set of explainable constraints
is specially designed to optimize LPDCMENs. To fully verify
the effectiveness of the proposed LPDCMENs, we collect a new
large-scale RS scene data set, including the instance-level visual
images and class-level semantic representations (RSSDIVCS),
where the general and domain knowledge is exploited to construct
the class-level semantic representations. Extensive experiments
show that the proposed ZSRSSC method based on LPDCMENs
can obviously outperform the state-of-the-art methods, and the
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domain knowledge further improves the performance of ZSRSSC
compared with the general knowledge. The collected RSSDIVCS
will be made publicly available along with this article.

Index Terms— Latent space, locality-preservation deep cross-
modal embedding networks (LPDCMENs), remote sensing (RS)
imagery, transcendental knowledge, zero-shot RS scene classifi-
cation (ZSRSSC).

I. INTRODUCTION

ALONG with the rapid development of the remote sens-
ing (RS) technology [1]–[3], massive spacecraft cam-

eras have owned the ability to capture the high-resolution
RS images of the earth surface, which provides abundant
information about the ground objects [4]. As well known,
accurate interpretation of the high-resolution RS imagery is
the basic precondition of the wide RS-driven applications
[5], [6]. For this reason, kinds of methods [7] have been
exploited to automatically interpret the high-resolution RS
imagery. Through years of efforts, scene-level classification
[8], [9], which takes the scene (i.e., the image block) as the
basic classification unit and aims at predicting the semantic
category of one scene by perceiving the objects in the scene
and their spatial relationships, has been widely realized to be
a promising way to cope with the high-resolution RS image
classification problem [10]. Compared with scene classifica-
tion in the computer vision domain [11], RS image scene
classification suffers from many additional challenges, such
as arbitrary orientation and dense distribution of geospatial
objects. As a consequence, RS image scene classification is
still an open problem and deserves much more exploration.

To promote the development of RS image scene classifi-
cation, multiple generous research groups in the RS com-
munity have publicly released their RS image scene data
sets, such as UCM [12], AID [13], NWPU-RESISC45 [8],
RSI-CB256 [14], and PatternNet [15]. Benefiting from this
data sharing mechanism, experts from multiple related fields
can contribute their efforts to the RS scene classification
task. As a consequence, a great deal of progress has been
made in RS scene classification. Among all existing RS scene
classification methods, the methods based on deep networks
[16] obviously outperform the others. However, the superior
performance of such deep networks-based methods is highly
conditioned to large amounts of labeled data [17]. In the RS
big data era, new applications appear continually and bring
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forward a series of new demands for the RS scene classifi-
cation standard [18], which means that emerging applications
often require the extension of an old RS scene category set.
Therefore, it is impossible to annotate the RS scene samples
on a complete RS scene category set containing all potential
RS scene categories as the RS scene category set will change
along with the emergence of new applications. Apparently,
the RS big data era fairly requires a zero-shot RS scene
classification (ZSRSSC) paradigm that the classification model
learned on an existing RS scene category set should own
the inference ability to recognize the RS image scenes from
unseen categories (i.e., categories that do not exist in the given
RS scene category set). Unfortunately, such ZSRSSC is rarely
studied, i.e., the zero-shot classification technique is largely
unexploited in the RS field.

On the one hand, the aforementioned ZSRSSC highly
resembles the zero-shot learning (ZSL) task [19], [20] in the
computer vision field. In the training stage of ZSL, only the
labeled visual samples from seen categories are available, and
there do not exist any visual samples from unseen categories.
By leveraging the transcendental knowledge of the seen and
unseen categories, ZSL is principally concerned with recog-
nizing visual instances from unseen categories. Overall, the
classic ZSL task mainly addresses the evolutionary recognition
of natural images with the aid of universal knowledge. On the
other hand, compared with the classic ZSL task, ZSRSSC
suffers from the following two additional challenges.

1) There does not exist any kind of RS-domain-specific
knowledge that can pertinently represent the RS scene
categories [21]. In this case, the universal knowledge can
be reluctantly used, but it lacks pertinence to use uni-
versal knowledge for describing the RS-domain-specific
categories.

2) Compared with the natural images, it is much harder
to mine the intrinsic content of the RS imagery due to
the scale variation and arbitrary orientation of geospatial
elements in the RS imagery [22].

As an early attempt of ZSRSSC, the well-known natural
language process model (i.e., word2vec) is used to map the
names of RS scene categories including seen and unseen
categories to semantic vectors, and then, a graph propagation
algorithm based on the semantic vectors is proposed to classify
unseen visual samples [21]. To tackle the problem of class
structure inconsistency between the visual image space and
the semantic space that severely affects the performance of
ZSRSSC, a semisupervised Sammon embedding algorithm
[23] is proposed to address ZSRSSC. Similar to ZSRSSC,
zero-shot RS image tree recognition is implanted by learning
a compatibility function between the deep image features and
the semantic features [24]. As a whole, deep learning only
plays a role in the feature extractor in these methods [21],
[23], [24], and the powerful ability of deep learning is still
not fully embodied in the ZSRSSC task. Intuitively, how to
utilize deep learning to thoroughly connect the visual image
space and the semantic space would be a promising way to
improve the performance of ZSRSSC.

With the aforementioned consideration, this article pro-
poses a novel ZSRSSC method based on locality-preservation

deep cross-modal embedding networks (LPDCMENs), which
mainly aim to alleviate the problem of class structure incon-
sistency between the visual image space and the semantic
space. By contrast to the existing ZSRSSC-related methods
[21], [23], [24], the proposed LPDCMENs have two dis-
tinct characteristics: 1) LPDCMENs are composed of totally
learnable modules in one unified framework to thoroughly
match the visual images, instead of the frozen visual image
features, and the semantic representations in the latent space
and 2) LPDCMENs can assimilate the pairwise intramodal
relationship supervision to preserve the aggregation of visual
image samples from the same class (i.e., the locality-
preservation characteristic). Under the supervision of the seen
visual image samples and semantic representations, a set of
explainable constraints, considering cross-modal matching via
two different distance metrics (i.e., the cosine-like distance
and the Euclidean distance) and latent feature regularization
from two varied perspectives (i.e., the distribution balance of
latent features and the variance maximum of latent features),
is proposed to learn LPDCMENs in an end-to-end manner.
Through a straightforward transfer, the learned LPDCMENs
can be employed to recognize the unseen visual samples
with the aid of unseen semantic representations. To fully
verify the effectiveness of the proposed ZSRSSC approach,
we construct a new RS scene data set, including the instance-
level visual images and class-level semantic representations
(RSSDIVCS). By integrating several existing RS image scene
data sets, this article collects a unified one with more RS
scene categories than any one of the publicly open data sets.
The unified RS image scene data set is taken as the image
part of the RSSDIVCS. To analyze the effect of knowledge
types, two kinds of knowledge (i.e., the general and domain
knowledge) are exploited to construct the corresponding class-
level semantic representations of the RSSDIVCS. Extensive
experiments show that the proposed ZSRSSC method based
on LPDCMENs can obviously outperform the state-of-the-
art methods and that the domain knowledge helps to further
improve the performance of ZSRSSC compared with the
general knowledge. As a whole, the main contributions of this
article can be summarized as follows.

1) This article proposes a novel ZSRSSC approach based
on LPDCMENs. The proposed LPDCMENs have two
distinct characteristics.

a) LPDCMENs are composed of totally learnable
modules in one unified framework to thoroughly
match the visual images, instead of the frozen
visual image features, and the semantic represen-
tations in the latent space.

b) LPDCMENs benefit from preserving the locality
of visual image samples from the same class by
assimilating the pairwise intramodal relationship
supervision.

2) To pursue robust cross-modal matching in the latent
space, a set of meaningful constraints, such as the cross-
modal matching constraint via two different distance
metrics (i.e., the cosine-like distance and the Euclidean
distance) and the latent feature regularization constraint
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using two varied subconstraints (i.e., the distribution
balance subconstraint and the variance maximum sub-
constraint), is specifically designed to build the objective
function for learning LPDCMENs. Benefiting from the
well-designed objective function, LPDCMENs can be
optimized in an end-to-end manner.

3) This article releases a large-scale RSSDIVCS, which can
be taken as a benchmark for ZSRSSC and facilitates
more knowledge-driven RS image scene understanding
tasks.

The rest of this article is organized as follows. Section II
reviews the related work. Section III specifically depicts the
proposed LPDCMENs for ZSRSSC. Section IV reports and
discusses the experimental results. Finally, Section V gives
the conclusion of this article.

II. RELATED WORK

In this section, we briefly review the most relevant works
in the literature from two perspectives: RS scene classification
and ZSL.

During the past decades, remarkable efforts have been made
in developing kinds of methods for RS scene classification
because of its wide applications including economic assess-
ment [5], humanitarian aid [25], geospatial object detection
[26], [27], and RS image retrieval [28], [29]. As RS scene
classification aims to categorize image scenes to land-use and
land-cover (LULC) classes based on the visual contents of
image scenes, feature representation, being a straightforward
way to depict the visual contents, plays a decisive role in
RS scene classification. According to the adopted features,
the existing RS scene classification methods can be coarsely
divided into three kinds: the methods based on handcrafted-
feature [12], [30]–[32], the methods based on unsupervised
feature learning [33]–[35], and the methods based on super-
vised feature learning [9], [16], [36]. It is noted that the first
two kinds of methods often further need a small set of labeled
samples to train a shallow feature classifier, and the third kind
generally tackles the feature representation and classification
in one deep network with the aid of massive labeled samples.
As a whole, the traditional RS scene classification methods
can only recognize the samples from seen scene categories
whose visual instances participate in the training stage and
cannot handle the classification of the samples from unseen
scene categories whose visual instances do not appear in the
training stage. However, as explained earlier, how to recognize
samples from unseen scene categories is highly required in the
RS big data era.

Inspired by the phenomena that humans can easily recognize
a new class even they have not seen a single instance before,
pioneers in the computer vision field realize the possibility
of evolutionary classification and exploit various methods for
ZSL [37]. Specifically, based on the auxiliary knowledge
(e.g., the semantic representations of categories), ZSL aims
at learning a computational model on visual samples from
the seen classes to recognize visual samples from the unseen
classes. Overall, the matching strategy between the visual
space and semantic space plays a key role in ZSL. According

to the used matching strategies, the existing ZSL methods can
be divided into three categories: matching in the semantic
space [19], [38], matching in the visual space [39], and
matching in the latent space [40]–[43]. Afterward, ZSL has
been successfully extended to address multilabel classification
[44] and large-scale retrieval [45]. In addition to these efforts
in the computer vision domain, there are also many interesting
attempts toward ZSL in the RS applications. Considering the
association between the optical and SAR samples, the visual
features of optical samples are utilized to generate the semantic
representations of SAR labels [46], which further supports
the recognition of SAR targets from unseen categories. From
the simulation perspective, ZSL based on deep learning has
effectively addressed the SAR target recognition task [47].
By learning a compatibility function between deep features of
images and semantic representations of categories, zero-shot
street tree classification using aerial imagery can significantly
outperform the existing ones [24]. As far as the argued topic
(i.e., ZSRSSC) in this article, the existing works [21], [23]
mainly focus on operations on semantic representations where
Li et al. [21] mainly aim at modeling the relationship between
the seen and unseen categories in the semantic space and
Quan et al. [23] try to align the structure between the visual
image space and the semantic space. Although deep learning
has been considered in the existing ZSRSSC methods [21],
[23], deep learning only works as the prearranged deep feature
extractor, and the existing ZSRSSC methods lack the joint
treatment of deep learning between the visual image space
and the semantic space, which makes the performance of the
existing ZSRSSC approaches still unsatisfactory.

III. ZERO-SHOT SCENE CLASSIFICATION VIA DEEP

CROSS-MODAL EMBEDDING

In this section, we introduce the proposed ZSRSSC method.
As visually shown in Fig. 1, the presented ZSRSSC method
is implemented by bridging the visual images and semantic
representations in the latent space. In the context of ZSRSSC,
this article recommends LPDCMENs to thoroughly match
the visual images and semantic representations in the latent
space. As shown in Fig. 2, LPDCMENs are composed of the
visual image mapping subnetworks via convolutional neural
networks (V-CNNs) and the semantic representation mapping
subnetworks via neural networks (S-NNs). After the mapping
of V-CNNs and S-NNs, the RS image scenes and semantic
representations are projected to the latent space. In the latent
space, the RS image scenes from the same category will be
close to each other (i.e., the locality-preservation property)
and grouped around the semantic representation of the given
category (i.e., the cross-modal matching property). In addition,
it is straightforward to extend LPDCMENs to match image
scenes and semantic representations from unseen categories.
Hence, LPDCMENs are qualified to address evolutionary
classification (i.e., the aforementioned ZSRSSC task).

To facilitate the following discussion, we give a formal
definition of ZSRSSC in Section III-A. As mentioned earlier,
in the context of ZSRSSC, the number of semantic represen-
tations is very limited. Under this limitation, Section III-B
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Fig. 1. Flowchart of the proposed ZSRSSC method. The instance-level visual images and class-level semantic representations from the seen categories are
employed to train LPDCMENs. In the latent space, the dotted circles stand for the unseen scene categories that do not participate in the training stage. In the
testing stage, LPDCMENs are competent for ZSRSSC due to their good generalization ability in bridging the visual images and semantic representations from
unseen classes.

depicts how to robustly optimize LPDCMENs. In addition,
Section III-C depicts how to conduct ZSRSSC based on the
learned LPDCMENs.

A. Formulated Definition of Zero-Shot Scene Classification

Let DS = {hS
i , l

S
i }N S

i=1 denote the training data in the visual
space, where hS

i stands for the i th RS image scene, and l S
i

represents its corresponding label from �S = {1S, 2S, . . . ,C S}.
In addition, we have DU = {hU

i , l
U
i }NU

i=1 as the testing data
in the visual space, where hU

i denotes the i th RS image
scene, and lU

i stands for the associated label from �U =
{1U , 2U , . . . ,CU }. For ZSRSSC, the label sets �S and �U from
the training data and testing data are disjoint (i.e., �S ∩ �U =
∅). By simulating the humans’ prior knowledge, each class
is associated with a semantic vector. More specifically, let
FS = {f S

c ∈ R
d}CS

c=1 and FU = {fU
c ∈ R

d}CU

c=1 denote the
semantic representations of the training data and testing data,
where d denotes the dimension of the semantic representation.

The goal of ZSRSSC is to predict the unseen labels of
{ hU

i }NU

i=1 by leveraging the visual data DS = {hS
i , l

S
i }N S

i=1 and
the semantic representations FS = {f S

c ∈ R
d}CS

c=1 and FU = {fU
c

∈ R
d}CU

c=1. It should be noted that semantic representations
from both the training data and testing data are accessible
across the training and testing stages, which is the basic
premise of ZSRSSC and easily satisfied because semantic
representations come from the humans’ common sense, and
we can construct them in advance.

B. Deep Cross-Modal Embedding in the Latent Space

Instead of matching in the visual space or semantic space,
we perform a match in the latent space for ZSRSSC as
matching in the latent space alleviates the data inconsistency

across hybrid spaces and enforces the within-class data locality
to be preserved in the derived manifold (i.e., the latent space).
Intuitively, matching in the latent space needs an embedding
model. As illustrated in Fig. 2, the embedding function is
implemented by LPDCMENs. More specifically, LPDCMENs
are composed of V-CNNs and S-NNs where V-CNNs hierar-
chically map the RS image scene to the vector in the latent
space and S-NNs work for projecting the semantic vector to
the vector in the latent space. In the following, we introduce
the proposed objective function and optimization strategy for
learning LPDCMENs.

1) Objective Function for Learning Deep Cross-Modal
Embedding Networks: To pursue the within-class aggregation
and between-class separation, we adopt the pairwise relation-
ship measure. Before giving the detailed measure, we first
define the pairwise matrices based on the training data DS =
{hS

i , l
S
i }N S

i=1, and FS = {f S
c ∈ R

d}CS

c=1. If hS
i and hS

j have the
same label, V1

i, j = 1; otherwise, V1
i, j = 0.V2

i, j = 1 − V1
i, j .

Similarly, we let E1
i, j = 1 if i = j and E1

i, j = 0 otherwise.
E2

i, j = 1 − E1
i, j . If hS

i and f S
j come from the same class,

M1
i, j = 1; otherwise, M1

i, j = 0. M2
i, j = 1 − M1

i, j .
Let �X denote the hyperparameters of V-CNNs, and �Y

stands for the hyperparameters of S-NNs. Furthermore, Xi =
ϕ(hS

i ;�X ) ∈ R
m denotes the mapped vector in the latent space

where ϕ(·;�X ) embeds the visual space to the latent space
and m denotes the vector dimension in the latent space, and
Yi = ϕ(f S

i ;�Y ) ∈ R
m also denotes the mapped vector in

the latent space where ϕ(·;�Y ) conducts embedding from the
semantic space to the latent space.

Based on the aforementioned notations, the pairwise
intramodal similarity between the instance-level visual image
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Fig. 2. Architecture of LPDCMENs. The LPDCMENs are composed of two hybrid subnetworks (i.e., V-CNNs and S-NNs). It is worth noting that our
proposed LPDCMENs fully consider the joint optimization of multiple images and semantic features, which benefits preserving the locality of images in the
latent space.

scenes can be formulated by the following equation:�
p
�
V1

i, j = 1|X� = σ
�
�i, j

�
p
�
V2

i, j = 1|X� = 1 − σ
�
�i, j

� (1)

where X = [X1,X2, . . . ,XN S ], σ(�i, j ) = 1/(1 + e−�i, j )
denotes the sigmoid function, �i, j = XT

i · X j/δ stands for
the weighted inner product, and δ is a weighted constant.

The pairwise intramodal similarity between the class-level
semantic representations can be defined by the following
equation: �

p
�
E1

i, j = 1|Y� = σ
�
�i, j

�
p
�
E2

i, j = 1|Y� = 1 − σ
�
�i, j

� (2)

where Y = [Y1,Y2, . . . ,YCS ], σ(�i, j ) = 1/(1 + e−�i, j ), and
�i, j = YT

i · Y j/δ.
The pairwise intramodal similarity between the visual

images and semantic representations can be formulated by the

following equation:�
p
�
M1

i, j = 1|X,Y
� = σ

�
	i, j

�
p
�
M2

i, j = 1|X,Y
� = 1 − σ

�
	i, j

� (3)

where σ(	i, j) = 1/(1 + e−	i, j ) and 	i, j = XT
i · Y j/δ.

As explained earlier, LPDCMENs should own the locality
preservation, cross-modal matching, and generalization abili-
ties. To robustly learn LPDCMENs, we design a new objective
function based on these constraints, which is formulated in (4).
Note that, in (4), the pairwise intramodal relationship super-
version (i.e., the pairwise matrices V and E) is adopted to form
the locality-preservation constraint, which is composed of the
locality-preservation embedding constraint for visual samples
(LPE-V) and the locality-preservation embedding constraint
for semantic representations (LPE-S). To pursue robust cross-
modal matching, the cross-modal matching constraint is imple-
mented by fusing two different distance metrics, including the
cosine-like distance (CMM-CD) and the Euclidean distance
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(CMM-ED). To lift the generalization performance, this article
recommends the usage of the latent feature regularization
constraint that considers two varied perspectives, including the
distribution balance subconstraint of the latent features (DBC)
and the variance maximum subconstraint of the latent features
(VMC). To facilitate understanding, we intuitively illustrate the
constructed constraints, including LPE-V, LPE-S, CMM-CD,
CMM-ED, DBC, and VMC in Fig. 2

min
�X ,�Y

J =

LPE-V� �� �⎛
⎝ N S�

i=1

N S�
j=1

2�
k=1

�−V k
i, j log p

�
V k

i, j = 1|X��
⎞
⎠

+ N S

C S
·

LPE-S� �� �⎛
⎝ CS�

i=1

CS�
j=1

2�
k=1

�−Ek
i, j log p

�
Ek

i, j = 1|Y��
⎞
⎠

+ α ·

CMM-CD� �� �⎛
⎝ N S�

i=1

CS�
j=1

2�
k=1

�−Mk
i, j log p

�
Mk

i, j = 1|X,Y
��⎞⎠

+ β ·

CMM-ED� �� �⎛
⎝ CS�

j=1

������Y j − 1

N S
j

N S�
i=1

M1
i, j · Xi

������
2

F

⎞
⎠

+ γ ·
DBC� �� ���Z · 1�2

F

�+η ·
VMC� �� ����ZHZT − I

��2

F

�
(4)

where Z = [X,Y]∈R
m×(N S+CS ); 1 ∈ R

(N S+CS )×1 stands for
a vector with all elements equal to 1; I ∈ R

m×m is an
identity matrix; H = ((NS + CS) · G − K)/(N S + C S);
G ∈ R

(N S+CS )×(N S+CS ) denotes an identity matrix; K ∈
R
(N S+CS )×(N S+CS ) is a matrix with all elements equal to 1;

N S
j = �N S

i=1 M1
i, j ; and α, β, γ, and η stand for the empirical

weights of multiple constraints (i.e., CMM-CD, CMM-ED,
DBC, and VMC). For the proposed cross-modal matching
constraint, α and β adjust the relative contribution degree of
two different distance metrics (i.e., CMM-CD and CMM-ED).
In the experimental section, ablation experiments about α and
β are conducted to quantitatively explain the superiority of
the joint consideration of different distance metrics. As far
as the latent feature regularization constraint, γ and η tune
the relative contribution degree of two varied latent feature
regularization subconstraints (i.e., DBC and VMC). To check
the rationality of the recommended latent feature regulariza-
tion constraint, ablation experiments about γ and η are also
conducted in the experimental section.

By plugging the pairwise similarity functions given in (1)–
(3) into (4), the objective function for optimizing LPDCMENs
can be rewritten as follows:

min
�X ,�Y

J =

LPE-V� �� �⎛
⎝ N S�

i=1

N S�
j=1

�−V 1
i, j ·�i, j + log

�
1 + e�i, j

��⎞⎠

+ N S

C S
·

LPE-S� �� �⎛
⎝ CS�

i=1

CS�
j=1

�−E1
i, j ·�i, j + log

�
1 + e�i, j

��⎞⎠

+ α ·

CMM-CD� �� �⎛
⎝ N S�

i=1

CS�
j=1

�−M1
i, j ·	i, j + log

�
1 + e	i, j

��⎞⎠

+ β ·

CMM-ED� �� �
(

Cs�
j=1

�����Y j − 1

N j

N s�
i=1

M1
i, j · Xi

�����
2

F

)

+ γ ·
DBC� �� ���Z · 1�2

F

�+η ·
VMC� �� ����ZHZT − I

��2

F

�
.. (5)

2) Optimization Strategy for Learning Deep Cross-Modal
Embedding Networks: As shown in the objective function
in (5), the hyperparameters of two subnetworks need to be
optimized, and the latent vectors are also unobserved in
advance. With this consideration, we optimize them via an
alternative learning strategy where one variant is optimized,
while the others are fixed. Like the popular optimization
skill of deep learning [28], we adopt the stochastic gradient
descent (SGD) to learn the hyperparameters of LPDCMENs
using the following three steps over a fixed number of itera-
tions iterMax.

1) Calculate X and Y. More specifically, the RS image
scenes can be mapped to X based on the hyperparame-
ters of V-CNNs �X , and the semantic representations
can be projected to Y based on the hyperparameters of
S-NNs �Y .

2) Update �X by fixing �Y . With respect to the latent
feature vector Xi , we can obtain the closed-form gradient
of the objective function in (5), where the gradient can
be expressed by (6). Furthermore, the gradient is used
to update �X by SGD

∂ J

∂Xi
= 2

δ
·

N S�
j=1

�
σ
�
�i, j

� · X j − V 1
i, j · X j

�

+ α

δ
·

CS�
j=1

�
σ
�
	i, j

� · Y j − M1
i, j · Y j

�

+ 2β

Ns
j

·
CS�
j=1

⎛
⎝M1

i, j ·
⎛
⎝ 1

N S
j

N S�
i=1

M1
i, j · Xi − Y j

⎞
⎠
⎞
⎠

+ 2γ · (Z · 1)+ 2η · �ZHZT − I
�
ZHT

i (6)

where Hi denotes the i th column of H and i =
1, 2, . . . , N S .

3) Update �Y by fixing �X . With respect to the latent fea-
ture vector Y j , we can obtain the closed-form gradient
of the objective function in (5), where the gradient can
be expressed by (7). Furthermore, the gradient is used
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Algorithm 1 Optimization Algorithm for Learning
LPDCMENs

Input: The training visual data DS = {hS
i , l

S
i }N S

i=1, the training
semantic data FS = {f S

c ∈ R
d}CS

c=1
Output: The hyperparameters of LPDCMENs including �X

and �Y

Initialization:�X and �Y are initialized. The vector dimen-
sion in the latent space m and the weighted constant δ
are empirically set. The number of iterations i ter Max . The
weights α, β, γ, η in Eq. (5) are empirically set.
repeat

Calculate the latent vectors X and Y based on�X and
�Y ;

for i=1,2,. . . , N S do
• Calculate the visual gradient of the i th RS image

scene according to Eq. (6);
• Update �X by back propagating the visual gradi-

ent;
end for
for j=1,2,. . . ,C S do

• Calculate the semantic gradient of the j -th seman-
tic representation according to Eq. (7);

• Update �Y by back propagating the visual gradi-
ent;

end for
until a fixed number of iterations i ter Max

to update �Y by SGD

∂ J

∂Y j
= 2

δ
· N S

C S
·

CS�
j=1

�
σ
�
�i, j

� · Y j − E1
i, j · Y j

�

+ α

δ
·

N s�
i=1

�
σ
�
	i, j

� · Xi − M1
i, j · Xi

�

+ 2β ·
�

Y j − 1

N S
j

N s�
i=1

M1
i, j Xi

�

+ 2γ · (Z · 1)+ 2η · �ZHZT − I
�
ZHT

N+ j (7)

where HN S+ j denotes the N S + j th column of H and
j = 1, 2, . . . ,C S .

To facilitate understanding, we summarize the iteratively
alternative optimization procedure in Algorithm 1.

As depicted in Algorithm 1, the hyperparameters of LPD-
CMENs, including �X and �Y , can be learned in an end-to-
end manner. In the following, Section III-C introduces how to
conduct ZSRSSC based on the learned LPDCMENs.

C. Recognizing Scenes From Unseen Classes via the Learned
Deep Cross-Modal Embedding Networks

Although LPDCMENs are learned on the training data,
which does not have any label overlap with the testing
data, the feature mapping function of LPDCMENs can be
generalized to the testing data. Before recognizing the testing
visual scenes, we should first construct the semantic templates
{YU

1 ,YU
2 , . . . ,YU

CU } (i.e., the semantic representations in the

Algorithm 2 Proposed LPDCMENs-Driven ZSRSSC Method

Input: The testing visual data {hU
i }NU

i=1, the testing semantic
data FU = {fU

c ∈ R
d}CU

c=1. The hyper-parameters of LPDC-
MENs including �X and �Y

Output: The labels of the testing visual data {lU
i }NU

i=1
Calculate the the semantic templates {YU

1 ,YU
2 , . . . ,YU

CU }
according to Eq. (8);
for i=1,2,. . . , NU do

• Calculate the latent representation of the i -th visual
image scene via XU

i = ϕ(hU
i ;�X );

• Calculate the label of the i -th visual image scene
according to Eq. (9);

end for

latent space) based on the testing semantic representations
FU = {fU

c ∈ R
d}CU

c=1, which is formulated by the following
equation:

YU
c = ϕ

�
fU
c ;�Y

�
(8)

where c = 1, 2, . . . ,CU .
Given the i th testing image scene hU

i , it can be mapped to
the latent space via XU

i = ϕ(hU
i ;�X ). As LPDCMENs own

a good ability to match visual and semantic data in the latent
space, the class label of XU

i = ϕ(hU
i ;�X ) can be inferred by

the following equation:

arg max
c

�
XU

i ,YU
c

���XU
i

�� · ��YU
c

�� (9)

where < ·, · > denotes the inner product of two latent feature
vectors and c = 1, 2, . . . ,CU

We summarize the proposed ZSRSSC method based on
LPDCMENs in Algorithm 2. In Section IV, we evaluate the
proposed ZSRSSC method.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Section IV-A first introduces the collected RS data set and
adopted evaluation metric, and the implementation details of
the presented LPDCMEN method. On the collected data set,
Section IV-B analyzes the sensitivity of critical parameters in
our proposed LPDCMEN method. In addition, Section IV-C
gives the ablation analysis of the recommended constraints,
including the cross-modal matching constraint and the latent
feature regularization constraint. Finally, Section IV-D com-
pares our proposed LPDCMENs with the state-of-the-art
methods.

A. Experimental Setup

In this section, we first introduce the evaluation data sets
in Section IV-A1. We then give the implementation details of
our proposed method in Section IV-A2.

1) Evaluation Data Set and Metric: As aforementioned, the
RSSDIVCS includes two modalities (i.e., the instance-level
visual images and class-level semantic representations). In the
following, these two modalities are specifically introduced,
respectively.
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Fig. 3. Visual description of RS image scenes in the RSSDIVCS. More specifically, two RS image scenes, which are randomly selected from each category,
are visually shown.

In the literature, lots of RS image scene data sets, such
as UCM [12], AID [13], NWPU-RESISC45 [8], RSI-CB256
[14], and PatternNet [15], have been publicly released. How-
ever, each of these data sets has a relatively small number of
scene categories, so any one of the existing data sets cannot
fully verify the performance of ZSRSSC. Considering that
UCM, AID, NWPU-RESISC45, RSI-CB256, and PatternNet
own a complementary characteristic from the scene category
perspective, and the image scenes from these five data sets
have a similar image size, we collect a new one by integrating
these four data sets. In the integration process, only one scene
category is kept if multiple scene categories from these five
data sets associate with a similar LULC type, and the rotation
augmentation is adopted if one scene category has a relatively
small number of image scenes. The new image scene data
set is composed of 70 scene categories, and each category

contains 800 image scenes with a size of 256 × 256. More
specifically, the new image scene data set is visually shown
in Fig. 3. The RS image scene category nomenclature and
corresponding language-level description can refer to Table I.

Based on the integrated RS image scene data set, we con-
struct two kinds of class-level semantic representations by two
kinds of knowledge.

1) The first kind of semantic representations is built by gen-
eral knowledge. More concretely, the word2vec model
[48], which is trained on the Wikipedia corpus, is lever-
aged to map each category name to one different seman-
tic vector with 300 dimensions. The semantic vector is
taken as the first kind of semantic representation.

2) The second kind of semantic representation is built
by the domain knowledge. As shown in Table I, mul-
tiple domain experts from the RS field depict each
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TABLE I

RS IMAGE SCENE CATEGORY LIST AND THE CORRESPONDING SENTENCE DESCRIPTION OF EACH RS IMAGE SCENE CATEGORY
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TABLE II

CONFIGURATION OF V-CNNS

RS scene category by one summarized sentence after
checking over ten random RS image scenes from one
given category. Furthermore, the bidirectional encoder
representations from transformers (BERT) model [49]
maps the high-level sentence description of each RS
scene category to one different semantic representation
with 1024 dimensions.

Considering the expert-crafted sentence has assimilated lots
of knowledge from domain experts, this kind of semantic
representation based on sentence description is taken as an
example of the domain knowledge in this article. In the future,
we will explore more kinds of domain knowledge, such as
the expert-crafted attribute vectors or semantic representations
from the domain knowledge graph.

Similar to [42], the overall accuracy (OA) is taken as the
quantitative metric to evaluate the classification performance
of ZSL methods over all unseen classes.

2) Implementation Details: In this implementation, V-
CNNs of LPDCMENs are constructed by transferring the
VGG-F net [50] pretrained on ImageNet based on the fact
that the image scene in our collected RSSDIVCS resembles
the natural image in ImageNet in terms of spectral range and
spatial resolution. The specific configuration of the transferred
V-CNNs is shown in Table II, and V-CNNs can process the
input image with 224 × 224 × 3. In Table II, “filter” specifies
the number of filters, the size of the field, and the dimension of
the input data and can be formulated as num × si ze × si ze ×
dim. “stride1” indicates the sliding step in the convolution
operation. “pool” stands for the downsampling factor. “stride2”
stands for the sliding step in the local pooling operation.

By contrast to the rich samples in the visual space, each
RS scene category has only one semantic representation.
To prevent overfitting of S-NNs, the dimension of the original
semantic representation is first reduced, and we adopt a
shallow semantic embedding network with one fully connected
layer, as depicted in Table III. To reduce the dimension of
semantic representation, each semantic vector fi is transformed
to a kernelized semantic representation

ψ(fi) = �d(fi , f S
1 ), . . . , d

�
fi , f S

CS

�
,

d
�
fi , fU

1

�
, . . . , d

�
fi , fU

CU

��
(10)

where d(fi , f j ) = exp(−h̄�fi −f j�2). In our implementation, h̄
is empirically set to 0.01 and 0.005 for the general knowledge
and domain knowledge.

TABLE III

CONFIGURATION OF S-NNS

More specifically, we set the learning rate to 0.01, and
the weight decay is set to 0.0005. To alleviate overfitting,
we freeze the convolutional layers of V-CNNs and only update
the fully connected layers of V-CNNs. In addition, S-NNs are
fully updated in the learning process. It is worth mentioning
that the whole LPDCMENs can be optimized in an end-to-
end manner. How to determine the parameters in the objective
function will be discussed in Section IV-B.

B. Sensitivity Analysis of Critical Parameters

To effectively analyze the sensitivity of critical parameters
of our proposed method, the seen/unseen ratio is set to 40/30.
Given this seen/unseen ratio, we calculate the average and
standard deviation of the quantitative classification results of
unseen classes over ten random seen/unseen splits.

Overall, our proposed LPDCMENs can converge very fast.
More specifically, as shown in Fig. 4(a) and (b), our proposed
method with the general knowledge can achieve the best
performance when the number of iterations, iterMax, equals 2.
Furthermore, as illustrated in Fig. 4(c) and (d), our proposed
method with the domain knowledge can achieve the best
performance when the number of iterations, iterMax, equals 3.

As shown in Fig. 4(a), when the general knowledge is
adopted, our proposed method can achieve the best perfor-
mance when m = 150. Fixing m = 150, as shown in Fig. 4(b),
δ = 4 makes our proposed method with the general knowledge
achieve the best performance. Similar to this analysis process,
as shown in Fig. 4(c) and (d), our proposed method with
the domain knowledge also can achieve the best performance
when m = 150 and δ = 4.

With α, β, and γ empirically set to 1, 100, and 0.1,
we further analyze the sensitivity of the constraint coefficient
η in the objective function. As illustrated in Fig. 5(a), when
the general knowledge is adopted, η = 10−4 can make our
proposed method achieve the best performance. When the
domain knowledge is adopted, Fig. 5(b) shows that our pro-
posed method achieves the best performance when η = 10−3.
To pursue a generalization ability, the best setting of η under
the seen/unseen ratio of 40/30 is reused in all seen/unseen
ratios. Without any doubt, the performance of our proposed
method can be further improved if we further tune α, β, and
γ . We do not do that here because the repetitive training deep
of networks under so many different parameter settings would
be incredibly time-consuming. As a compromise solution,
we quantitatively analyze the contribution of parameters (i.e.,
α, β, γ, and η) in the objective function via the following
ablation analysis.

C. Ablation Analysis of Critical Parameters

To effectively conduct the ablation analysis, the seen/unseen
ratio is set to 40/30 in the following experiments. To verify
the superiority of the recommended cross-modal matching
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Fig. 4. Classification performance of our proposed method by varying the latent vector dimension m and weight constant δ. (a) Results of our proposed
method using general knowledge under different m’s. (b) Results of our proposed method using general knowledge under different δ’s. (c) Results of our
proposed method using the domain knowledge under different m’s. (d) Results of our proposed method using the domain knowledge under different δ’s.

Fig. 5. Classification performance of our proposed method by varying the constraint coefficient η’s. (a) Results of our proposed method using general
knowledge under different η’s. (b) Results of our proposed method using the domain knowledge under different η’s.

constraint, we summarize the results of the ablation experi-
ments about the cross-modal matching constraint in Table IV.
As shown in Table IV, only using CMM-CD outperforms
CMM-ED, and the fusion of two metrics performs better than
every single one under two kinds of semantic representations
(i.e., the general knowledge and domain knowledge).

Furthermore, Table V records the results of the ablation
experiments about the latent feature regularization constraint.
As shown in Table V, only using DBC or VMC can get
a very close performance, but the fusion of them obviously
outperform every single one, which reflects the complementary
property between DBC and VMC.

D. Comparison With the State-of-the-Art Approaches

To give a full analysis of ZSL methods, we report the
quantitative results under different seen/unseen ratios (e.g.,
40/30, 50/20, and 60/10) in Table VI. More specifically,
in each given seen/unseen ratio, we evaluate each method
over ten random seen/unseen splits. As aforementioned, two
kinds of knowledge, including general knowledge and domain
knowledge, are evaluated, respectively.

To show the superiority of our proposed method, we con-
sider the following baselines. As an extension of ridge regres-
sion [54], semantic autoencoder (SAE) [51] has been proposed
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TABLE IV

ABLATION ANALYSIS OF THE CROSS-MODAL MATCHING CONSTRAINT

TABLE V

ABLATION ANALYSIS OF THE LATENT FEATURE REGULARIZATION CONSTRAINT

TABLE VI

QUANTITATIVE COMPARISON RESULTS (OA) OF ZSL METHODS UNDER DIFFERENT SEEN/UNSEEN RATIOS

to address zero-shot classification of natural imagery. Here,
SAE (V → S) is extended to address zero-shot scene clas-
sification of RS imagery in the semantic space, and SAE (S
→ V) denotes zero-shot scene classification of RS imagery
in the visual space. In the computer vision domain, dual
visual-semantic mapping path (DMaP) [52] is first proposed
to address zero-shot classification. Here, we also evaluate
it on our collected RS scene data set. Different from the
aforementioned feature mapping methods (i.e., from one given
space to another given space), semantics-preserving locality
embedding (SPLE) [42] is proposed to address zero-shot
classification in the latent space. From the generative gen-
eration perspective, the recently proposed creativity inspired
ZSL (CIZSL) [53] is also taken as one of the baselines.
In addition to these zero-shot classification methods in the
computer vision field, we also consider two recently proposed
ZSRSSC methods, including the ZSRSSC method via graph
propagation (ZSRSSC-GP) [21] and the ZSRSSC algorithm
via semisupervised Sammon embedding (ZSRSSC-SE) [23].

As shown in Table VI, our proposed ZSRSSC method based
on LPDCMENs can obviously outperform the state-of-the-art
methods in terms of under different seen/unseen ratios and
with different knowledge types. As our proposed LPDCMENs
follow the classic characteristic of deep learning that often
depends on lots of labeled data, our proposed LPDCMENs
can achieve a larger improvement magnitude compared with
the baselines along with the increment of seen/unseen ratios.
As the dimension of domain knowledge is larger than the gen-
eral knowledge, the overfitting phenomena may make many
existing ZSL methods with the domain knowledge perform
worse than the general knowledge. However, our proposed
LPDCMENs can avoid this problem and make full use of
the advanced domain knowledge. As depicted in Table VI,

our proposed LPDCMENs with the domain knowledge can
outperform the general knowledge, remarkably.

V. CONCLUSION

Driven by more and more practical demands of ZSRSSC
and the fact that ZSRSSC requires unified semantic represen-
tations (i.e., the prior knowledge about the seen and unseen
categories), this article proposes a novel ZSRSSC approach
based on LPDCMENs where LPDCMENs aim to address the
problem of class structure inconsistency between two hybrid
spaces by matching the visual and semantic information in
the latent space. In addition, a set of explainable constraints
is exploited to train LPDCMENs in an end-to-end manner.
Extensive experiments on the new collected RSSDIVCS show
that the proposed LPDCMENs can obviously outperform the
state-of-the-art methods under varying cases.

There exist some pure RS image scene data sets that are
publicly released. However, to the best of our knowledge,
there exists only very few RS scene data sets (which have
small or moderate size) that contain both visual samples and
semantic representations. With this consideration, we collect
a new large-scale RSSDIVCS where the general and domain
knowledge are exploited to construct the class-level seman-
tic representations. The collected RSSDIVCS will be made
publicly available along with this article. Apparently, the
released RSSDIVCS not only benefits the advanced progress
of ZSRSSC but also promotes more knowledge-driven RS
image scene understanding tasks.
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