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A B S T R A C T   

The blooming proliferation of aeronautics and astronautics platforms, together with the ever-increasing remote 
sensing imaging sensors on these platforms, has led to the formation of rapidly-growing earth observation data 
with the characteristics of large volume, large variety, large velocity, large veracity and large value, which raises 
awareness about the importance of large-scale image processing, fusion and mining. Unconsciously, we have 
entered an era of big earth data, also called remote sensing (RS) big data. Although RS big data provides great 
opportunities for a broad range of applications such as disaster rescue, global security, and so forth, it inevitably 
poses many additional processing challenges. As one of the most fundamental and important tasks in RS big data 
mining, image retrieval (i.e., image information mining) from RS big data has attracted continuous research 
interests in the last several decades. This paper mainly works for systematically reviewing the emerging 
achievements for image retrieval from RS big data. And then this paper further discusses the RS image retrieval 
based applications including fusion-oriented RS image processing, geo-localization and disaster rescue. To 
facilitate the quantitative evaluation of the RS image retrieval technique, this paper gives a list of publicly open 
datasets and evaluation metrics, and briefly recalls the mainstream methods on two representative benchmarks 
of RS image retrieval. Considering the latest advances from multiple domains including computer vision, ma
chine learning and knowledge engineering, this paper points out some promising research directions towards RS 
big data mining. From this survey, engineers from industry may find skills to improve their RS image retrieval 
systems and researchers from academia may find ideas to conduct some innovative work.   

1. Introduction 

The collaborative progress of multiple disciplines and fields, 
including but not limited to the sensor networks, communication tech
nologies and storage technologies, enables the advent of the era of big 
data [1–4]. Generally speaking, big data has five remarkable charac
teristics: large volume, large variety, large velocity, large veracity and 
large value. In this era, the real benefit is not related to the data itself, 
but associated with software and hardware technologies that are capable 
of extracting knowledge from heterogeneous big data in a tolerable 
elapse time [2]. Driven by this urgent demand, more and more re
searchers from both industry and academia work on big data processing, 
fusion and mining where fusion and mining are two highly correlated 
tasks (e.g., good fusion results often benefit mining and many mining 
skills can also be adopted in building fusion algorithms). As a conse
quence, there is an increasing rate in the number of big data mining 
studies. However, big data mining is still a worldwide problem, and 
deserves much more inter-disciplinary research. According to the 

difference of data domains, big data can be coarsely divided into: social 
big data [5], urban big data [6], biology big data [7], climate big data [8, 
9], geospatial big data [10], and remote sensing (RS) big data [11–13]. 
Although they have some common characteristics such as the scalable 
and heterogeneous nature, different kinds of big data also have their 
special data characteristics spawning many domain-specific big data 
mining technologies. In particular, RS big data, also called big earth data 
[14–16], are mainly composed of massive RS images recording the earth 
surface, and play an important role in many applications such as 
fusion-oriented RS image processing, geo-localization and navigation, 
disaster rescue, and so on. 

In the early years, RS data is one kind of scarce and expensive 
strategy resource. Along with the launch of more and more earth 
observation satellites, especially the openly accessible satellites such as 
the Landsat series [17] and Sentinel series [18], the access to global RS 
imagery via online partials such as the Copernicus Sentinel Hub [18], 
Google Earth Engine (GEE) [19], and EarthServer [20] become conve
nient and cheap. According to the acquisition report, only the Sentinel 
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series can produce an estimated data volume of around 20 TB per day. 
From this point, we can clearly see that the volume of RS data increases 
with a high velocity [21]. As summarized in [15,16], in addition to the 
basic characteristics of big data, RS big data has some particular data 
characteristics: 1) Non-repeatability. Observations of physical objects 
and processes are unique in space and time and generally cannot be 
repeated; 2) Uncertainty. Big data involves different approaches to 
observation and recording, as well as indirect observation and sampling; 
3) Multi-dimensionality. A wide range of data sources and complex 
analysis methods lead to a wide range of dimensionality. The afore
mentioned characteristics of RS big data result in a high degree of 
computational complexity in the RS data analysis. To cope with these 
computational challenges, kinds of advanced hardware infrastructures 
[22–26] have been proposed to accelerate the computational process. 
The study of acceleration infrastructure plays an important role on RS 
big data mining, but is beyond the scope of this paper. In addition to the 
acceleration infrastructures, exploiting efficiently scalable algorithms is 
one head-on direction to cope with the high computational complexity 
problem. Hence, this paper mainly reviews the intelligent techniques to 
address RS big data mining from the algorithm perspective. 

Image retrieval from RS big data aims at retrieving the interested RS 
images from the massive RS image repositories with the volume of the 
Peta Bytes/Zetta Bytes (PB/ZB) scale. Generally, RS image retrieval can 
prepare the auxiliary data or narrow the search space for lots of RS 
image processing tasks including RS image matching [27–29], RS image 
registration [30–32] and RS image fusion [33–37]. In addition, image 
retrieval from RS big data plays an important role on fusion-oriented 
image processing [38–40], geo-localization and navigation [41,42], 
disaster rescue [43,44], meteorological analysis [45], economic assess
ment [46,47], and ecology prediction [48], and so forth. Because of its 
wide applications, RS image retrieval attracts tremendous research in
terest. Fig. 1 illustrates the increasing number of publications that are 
associated with “RS image retrieval” over the past two decades. To 
pursue the sustainable development of the RS image retrieval technol
ogy, this paper gives a survey around image retrieval from RS big data. 
More specifically, this review discusses the existing RS image retrieval 
methods grouped in four categories: 1) Conventional content-based RS 
image retrieval; 2) Hashing-based RS image retrieval; 3) Cross-modal RS 
image retrieval; 4) Interactive RS image retrieval and presents several 

classic applications driven by RS image retrieval. Moreover, to facilitate 
conducting the quantitative evaluation, the paper summarizes the 
existing evaluation resources including datasets and metrics. While lots 
of efforts have been made in RS image retrieval, there are still some 
remaining problems in existing RS image retrieval methods, i.e., the 
limited scale of RS image retrieval datasets in terms of the volume of 
samples, the number of categories and the number of modalities, the 
high dependency on large-scale supervision data with accurate labels, 
the lack of human-like reasoning abilities. To address these challenges, 
this survey points out some promising research directions: 1) Devel
oping larger RS image retrieval datasets; 2) Weakly supervised deep 
learning for RS image retrieval; 3) Visual reasoning for RS image 
retrieval. To sum up, this paper aims to give a specific and compre
hensive review of methods for image retrieval from RS big data. In 
addition, it tries to shed light on how to further improve the perfor
mance of existing methods and points out some advanced research di
rections to further lift the mining ability of RS big data. 

Due to its wide applications, image retrieval has been exploited for 
several decades. From the 1990s, the pioneers in the computer vision 
domain [49,50] have launched a series of special issues to guide the 
research of content-based image retrieval (CBIR). As a consequence, 
theories and methods towards CBIR have achieved great development. 
The details about such development can refer to some specific surveys 
[51–55]. In contrast to natural images, RS images have a large variation 
in terms of modality, spectral and resolution. To guide the study of 
content-based RS image retrieval, many RS-oriented sections [56,57] 
have been organized. To summarize such progresses, many reviews for 
content-based RS image retrieval [58–67] have been released. As a 
whole, these existing reviews mainly discuss the achievements from one 
or several perspectives, e.g., the review of the interest point descriptors 
[58], the discussion of similarity measures [59] and the comparable 
analysis of deep features [64]. In addition, these existing reviews have a 
very limited analysis of the newly emerging scalable retrieval and 
cross-modal retrieval techniques, which are highly needed in the era of 
RS big data. With the aforementioned considerations, this paper aims to 
give a comprehensive and enlightening review about image retrieval in 
the context of RS big data. In comparison with previous reviews, this 
survey has several certain advantages. Firstly, this survey points out the 
opportunities and challenges in image retrieval from RS big data, 

Fig. 1. The increasing number of publications in RS image retrieval from 1999 to 2019. Data is collected by the advanced search of Google Scholar (allintitle: “RS 
image retrieval” OR “RS image indexing” OR “RS image mining” OR “satellite image retrieval” OR “satellite image indexing” OR “satellite image mining” OR “earth 
observation image retrieval” OR “earth observation image indexing” OR “earth observation image mining”). 
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guiding the related researches. Secondly, this survey reports nearly all 
main RS image retrieval methods, points out their RS-domain-specific 
applications, and discusses their adaptation possibilities and strategies 
in RS big data mining. Thirdly, this work gives some promising research 
topics towards intelligently mining RS big data. 

This overall structure of this paper is illustrated in Fig. 2. In the 
following, Section 2 summarizes the primary achievements of RS big 
data mining and points out the remaining challenges. Section 3 focuses 
on reviewing the existing methods for image retrieval from RS big data. 
Section 4 emphasizes several specific applications of RS image retrieval. 
The evaluation resources and performance discussion are specifically 
depicted in Section 5. In addition, Section 6 gives some promising 
research directions of RS big data mining. Finally, Section 7 gives a 
conclusion of this survey. 

2. Image retrieval from remote sensing big data: opportunities 
and challenges 

In this section, we mainly discuss the opportunities and challenges 
around image retrieval from RS big data, respectively. 

2.1. Opportunities in remote sensing big data mining 

Generally, the response time is a critical criterion in image retrieval 
from RS big data. For example, if an emergency such as an earthquake 
occurred, the RS imagery data of interest should be accurately retrieved 
from massive distributed databases in a very short time as few seconds 
can save many lives by timely warnings. Hence, image retrieval from RS 
big data is a dual data and compute intensive task. As illustrated in Fig. 3 
(a), we are witnessing the coming technological leapfrogging in terms of 
distributed storage database, high performance computing (HPC) and 
artificial intelligence (AI). 

After the RS imagery is transmitted to the ground station, these RS 
imagery is often stored in a special database system [68,69]. With the 
rapid growth of RS data, the traditional structured related database 
systems cannot meet the requirements of managing RS big data. 

Accordingly, more and more researchers plunge themselves into devel
oping the novel data storage system which can flexibly manage RS big 
data in the PB/ZB scale [70]. In recent years, the distributed storage 
system [71] and the resilient distributed storage system [72] have been 
successively exploited to manage RS big data. 

Modern advances in computing hardware have been enabling new 
opportunities for the manner in which large volumes of distributed 
imagery data are processed. More specifically, Hadoop [73] has 
emerged as an early testbed for big data applications due to its excellent 
large-scale data-handling capability, high fault tolerance, reliability and 
low cost of operation. In addition, Hadoop has also been successively 
used to address the large-scale RS image processing tasks such as image 
segmentation [74]. Based on the basic architecture of Hadoop, Map
Reduce [75] is exploited to address large-scale image retrieval on 
massive image databases [76]. To alleviate the heavy usage of disk 
input/output (I/O) operations in MapReduce when used in conjunction 
with Hadoop and the extra storage of intermediate results, Apache Spark 
has been exploited to take advantage of the resilient distributed dataset 
and shows its effectiveness in the RS image mosaicking task with the 
frequent data I/O requirement [77]. In the scenario of Apache Spark, 
partitioning massive amount of data based on the spectral and semantic 
characteristics for distributed imagery analysis, also benefits improving 
the computing efficiency [25]. It is worth noting that the emergence of 
specialized hardware devices such as the graphic processing units 
(GPUs) [78] dramatically lift the computation efficiency of the advanced 
artificial intelligence methods. Benefiting from HPC, content-based RS 
image retrieval [11] is successfully performed to extract variation in
formation from a large-scale image dataset, collected after the terrorist 
attack to the World Trade Center in New York City. 

As one of the most outstanding achievements in the AI domain, deep 
learning [79–81] has achieved tremendous success in various fields 
including image classification, speech recognition, natural language 
processing and so forth. By automatically digesting massive labeled 
data, deep learning could obtain an excellent hierarchical abstract 
ability, which benefits narrowing the semantic gap between the 
low-level raw data and the high-level concept. In the RS scenario, deep 

Fig. 2. Structure of this survey.  
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learning has been successfully utilized in geospatial object detection 
[82–85], RS image fusion [86–90], RS image scene classification 
[91–95], and so on. It is worth mentioning that deep learning also 
contributes a lot to improving the RS image retrieval performance in 
terms of high-compactness visual feature indexing and high-quality vi
sual content representation, which will be specifically discussed in 
Section 3. 

2.2. Challenges in remote sensing big data mining 

As reflected in [11], it is still a vital challenge for government in
stitutions to share data unless all participants can achieve material 
benefits and incentives in data sharing that outweigh the risks. For 
example, although NASA has been sharing massive RS data under the 
open government policy, the overwhelming majority of high-quality RS 
data (i.e., high-resolution RS images) are still unavailable to the public. 
Therefore, it is necessary to find new ways of collaboration and establish 
a flexible RS data sharing policy for improved big data access in RS 
problems and applications. 

In addition to the aforementioned RS data access restriction chal
lenge, the state-of-the-art RS image retrieval methods present three 
main limitations, which are visually shown in Fig. 3(b), from the algo
rithm perspective. Firstly, the collection cost of RS imagery becomes 
lower and lower. However, how to annotate large-scale RS data for 
learning RS image retrieval methods becomes the new challenge. 
Although kinds of RS image retrieval datasets have been publicly 
released, the scale of available RS image retrieval datasets in terms of the 
volume of samples, the number of categories and the number of data 
modalities is still very limited. Hence, how to collect a large-scale 
labeled RS image retrieval dataset with fine-grained categories con
taining multiple classical satellite data types becomes more and more 
urgent and shows significant meanings in the deep learning era. Sec
ondly, the state-of-the-art RS image retrieval methods often take deep 
networks as the backbone. As well known, the superior performance of 
deep networks is conditioned on a large-scale labeled dataset. As a 
natural transmission, the state-of-the-art performance of RS image 
retrieval methods also depend on an oversized labeled dataset with ac
curate labels. In addition, deep networks under weak supervision (e.g., 
the volume of labeled samples is relatively small or the labels of one 
oversized dataset are noisy) would significantly degenerate. In reality, 
the collection of datasets with weak labels in the RS context is relatively 
simple. Parallel to the research direction towards annotating RS 

datasets, how to robustly train deep networks under weak supervision 
would be another promising research direction. Thirdly, although the 
current content-based image retrieval (CBIR) techniques including 
hand-crafted features and deep learning-based features are always 
trying to intrinsically depict the visual content of RS imagery, all of them 
are still lack of the human-like reasoning abilities that help to accurately 
perceive the objects in the RS imagery and their spatial topological 
relationship. As a whole, visual reasoning plays an important role on the 
advanced RS image retrieval technique and helps to effectively bridge 
vision and language. To address these limitations in image retrieval from 
RS big data, we give the promising solutions in Section 6 by examining 
the most recent progress in the AI domain. 

3. Methods for image retrieval from remote sensing big data 

Image retrieval from RS big data refers to finding RS images that 
satisfy an information need from large RS image collections. As depicted 
in [96], there is an intrinsic difference between CBIR and retrieval by 
text and metadata. Retrieval methods based on metadata [97,98] rarely 
examine the visual content of an image itself but rather rely on manually 
generated tags. In these systems, keywords should be manually gener
ated in advance and are stored as strings to describe the RS images. 
However, the high complexity of RS images cannot be described easily 
by keywords; thus, retrieval systems which are based solely on manual 
annotation often lead to unsatisfactory outcomes. In the contrast, CBIR 
does not depend on keywords and the desired images can be retrieved 
automatically based on their visual content similarities to the query 
image. Because of this reason, the overwhelming majority of existing RS 
image retrieval methods adopts the CBIR manner. 

Briefly, one CBIR system includes three core modules including 
feature representation, feature indexing and feature similarity 
measuring. Specifically, feature representation refers to extracting the 
feature vector from the image to represent its visual content. In addition, 
feature indexing works for structuring a database (i.e., structuring the 
feature vectors extracted from images) to lift the search speed. Since 
response time is one of the key indicators in CBIR systems, the impor
tance of feature indexing becomes incredibly remarkable, especially in a 
large-scale image database. An efficient database indexing technique 
can significantly accelerate the retrieval process and reduces memory 
usage substantially [99]. Conventional methods use a similarity metric 
to compare the feature vector of the query image to each feature vector 
in the database. However, whilst comparing the query feature vector to 

Fig. 3. Visual illustrations about opportunities and challenges in RS big data mining. (a) shows the main opportunities in RS big data mining; (b) lists the main 
challenges in RS big data mining. 
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the entire image dataset might be feasible for a small dataset, this is still 
an O(N) linear operation where N is the number of images in the dataset. 
Thus, for large-scale datasets with billions of images, the exhaustive 
feature search becomes impractical. Furthermore, feature similarity 
measuring refers to calculating the visual similarities between the query 
image and images in the dataset by designing appropriate feature dis
tance metrics. As a whole, the feature indexing technique is relatively 
mature, but feature representation and feature similarity measuring are 
techniques under developing and probing. 

Different from the CBIR technique in the computer vision domain, RS 
image retrieval needs to further cope with more complex data variation 
because RS imagery includes so many kinds of data types compared with 
the single type of natural imagery often with the fixed R-G-B spectral 
bands. According to the type of RS images, RS image retrieval methods 
can be coarsely categorized into four main categories including 
panchromatic/multi-spectral image retrieval methods [100–102], syn
thetic aperture radar (SAR) image retrieval methods [103–108], 
hyper-spectral image retrieval methods [109–117], and time-series RS 
image retrieval methods [118–122]. In the following, we mainly review 
the common techniques in the existing RS image retrieval methods from 
four aspects including conventional content-based RS image retrieval 
methods, hashing-based RS image retrieval methods, cross-modal RS 
image retrieval methods, and interactive RS image retrieval methods. 

3.1. Conventional content-based remote sensing image retrieval 

As depicted in Fig. 4, the conventional content-based RS image 
retrieval framework generally consists of three modules including 
feature representation, feature indexing, and feature similarity 
measuring. In the following, we specifically review the progresses 
around these main modules. 

3.1.1. Feature representation 
As well known, the CBIR system chiefly cares the visual content of RS 

imagery, which is often expressed by one or several kinds of feature 
representations (i.e., feature vectors) extracted from RS imagery based 
on hand-crafted descriptors or data-driven deep networks. According to 
the abstract level, the feature representations, which are adopted in RS 
image retrieval task, can be coarsely divided into three main categories 
including the low-level feature representations, the middle-level feature 
representations, and the high-level feature representations. 

3.1.1.1. Low-level feature representations. As the primary description of 
RS imagery, low-level feature representation is designed by domain 
experts and is often built by mining the spectral, texture, or shape cues of 
RS imagery. 

As well known, RS imagery often has more spectral bands compared 
with natural images. Spectral is the fundamental unit of RS imagery. 
Although the spectral feature is one of the simplest feature representa
tions, it encodes the reflectance of the corresponding areas of the Earth 
surface and depicts the most prominent information of RS imagery [60]. 
In literature, the spectral feature has been adopted in many RS image 
retrieval methods [123–126]. However, the spectral feature based RS 
image retrieval methods often present serious sensitivity to noise and 
illumination change [64]. 

As one of the widely adopted hand-crafted features in the computer 
vision domain, texture is generally understood as repeated structures in 
the image. To depict the texture information, descriptors, such as gray 
level co-occurrence matrices (GLCM) [127], wavelet [128], Gabor filters 
[129], and local binary patterns (LBP) [130,131], have been exploited. 
Afterwards, based on the characteristic of RS images, kinds of texture 
descriptors have been modified to address RS image retrieval 
[132–141]. Recently, Sukhia et al. [142] propose a local ternary pattern 
(LTP) to depict the visual content of RS images where LTP aims to obtain 

Fig. 4. The workflow of the conventional content-based RS image retrieval technique. In the retrieval results, the samples with the blue rectangles stand for the true 
positives, and the samples with the red rectangles denote the false positives. 
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upper and lower texture patches from each down-sampled image and 
divides them into dense patches to build a final histogram representa
tion. It is worth noting that the wavelet based feature [143] has been 
proven to be effective in directly representing the visual content of RS 
imagery in the compressed domain. 

Shape is an important recognition cue of geospatial objects on the 
earth surface in the RS images [45,144–146]. In literature, shape fea
tures have been adopted to address infrared image retrieval [144] and 
optical object retrieval [146]. Shape features generally depict the 
boundary or outline information of geospatial objects, but have a very 
limited ability to capture the spatial relationship information. As a 
special type of shape features, local feature points have also been 
adopted to address RS image retrieval. For example, salient feature 
points [147], and scale-invariant feature transform (SIFT) [148] have 
been proved to be more effective than texture features in RS image 
retrieval. Structural features derived from shape ensembles and re
lationships also provide satisfactory performance [149]. In many ap
plications, single type of low-level features lacks enough discrimination. 
Therefore, researchers combine diverse types of features to improve the 
retrieval results [150–157]. Generally, different shape features help to 
make up for each other’s defects. As a consequence, the combination of 
multiple hand-crafted features often presents stronger representation 
ability and benefit improving RS image retrieval. 

3.1.1.2. Middle-level feature representations. In contrast with low-level 
features, middle-level features embed low-level hand-crafted feature 
descriptors into representative visual vocabulary space and encode 
spatial distribution to capture semantic concepts of RS images. Gener
ally, middle-level features are more invariant to appearance difference 
caused by changes of scale, rotation or illumination. Hence, middle-level 
features benefit better representing the complex image textures and 
structures with more compact feature vectors. The general pipeline to 
extract middle-level features is firstly obtaining the hand-crafted de
scriptors (e.g., spectral, texture or local invariant features), and then 
aggregating them into holistic representations using encoding methods 
(e.g., bag-of-words (BoW) [158], and vector locally aggregated de
scriptors (VLAD) [159]) and unsupervised learning methods (e.g., 
auto-encoder [160], and artificial neural network [161]). 

Among the encoding methods, BoW is one widely used basic 
encoding method, which often employs the k-means clustering algo
rithm to construct visual codebook and calculates the histogram of local 
feature descriptors based on the visual codebook. It has been utilized in 
some RS image retrieval research and has achieved desired results. 
Specifically, [162–164] have shown the effectiveness of encoded fea
tures compared with low-level features. It is worth noting that BoW is 
also helpful in encoding the features of the pre-trained deep networks 
[165]. In addition, VLAD is an advanced version of BoW, apart from 
feature distribution, it additionally counts the distance between local 
features and cluster centers. VLAD is applied to encode local pattern 
spectra [166] and obtains high-precision retrieval results on 
high-resolution RS images [167]. In [63], the experimental results 
demonstrate that BoW behaves better in calculation speed while VLAD 
behaves better in retrieval accuracy. Afterwards, multi-scale spatial in
formation has also been exploited in feature encoding. For instance, 
spatial pyramid matching based on sparse codes (ScSPM) [168] can fuse 
holistic and local features to enhance the discrimination of middle-level 
features [169]. Recently, VLAD has been utilized to aggregate local deep 
features to produce a global descriptor for advanced performance of RS 
image retrieval [170]. 

To lift the discrimination ability of low-level features, Zhou et al. 
[160] propose an auto-encoder model to learn sparse feature represen
tation from multiple low-level features for RS image retrieval. To pursue 
the superior RS image retrieval performance, an ensemble artificial 
neural network [161] has been proposed to improve the low-level fea
tures. By taking the topological structure into consideration, Du et al. 

[171] propose a local structure learning method, which can map the 
local features into a manifold space by a Lipschitz smooth function to 
enhance the representation ability of the features. In addition, the 
structural feature in the manifold space is further utilized to conduct RS 
image retrieval. 

3.1.1.3. High-level feature representations. The hierarchical architecture 
of convolutional neural network (CNN) can simulate very complex 
nonlinear functions and automatically learn hyper-parameters of CNN 
during the training process. As CNN models are able to capture the 
essential characteristics of images, the intermediate outputs of CNN 
models can be taken as high-level features to comprehensively represent 
the visual content of RS images. Generally speaking, the sufficient up
date of hyper-parameters of one regular CNN model often depends on 
millions of accurately labeled samples. Compared with the large-scale 
labeled natural image dataset (e.g., ImageNet), the volume of labeled 
samples in the RS domain is relatively small, which goes against the 
learning of CNN models. Even so, a small amount of RS image retrieval 
works based on high-level features have been presented up till now. In 
[172–173], unsupervised deep learning has been proposed to learn deep 
networks via an unsupervised manner, and also achieved the promising 
performance on RS image retrieval [174]. Considering that aerial im
ages are relatively similar to natural images, the pre-trained CNN 
models using ImageNet is transferred to address aerial image represen
tation. More specifically, high-level features of aerial images are repre
sented by existing CNNs from convolutional layers or fully connected 
layers [175]. In addition, fine-tuning pre-trained CNNs with the 
target-domain RS image datasets [64] benefits outputting more effective 
high-level features. In recent years, many specific objective functions 
have been proposed to train CNNs for RS image retrieval. For example, 
the center loss function with inter-class dispersion and intra-class 
compaction is proposed to learn discriminative deep features for RS 
image retrieval [176]. To capture the spatial detail, the graph convo
tional network (GCN) with the pairwise similarity constraint [177] is 
proposed to address RS image retrieval. In addition, the triplet loss [178] 
has also been adopted in learning discriminative deep features for RS 
image retrieval. To deal with the limitation of triplet loss, Liu et al. [179] 
propose a global optimal structured loss, which globally learns an effi
cient deep embedding space with mined informative sample pairs to 
force the positive pairs within a limitation and push the negative ones 
far away from a given boundary. Due to the uneven distribution of 
sample data in RS image datasets, the pair-based loss currently used in 
deep metric learning (DML) is not optimal. To improve this problem, Fan 
et al. [180] propose a distribution consistency loss to make deep net
works learn more useful information in a short time. By examining the 
issues that the existing CNN-based RS image retrieval methods do not 
deal with large intra-class variations and all similarity learning based RS 
image retrieval methods consider similarity between two images as a 
constant, Liu et al. [181] propose a metric learning method with a 
positive-negative center loss to enable CNNs to cope successfully with 
within-class variations. As a whole, metric learning has played an 
important role on learning discriminative deep features for RS image 
retrieval. The current deep networks still can’t accurately encode the 
object content of RS images with complex and cluttered backgrounds. 
Many recent works in the computer vision domain [182,183] show that 
the attention mechanism could effectively guide deep networks to 
distinguish the important object regions with a high attention bias and 
ignore the cluttered background regions. Hence, boosting deep networks 
with the attention mechanism would be a promising solution to cope 
with the case that objects get buried in the complex and cluttered 
backgrounds. 

In addition to the high-level feature representations based on CNN, 
human-centered concepts or application-specific knowledge also help to 
generate the high-level feature representations of RS images. Specif
ically, the pre-defined concept set [184,185] and category set [186,187] 
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are taken as semantic bases to encode the semantic features of RS im
ages. Afterwards, the spatial context information [188] is further pro
posed to improve the concept-driven semantic features. As the formal 
and explicit specification of a shared conceptualization, ontology shows 
great potential in knowledge modeling and helps to depict the visual 
content of RS images in the high abstract level [189,190]. 

Although high-level features show overwhelming superiority in RS 
image retrieval compared with low-level and mid-level features, the 
combination of low-level, middle-level and high-level features still 
outperforms single type of feature, which reveals the complementary 
abilities of features from different levels [174]. How to effectively 
combine hand-crafted and data-driven features would be a promising 
way to improve RS image retrieval performance and deserves much 
more exploitation. 

3.1.2. Feature indexing 
In practical applications, feature indexing [99] is often adopted 

when searching the oversized RS image archive, but seems to be not so 
necessary when the RS image dataset is with a relatively small volume. 
Generally, feature indexing is often coupled with the distributed file 
system and the MapReduce operation in big data mining [23]. As 
aforementioned, given one query feature vector, the exhaustive feature 
searching of N feature vectors (i.e., RS images) in the database would 
involve of O(N) computations. To accelerate the search process, three 
kinds of greedy feature indexing methods including tree-based indexing, 
clustering-based indexing and hashing-based indexing have been 
adopted in large-scale RS image retrieval. 

3.1.2.4. Tree-based feature indexing. The tree-based feature indexing 
algorithms aim at recursively splitting the feature space into subspaces 
and forming the subspaces by a tree structure [191]. For instance, a 
k-dimensional (KD) tree has been introduced in [192], and it is extended 
to an entropy balanced statistical KD tree in [193]. Three tree-based 
indexing structures, namely, rectangle-tree, sphere-sphere-tree, and 
sphere-rectangle-tree, have been compared in [194] to find a suitable 
and efficient structure for satellite image archives. In the image retrieval 
stage of tree-based algorithms, the branch-and-bound technique is 
usually considered to search and retrieve approximate nearest neighbors 
[195]. Although the searching speed is significantly improved with the 
partition trees (i.e., the search complexity is O(log(N))), their perfor
mance considerably decreases when the dimension of the image features 
increases [196]. 

As a whole, the tree-based indexing methods also suffer of memory 
constraints since tree structures are typically bigger than the original 
data. Consequently, the use of tree-based indexing strategies is not 
appropriate for CBIR problems where the RS image descriptors are often 
high dimensional. Hence, the advanced feature dimension reduction 
techniques may make the tree-based indexing strategy workable even 
when the RS image descriptors are high dimensional. 

3.1.2.5. Clustering-based feature indexing. Clustering-based feature 
indexing refers to aggregating feature vectors to clusters (i.e., visual 
words) [197], where all visual words constitute a visual codebook. 
Similar to the inverted file skill in text information retrieval, each visual 
word is followed by a list of image IDs in which the visual word occurs. 
When searching online, the query feature vector only needs to compare 
with the visual words instead of comparing all of the feature vectors in 
the database. Apparently, this clustering-based inverted file structure 
benefits improving the search efficiency. Afterwards, hierarchical clus
tering structure [198–200] is proposed to further improve the search 
efficiency. 

The main drawback of such approaches is that the clusters are fixed 
and not evolving; therefore, adding even a single new image to the 
database requires the whole procedure, including the clustering to be 
repeated from scratch. Furthermore, in high dimension, data becomes 

very sparse and distance measures become increasingly meaningless 
caused the performance of clustering techniques to be degraded. Along 
with the great success of deep learning, the usage of deep features may 
help to alleviate the degradation phenomena. 

3.1.2.6. Hashing-based feature indexing. Hashing-based feature indexing 
and approximate nearest neighbor search techniques have attracted 
attention in the multimedia communities due to their high time-efficient 
search capability within huge data archives and high data storage 
capability [201]. Hashing methods initially embed high-dimensional 
image features into a low-dimensional Hamming space, where the 
image features are represented by binary hash codes [201]. The binary 
codes can significantly reduce the amount of memory required for 
storing the images’ content. The hashing methods initially generate hash 
functions to be applied to each image in the archive to obtain the binary 
hash code of the considered image. Then, a hash table is generated, 
where similar images have the same hash code, being positioned in the 
same hash bucket. Accordingly, indexing of archive images is achieved. 
The hash code of the query image is estimated by the use of the same 
hash functions. Then, the image retrieval can be achieved by using 
different strategies. In the computer vision literature, there are two 
criteria commonly used. The first criterion is called “hash lookup” and 
exploits the hash table to retrieve all the images in the hash buckets that 
fall within a small Hamming radius of the query image. Searching for 
ANNs with this criterion is independent from the number of images in 
the archive and is achieved in a constant time (i.e., O(1)) [202]. The 
second criterion is called “Hamming ranking” and estimates the Ham
ming distance between the hash code of the query image and those of all 
the images in the archive. Then, the images that have the lowest Ham
ming distance, with respect to the query image, are retrieved. Searching 
for ANNs with this criterion requires a linear time (i.e., O(N)); however, 
it is very fast in practical applications due to matching only the binary 
codes [202]. The storage complexity of a hash table can be expressed as 
O(NK), where K stands for the number of hashing bits (i.e., the length of 
the hashing feature vector). 

Due to the effectiveness of hashing-based feature indexing methods 
for large-scale RS image retrieval, lots of hashing methods for RS image 
retrieval have been proposed in recent years. To give a specific discus
sion, we systematically review the hashing methods in Section 3.2. 

3.1.3. Feature similarity measuring 
Feature similarity measuring refers to calculating the distance be

tween visual feature vectors, which is the basis of pattern recognition. 
For it is one of the core issues in CBIR, feature similarity measuring is of 
great research significance. Generally speaking, similarity metrics can 
be coarsely divided into three categories including common distance 
function based similarity metrics, hand-crafted similarity metrics and 
data-driven metric learning based similarity metrics. 

3.1.3.7. Common distance function based similarity metrics. Given the 
same feature representations, different similarity metrics may lead to 
different ranking results. In [59], eight similarity metrics based on 
common distance functions have been investigated for RS image 
retrieval. According to the properties of feature vectors, the similarity 
metrics can be divided into two groups including general feature vector 
based similarity metrics and histogram feature vector based similarity 
metrics. 

3.1.3.8. Hand-crafted similarity metrics. In addition to the common 
distance function based similarity metrics, similarity metrics can also be 
manually defined based on the specific retrieval task. For example, in 
[120], an informational similarity metric is introduced for compressed 
RS data mining. In [115], a specific similarity metric for hyperspectral 
imagery is proposed. In [116], dictionary-based similarity metrics are 
proposed to address hyperspectral image retrieval. 

Y. Li et al.                                                                                                                                                                                                                                        



Information Fusion 67 (2021) 94–115

101

3.1.3.9. Data-driven metric learning based similarity metrics. However, 
manually constructing a similarity metric may be inefficiency and not 
robust to different data sources; data-driven metric learning can be an 
ideal alternative. In contrast to hand-crafted similarity metrics, data- 
driven metric learning is capable of automatically learning distance 
function for a specific retrieval task according to task requirement 
[203]. Unsupervised metric learning has been successfully applied to RS 
retrieval, for example, [204] models RS images with graphs and uses an 
unsupervised graph-theoretic method to measure the similarity between 
the query graph and the graphs of images in the archive. In recent years, 
kinds of similarity measures based loss functions [205–208] have been 
proposed to train deep networks for RS image retrieval in an end-to-end 
manner. 

In the actual applications, massive RS images are often stored in the 
distributed file system. To completely address CBIR from RS big data, 
the whole retrieval from large-scale RS images can be divided into 
multiple sub-tasks, like the general MapReduce technique in the big data 
processing domain. In addition, each sub-task resembles the Map 
operation and the Reduce operation works for fusing the returned results 
from each sub-task. Here, the fusing operation often needs to re-rank the 
returned retrieval results based on the aforementioned similarity 
metrics. 

3.2. Hashing-based remote sensing image retrieval 

To address large-scale RS image retrieval, feature reduction 
[209–211] has been adopted as feature reduction benefits not only 
saving the storage space of feature representation, but also lifting the 
computational speed of feature comparing. To pursue a thorough 
reduction, feature hashing [212,213] aims at mapping the 
high-dimensional feature vector to the low-dimensional binary feature 
vector. As illustrated in Fig. 5, hashing-based RS image retrieval 
methods generally include several critical modules: feature extraction, 
feature hashing and image ranking via the hamming distance which is a 
distance measure for calculating the similarities between the query 

binary feature vector and the stored binary feature vectors. It is worth 
noting that, driven by the end-to-end mechanism of deep learning, 
feature extraction and feature hashing have been merged into one 
module in some recent hashing methods. As feature extraction has been 
introduced in the previous section, this section mainly discusses the 
feature hashing technique. 

It is assumed that the training RS image dataset contains N RS images 
{Ii}

N
i=1. Based on the feature extraction module, the visual content of 

these images can be separately represented by feature vectors 
{xi}

N
i=1where xi ∈ RD and D denotes the dimension of feature vector. The 

goal of feature hashing is to learn a nonlinear mapping function 
f : x→h ∈ { − 1, 1}Kwhich aims at encoding each high-dimensional 
feature vector x to the compact K-bit hash code h = f(x). Existing 
feature hashing methods can be roughly divided into two categories: 
unsupervised feature hashing and supervised feature hashing. In the 
following, Section 3.2.1focuses on reviewing unsupervised feature 
hashing for RS image retrieval, and Section 3.2.2 details the supervised 
feature hashing achievements for RS image retrieval. 

3.2.1. Unsupervised feature hashing 
The unsupervised feature hashing methods design hash functions 

using only unlabeled data to generate binary hash codes. The most 
popular unsupervised feature hashing method is the locality-sensitive 
hashing (LSH) [214], which constructs the r-th hash bit of a 
high-dimensional feature vector x based on the r-th hash function fr as 
follows. Let fr(x) = 1, if vT

r ⋅x ≥ 0where vr is a random projection vector 
generated from a multivariate Gaussian with zero mean and an identity 
covariance matrix of the same dimension as the input x; otherwise, 
fr(x) = 0. 

In LSH, each projection vector vr is randomly initialized. Thus, LSH is 
not conditioned to any labeled data. Although LSH significantly speeds 
up the CBIR process, its practical efficiency is still very limited since it 
requires long hash codes to achieve a high retrieval performance. Af
terwards, the LSH has been recently extended to kernel unsupervised 
LSH (KULSH) in [215], to describe hash functions in the kernel space for 

Fig. 5. The workflow of the hashing-based RS image retrieval technique. In the retrieval results, the samples with the blue rectangles stand for the true positives, and 
the samples with the red rectangles denote the false positives. 
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nonlinearly separable data. The random Fourier feature method for the 
shift-invariant kernel-based hashing is presented in [216]. In [217], a 
graph-based hashing technique is introduced to leverage the 
low-dimensional manifold structure of data to generate compact hash 
codes. In [218], binary reconstruction embedding is introduced that 
minimizes the reconstruction error between the original feature distance 
and the Hamming distance. In [219], a spherical hashing method that 
employs the hypersphere-based hashing functions is presented, while 
spectral hashing that is based on spectral graph partitioning is described 
in [220]. An inductive manifold hashing framework that provides a 
connection between manifold learning methods and hash function 
learning is studied in [221]. In [222], an unsupervised multi-view 
alignment hashing approach based on regularized kernel nonnegative 
matrix factorization is introduced. Neighborhood discriminant hashing 
that learns a discriminant hashing function by exploiting local 
discriminative information is presented in [223]. Using pseudo labels, 
an unsupervised deep hashing method [224] is proposed to address 
scalable image retrieval. 

In the RS community, there are few unsupervised hashing strategies 
available. As an example, the KULSH [215] that defines hash functions 
for high-dimensional nonlinearly separable RS image descriptors was 
adopted for RS-based CBIR problems in [225]. The KULSH is defined 
based on the LSH, formulating the random projections in the kernel 
space by using a small set of images from the considered archive. Li et al. 
present in [226] the partial randomness hashing (PRH) method, which 
uses random projections to produce an initial estimation of the hash 
codes and then learns a linear model to re-project these codes onto the 
original feature space. Finally, the transpose of the projection matrix is 
used to generate the binary codes. Reato et al. [227] propose a 
multi-code hashing method that initially characterizes the images by 
using descriptors of primitive sensitive clusters, and then constructs the 
multi-hash codes from these descriptors using the KLSH. To accurately 
model the complex semantic content presented in RS images using bi
nary codes, a new probabilistic latent semantic hashing (pLSH) model 
[228] is proposed to learn the hash codes in an unsupervised manner. To 
adapt to the continuously emerging RS images, an online batch-based 
hashing learning approach is introduced in [229]. 

Note that unsupervised hashing methods are, in general, very fast at 
generating hash functions. However, the hash functions obtained by 
using the unsupervised methods might be not discriminative enough for 
complex RS image retrieval problems. 

3.2.2. Supervised feature hashing 
In past several years, there are many successful supervised hashing 

methods that have been developed for fast image retrieval, including 
binary reconstruction embedding (BRE) [230], minimal loss hashing 
(MLH) [231], and sparse embedding and least variance encoding 
(SELVE) [232]. By utilizing the supervised information, RS images from 
same classes have small feature distances while RS images from different 
classes have large feature distances in the Hamming space. 

In the RS community, Luka et al. [233] proposes a kernelized su
pervised locality-sensitive hashing (KSLSH) method to address 
large-scale RS image retrieval. In [234], each RS image is represented by 
multiple hand-crafted features, which are further mapped to the 
low-dimensional hash codes via a discrete binary optimization algo
rithm. In [235], each RS image in the archive is characterized by 
primitive clusters’ descriptors. These descriptors are obtained through 
an unsupervised approach, which automatically extracts the image re
gions’ descriptors and then associates them with primitive clusters. 
Furthermore, the primitive clusters’ descriptors are transformed into 
multi-hash codes to represent each RS image. Demir et al. [236] propose 
a novel class sensitive hashing technique which aims at representing 
each RS image with multi-hash codes, each of which corresponds to a 
primitive (i.e., land cover class) present in the RS image. Recently, Kong 
et al. [237] propose a low-rank hyper-graph hashing (LHH) method to 
improve the hashing performance where hyper-graphs are able to 

capture the high-order relationship among data. As a consequence, LHH 
is suitable to explore the complex structure of RS images. 

More advanced, deep hashing based methods which take full ad
vantages of deep networks and hashing learning deliver a better per
formance for RSIR. In [238], the representational power of the residual 
net architecture is exploited to establish an end-to-end deep hashing 
model. The residual hash net is trained subject to a weighted loss 
strategy that intensifies the cohesiveness of image hash codes within one 
class. Considering the rotation invariance of the RS target, Zou et al. 
[239] propose a rotation invariant hashing network that represents an 
RS image as a binary hash code to accelerate the retrieval process and lift 
the retrieval accuracy. To mine the pair-wise similarity constraint, Li 
et al. [240] propose a deep hashing neural network (DHNN) for 
large-scale RS image retrieval. In such a method, DHNN is optimized by 
the pair-wise similarity constraint in an end-to-end manner. In [241], a 
metric and hash-code learning network (MHCLN) was proposed to learn 
a semantic based metric space, while simultaneously producing binary 
hash codes for fast and accurate retrieval of RS images in large archives. 
Song et al. [242] redefine the RS image retrieval problem as visual and 
semantic retrieval of images. Specifically, a deep hashing CNN is pro
posed to simultaneously retrieve the similar images and classify their 
semantic labels in a unified framework. Inspired by generative adver
sarial networks (GAN), Liu et al. [243] presented a deep supervised 
hashing model for RS image retrieval. Specifically, a loss function with 
multiple constraints, including the classification, similarity and bit en
tropy terms, is proposed to train the generator. In addition, to avoid the 
case that the leaned hash codes are bit balanced, the unique “true” 
matrix with the uniform distribution is taken as the input of discrimi
nator. To alleviate the dependency of labeled data, a semi-supervised 
adversarial hashing method [244] is proposed to address large-scale 
RS image retrieval. To avoid over-fitting, Roy et al. [245] propose a 
metric learning-based hashing network, which implicitly re-uses the 
pre-trained deep CNN without any fine-tune and only focuses on 
learning the hashing function. Generally, boosting deep hashing with 
metric learning mainly aims to enlarge the inter-class gap and reduce the 
intra-class variation. In addition, joint feature hashing learning and 
attribute prediction [246] also help to alleviate the inter-class confusion 
and intra-class variation problem. Objectively, the inter-class confusion 
and intra-class variation is still an open problem and deserves much 
more exploration. 

As well known, traditional deep hashing networks generally tend to 
be highly expensive in terms of storage space and computing resources 
and are unsuitable for on-orbit RS image retrieval, which usually oper
ates on resource-limited devices. With this consideration, Li et al. [247] 
develop a quantized deep learning to hash framework whose weights 
and activation functions are binarized to low-bit representations, which 
require comparatively much less storage space and computing re
sources. In literature, the compact and light-weight deep models [248, 
249] have also been exploited in RS image scene classification which is 
highly related to RS image retrieval. Based on these highly related 
achievements, RS image retrieval-oriented light-weight deep hashing 
models can be further improved. 

3.3. Cross-modal remote sensing image retrieval 

In the RS big data era, we have many different kinds of data, 
including optical, radar, or laser provided by airplane or satellite or 
ground sensors. Other kinds of data sources can also be integrated in RS 
problems. For example, internet textual data (e.g., volunteer geographic 
information, news, web logs, and so on) [250,251] can be used to help 
labeling data patterns provided by remote sensors, which involve low or 
no cost. Also, image data taken by individuals from social networks can 
be taken into account for assisting in RS data interpretation tasks. Other 
data formats such as census data, meteorological data, intelligent 
transportation data, high-fidelity geographical data, healthcare data, 
and so on, can be of significant help to solve a specific real-world 
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problem, e.g., monitoring food security. Driven by these advanced RS 
applications in the big data era, scalable image information mining from 
heterogeneous generalized RS data (e.g., multi-modal/multi-source RS 
imagery data and auxiliary data from other domains) is a fundamental 
task and still deserves a substantial amount of exploration. Until now, 
lots of cross-modal RS image retrieval methods have been proposed. 
According to the data types, as illustrated in Fig. 6, cross-modal RS 
image retrieval includes four main categories: cross-modal retrieval 
between one kind of RS imagery and another kind of RS imagery 
(CR-RSI-RSI) [252–255], cross-modal retrieval between RS imagery and 
sketch (CR-RSI-SKE) [256–261], cross-modal retrieval between RS im
agery and text (CR-RSI-TEX) [262], cross-modal retrieval between RS 
imagery and sound (CR-RSI-SOU) [263–269]. Each kind of cross-modal 
RS image retrieval is detailed in the following. 

CR-RSI-RSI aims to retrieve RS images that have similar contents to 
the inquiry RS image where the inquiry RS imagery and retrieved RS 
imagery come from two totally different types of RS data. Apparently, 
CR-RSI-RSI has to cope with the domain shift problem compared with 
the traditional content-based image retrieval technique. As the first 
attempt in this direction, Li et al. [252] collect and release one 
dual-source RS image dataset (DSRSID), which is composed of two types 
of RS data (i.e., panchromatic imagery and multi-spectral imagery). To 
conduct cross-retrieval between panchromatic imagery and 
multi-spectral imagery, source-invariant deep hashing convolutional 
neural networks (SIDHCNNs) [252] are proposed to match different 
kinds of RS imagery in one unified binary feature space. Benefiting from 
the binary feature representation pursuit, SIDHCNNs are qualified to 

address the large-scale retrieval case. Instead of measuring in the binary 
feature space, Chaudhuri et al. [253] recommend to measure in the 
real-valued feature space, which can achieve an improved retrieval 
performance. To address the inconsistency between different types of RS 
data and exploit the intrinsic relation between them, Xiong et al. [254] 
propose a discriminative distillation network, which aims to enlarge the 
inter-class variations and reduce the intra-class differences via an 
alternative learning scheme. From the image generation perspective, the 
style transfer method via generative adversarial networks (GANs) [255] 
is proposed to translate one kind of RS imagery to another kind of RS 
imagery. Furthermore, the inquiry RS imagery can be mapped to the 
style which is similar to the type of the retrieved RS imagery. Hence, 
benefiting from this style translation, CR-RSI-RSI is simplified to the 
traditional content-based image retrieval problem. 

To address the unavoidable case that there is no exemplar query RS 
image available at hand, CR-RSI-SKE aims to retrieve realistic RS images 
with sketches where the sketch can be directly drawn by users to give an 
abstract expression of the interested object or scene. In literature, 
various studies have been conducted to retrieve natural images using 
sketches [256–259]. Specifically, hand-crafted features such as 
histogram-of-gradient (HOG) [256] have been adopted to query natural 
images with sketches. Unsupervised encoding via bag-of-words [257] 
has also been exploited to address natural image retrieval with sketches. 
Along with the great success of deep learning, CNN [258] has been 
modified to address natural image retrieval with sketches and achieves 
obvious performance improvement compared with hand-crafted fea
tures or unsupervised methods. To improve the performance, the 

Fig. 6. The main categories of cross-modal remote sensing image retrieval. Some sub-figures are adapted from [252–268].  
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image-sketch dataset, termed as HUST-SI [259], is proposed to taken as 
the fuel of deep learning. In a word, it has been demonstrated that 
cross-domain image-sketch comparison can improve the image retrieval 
performance when no exemplar query image is available. Although the 
sketch has been successfully applied in the natural image retrieval, few 
studies have been devoted to sketch-based RS image retrieval. Owing to 
the complex surface structures and huge variations of image resolutions, 
it is very challenging to measure the similarity between such a simple 
sketch and a fairly complex RS image. The ambiguity inherent in 
sketches and the gap between aerial images and sketches bring a great 
difficulty to sketch-based RS image retrieval. The existing methods 
developed on natural images lose their efficacy when it comes to RS 
images. To cope with the aforementioned issues, the multi-scale deep 
cross-domain image representation model [260] has been proposed to 
conduct sketch-based RS image retrieval and one RS sketch-image 
database has also been released, which helps a lot to promote the 
development of the sketch-based RS image retrieval technique. To 
pursue the domain-invariant representation, one adversarial training 
strategy [261] is proposed to learn a deep joint embedding space with 
discriminative losses. In addition, one new sketch-based RS image 
retrieval dataset and benchmark has been released along with this work. 

CR-RSI-TEX [262] aims to explore the correspondence between RS 
images and natural language descriptions. In contrast to metadata based 
RS image retrieval which is obtained by matching keywords, 
CR-RSI-TEX conducts cross-modal retrieval by deeply bridging the vi
sual content of RS images and the natural language descriptions. Given 
one query natural language description, CR-RSI-TEX tries to search the 
RS images, whose visual contents are highly related to the query lan
guage description, from the RS image dataset where the RS images don’t 
contain any language tags. To achieve cross-modal retrieval between RS 
images and texts, Abdullah et al. [262] propose a deep bidirectional 

triplet network, which is composed of Long Short Term Memory 
network (LSTM) and pre-trained CNNs. To enable learning of robust 
embedding, an average fusion strategy is proposed to fuse the features 
pertaining to the five image sentences. As a whole, this direction is in the 
beginning stages and it deserves much more exploration with the aid of 
advanced solutions such as attention mechanism. 

The goal of CR-RSI-SOU is to leverage RS images or RS sounds to 
retrieve relevant RS sounds or RS images. In computer vision, the pre
vious methods [263,264] learn the relationship between sounds and 
images by using shallow projects. However, these shallow 
projection-based methods cannot capture complex semantic information 
of sounds and images. To tackle this issue, some deep image-voice 
retrieval methods [265,266] are proposed to utilize deep neural net
works to capture complex semantic information of sounds and images. 
To cope with the special complexity of RS images, Guo et al. [267] 
propose a novel cross-modal RS image-voice retrieval approach, which 
integrates deep feature learning and multi-modal learning into a unified 
framework for speech-to-image retrieval. To capture more information 
of RS data to generate hash codes with low memory and fast retrieval 
properties, hashing-based cross-modal RS image-sound retrieval 
methods [268,269] have been exploited. 

3.4. Interactive remote sensing image retrieval 

Due to the high complexity of RS images, only one query image is not 
sufficient to definitely depict the user’s real query intention that leads to 
the poor retrieval performance. Given this consideration, relevance 
feedback (RF) has been adopted to iteratively boost the performance of 
RS image retrieval by taking the user’s feedback into account. The 
general workflow of the interactive RS image retrieval method with RF 
can be visually shown in Fig. 7. More specifically, the query user firstly 

Fig. 7. The flowchart of the interactive remote sensing image retrieval technique.  
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generates an initial feedback set of relevant/irrelevant RS images based 
on the query RS image. Based on the relevant/irrelevant RS images, RS 
image retrieval can be considered as a binary classification problem 
[270], which can be conducted by kinds of supervised classification 
methods. In reality, the RF process is repeated several times to extend 
the set of relevant/irrelevant RS images until that the binary classifi
cation algorithm with the extended set converges. 

In literature, Bayesian inference-based feedback [271], multiple 
index weighting-based feedback [272], and binary classification-based 
feedback [273] have been successively proposed to address interactive 
optical RS image retrieval. Due to the volume of the iteratively anno
tated relevant and irrelevant RS images is often small, support vector 
machine (SVM) has been the mainstream classifier to address this 
problem [274] because SVM is qualified to output a relatively stable 
classification result even when the number of labeled samples is very 
small. In recent years, deep feature has been adopted to improve the 
binary classification-based interactive RS image retrieval performance 
[275]. As visually shown in Fig. 7, user annotation is required during the 
whole feedback process. Obviously, labeling RS images as relevant or 
irrelevant is time-consuming and thus costly. Accordingly, despite the 
retrieval success of RF, the conventional RF schemes are not practical 
and efficient in real applications, especially when large-scale archives of 
RS images are searched. 

A promising approach to reduce the annotation effort in RF is active 
learning (AL) that aims at finding the most informative RS images in the 
large-scale RS image archive that, when annotated and included in the 
set of relevant and irrelevant RS images (i.e., the training set), can 
significantly improve the retrieval performance as well as lift the 
interactive effectiveness [276]. One obvious shortcoming of the method 
[276] is that it does not evaluate the representativeness of RS images in 
terms of their density in the archive. In fact, RS images that fall into the 
high-density regions of the image feature (descriptor) space are crucial 
for CBIR problems particularly when a small number of initially anno
tated images are available. With this consideration, three criteria 
including uncertainty, diversity and density have been systematically 
adopted in the AL phase to effectively and efficiently select the most 
informative samples [277]. In addition, the importance of normalization 
in the classification problem with heterogeneous objects is considered to 
lift the quality of actively selected samples [278]. To ensure the selected 
RS images are representative and informative enough, multiple different 
AL algorithms are adopted to conduct different RF processes, and then 
the contributions of different AL methods are fused using a circular 
fusion manner [279]. 

Besides, the RF scheme has also been used to address interactive 
Synthetic Aperture Radar (SAR) image retrieval [280]. Objectively, it is 
much harder to represent the visual content of SAR imagery than the 
optical imagery. To alleviate the negative influence of speckle noise of 
SAR imagery, superpixel-level texture is adopted to represent the visual 
content of SAR imagery and one new kernel function is developed to 
improve the binary classifier in the RF scheme [280]. Recently, RF has 
been modified to address retrieve the RS change sequence [281]. To 
cope with the change information retrieval, an improved RF model 
based on the combination of SVM and genetic algorithm (GA) is pro
posed where the proposed approach can take consideration of avoiding 
local maxima in the SVM kernel parameters optimization and the subset 
feature selection simultaneously by combining GA. As a whole, the RF 
scheme makes many complex retrieval problems become reality. In 
addition, experimental results [282] show that the integration of mul
tiple RF methods using reinforcement learning generally outputs better 
retrieval performance than using only one RF technique. 

4. Applications of remote sensing image retrieval 

As well known, CBIR was first proposed and used in the computer 
vision domain. In addition to the classical search engine (e.g., the CBIR 
function in Google), CBIR also has more applications such as fashion 

image retrieval on the e-commerce website [283], face verification at 
the security checkpoints [284], pedestrian re-identification on the video 
surveillance systems [285]. In the following, we review some distinctive 
applications based on CBIR in the RS field. 

4.1. Retrieval for fusion-oriented image processing 

In recent years, RS image retrieval has been successively adopted in 
multi-source RS image matching, which is a prerequisite of multi-source 
RS image fusion, and cross-source RS image classification, which is a 
generalized classification example by fusing multi-source RS images. 

As well known, multi-source RS image matching [286–288] is a 
fundamental task in the RS community. In addition, source-invariant 
feature descriptors are the key module of this task. Without much 
expertise or effort in designing descriptors, the aforementioned deep 
learning-based CR-RSI-RSI methods can automatically learn suitable 
source-invariant feature descriptors from data, which can be used in 
multi-source RS image matching. Similar to CR-RSI-RSI methods, Zhu 
et al. [39] proposed densely-connected CNNs with an augmented 
cross-entropy loss to match RGB and infrared RS image blocks. As shown 
in [39], the reported results show improvement on matching rate than 
the traditional feature matching descriptors such as SIFT, SURF, and so 
forth. 

Due to the diverse distributions of objects and spectral shifts caused 
by the different acquisition conditions of images, deep networks trained 
on a certain set of annotated RS images may not be effective when 
dealing with images acquired by different sensors or from different geo- 
locations. However, retrieval owns a natural source-invariant charac
teristic to some degree. Tong et al. [40] proposed one retrieval–based 
cross-source RS image classification method. Specifically, a deep CNN 
model is first pre-trained with a well-annotated land-use dataset, 
referred to as the source data. Then, given a target image with no labels, 
the pre-trained CNN model is utilized to classify the image in a 
patch-wise manner. The patches with a high classification probability 
are assigned with pseudo-labels and employed as the queries to retrieve 
related samples from the source data. The pseudo-labels confirmed with 
the retrieved results are regarded as supervised information for 
fine-tuning the pre-trained deep model. Extensive experiments show 
encouraging results and demonstrate the efficiency of the proposed 
retrieval-based scheme for learning transferable deep models for RS 
image classification. 

4.2. Retrieval for geo-localization and navigation 

Another application of RS image retrieval is CBIR-based localization 
where the key problem is to find the geo-location of one query image by 
finding its nearest referenced images. In this application, it is assumed 
that there exists one large-scale referenced dataset with massive geo- 
tagged images in advance. When the query image is captured on the 
ground surface with the daily life view, this problem is often call geo- 
localization [289–294] and widely exploited in the computer vision 
community. By contrast, when the query image is captured on the sky 
with the aircraft view, this problem is termed as visual navigation [41, 
42,295] and attracts more attention of the RS community. 

In the early stages, hand-crafted features have been adopted to 
retrieve the nearest referenced images for geo-localization [289,290]. 
Inspired by the great success, deep feature is utilized to improve the 
retrieval performance [291] for further lifting the geo-localization ac
curacy. By considering the 3D scene geometric attributes, the 
geo-localization accuracy can be further improved based on the strict 3D 
retrieval model [292] and the flexible 3D retrieval method [293]. As 
well known, collecting the geo-tagged referenced image dataset is 
time-consuming and becomes prohibited when the volume of the 
collected dataset tends to be very large. Given this consideration, Hu 
et al. [294] exploit the widely available geo-referenced aerial images to 
replace the ground-based reference dataset and shows the effectiveness 
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of the cross-view matching network for matching the ground-based 
query image and the aerial images. Even though GPS is not available, 
these geo-localization methods can tell one person where she/he locates 
as long as she/he captures one street view image around her/his 
location. 

By contrast to geo-localization, visual navigation [41,42,295] aims 
to recover the geographical location of the aerial imaging sensor based 
on scene matching (i.e., image retrieval) between the captured aerial 
image (i.e., the query image), and the geo-referenced aerial/satellite 
images. Considering that the aerial vehicles are often moving at a very 
high speed, the retrieval process should be done in real time. In addition, 
visual navigation has to cope with the cross-source retrieval case when 
the captured imagery and the referenced RS imagery come from 
different modalities. As mentioned before, deep hashing-based methods 
could project the image into the low-dimensional binary feature vector, 
which benefits accelerating the searching process. With this consider
ation, deep hashing and deep cross-modal hashing would be reasonable 
ways to address the real-time visual navigation task. Hence, it deserves 
much exploration about how to improve the visual navigation task with 
the aid of deep hashing. 

4.3. Retrieval for disaster rescue 

RS image retrieval plays an important role on disaster rescue. In the 
following, we discuss two application cases including coastal flood [43] 
and terrorist attack [114]. 

Obviously, RS observations comprise a significant portion of the data 
used by coastal zone monitoring systems. These observation data is 
particularly valuable because it provides a variety of measurements that 
are not otherwise available or affordable. However, the use of such 
valuable information in a rapid assessment scenario is hindered by the 
fact that it is cumbersome to explore huge RS image databases through 
manual operations. In a coastal disaster event, it is necessary to obtain 
information in real time and predictions of water level, storm surge in 
advance. The dissemination of information that is time critical calls for 
systems that will facilitate quick assessment of the scenario from mul
tiple perspectives. Hence, the rapid retrieval of the status of different 
land covers using RS data becomes more and more urgent. To this end, 
Durbha et al. [43] propose a Rapid Image Information Mining (RIIM) 
system, which is a region based approach. It localizes interesting zones 
and extracts characteristic information from them and stores this in
formation in a database for later use during the disaster. This content is 
then available for a variety of queries based on the image content for 
searching relevant RS imagery. 

In September 2001, the terrorist attacks collapsed the two main 
towers and other buildings in the World Trade Center (WTC) area in 
New York City. During the last two weeks of the attack time, a dataset 
containing 154 high-resolution hyperspectral images with more than 20 
TB of data has been gathered by NASA over the WTC area. The hyper
spectral imagery has 224 spectral bands. In the retrieval test, the 
hyperspectral image covering the area, centered at the region where the 
towers collapsed, is taken as the query RS image. Hence, the main 
challenge of this retrieval example is how to cope with the voluminous 
challenge of RS big data. With this consideration, Plaza et al. [104] 
propose a parallel CBIR system to investigate the parallel properties. The 
parallel CBIR system successfully retrieved all of the hyperspectral im
ages containing the WTC complex across the dataset. It is worth noting 
that the retrieval results don’t contain any false positives. More specif
ically, the parallel CBIR technique is implemented on a system 
composed of 256 dual 2.4-GHz Intel Xeon nodes, each with 1 GB of 
memory and 80 GB of main memory. Using 256 processors on Thun
derhead, the CBIR system can retrieve the most similar hyperspectral 
images across the full database in only 4 s, resulting in a total processing 
of approximately 10 s to catalog and fully describe a new entry in the 
dataset. This application represents a significant improvement over the 
implementation of the same CBIR process on a single Thunderhead 

processor, which took over 1 hour of computation for the same opera
tion. Hence, HPC would be a promising solution to address image 
retrieval from RS big data by enhancing the conventional CBIR 
techniques. 

5. Datasets and performance evaluation for remote sensing 
image retrieval 

In this section, the available datasets, evaluation metrics and per
formance discussion for RS image retrieval are depicted in detail. 

5.1. Datasets for remote sensing image retrieval 

In the following, we summarize the existing available RS image 
retrieval datasets with one single modality in Table 1 and RS datasets 
with two or more modalities in Table 2. As aforementioned, the RS 
datasets in Table 1 can support the single-label uni-source RS image 
retrieval task and multi-label uni-source RS image retrieval task. In 
addition, RS datasets in Table 2 can be used to evaluate the cross-source 
RS image retrieval methods. 

As shown in Table 1, the most majority of existing RS datasets is 
constructed based on the optical RS imagery with R-G-B bands, which 
mainly benefits from the free access characteristic of Google Earth Im
agery. Compared with the multi-spectral imagery-driven datasets, the 
datasets based on SAR or hyper-spectral imagery are relatively scarce. 
To give a full description of the intrinsic content of RS imagery, multi- 
label RS datasets (e.g., UCM* [305], AID* [306] and BigEarthNet 
[307]) have been collected where each RS image scene is annotated with 
multiple scene-level labels. In addition, some multi-label RS retrieval 
methods [308,309] have been proposed based on these multi-label RS 
datasets. As BigEarthNet [307] is automatically labeled with the aid of 
publicly open land-cover products, the labels of BigEarthNet may 
contain a certain degree of errors. Hence, researchers should carefully 
address this case when they try to design RS retrieval methods based on 
this noisy dataset. 

Driven by the urgent requirements for deploying the hybrid RS data, 
more and more researchers turn to the cross-source RS retrieval task. 
Specifically, DSRSID [252] and SEN12MS [310] can be adopted to 
design and evaluate the CR-RSI-RSI methods. Based on Aerial-SI [260] 
and RSketch [261], the effectiveness of CR-RSI-SKE methods can be 
verified. TextRS [262] is specifically collected to promote the 
CR-RSI-TEX technique. In addition, both of CR-RSI-TEX and CR-RSI-SOU 
methods can be evaluated on UCM-Captions [311], Sydney-Captions 
[311] and RSICD-Captions [312] as each of these datasets simulta
neously contains the RS imagery, the sentence and the sound. As a 
whole, the volume of SEN12MS is relatively large, but it also suffers 
from the noisy labels. Except SEN12MS, the volume of other 
multi-modality RS image retrieval datasets is relatively small. 

5.2. Evaluation metrics for remote sensing image retrieval 

In the following, we review the widely adopted evaluation metrics 
for RS image retrieval. Based on the ground-truth (GT) dataset (e.g., the 
aforementioned datasets in Table 1 and Table 2), given one query, four 
widely adopted evaluation metrics include Precision-Recall Curve (PRC) 
[226], Precision@k [226], Mean Average Precision (MAP) [226] and 
Average Normalized Modified Retrieval Rank (ANMRR) [162]. 

Given one query with the known label information in advance, 
Precision@k reflects the consistency rate that k returned results share 
the same label with the query. In addition, the MAP score can be 
calculated by: 

MAP =
1
|Q|

∑|Q|

i=1

1
ni

∑ni

k=1
precision(Rik) (1)  

where qi ∈ Q stands for one query and ni denotes the number of returned 
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Table 1 
RS image retrieval datasets based on one single data modality.  

Dataset Data modality Volume of 
images 

Image size Annotation information Task 

UCM in [296] Multi-spectral optical RS imagery with R-G-B 
bands 

2100 256×256 Single-label from 21 
categories 

Single-label uni-source 
retrieval 

WHU-RS19 in [149] Multi-spectral optical RS imagery with R-G-B 
bands 

1005 600×600 Single-label from 19 
categories 

Single-label uni-source 
retrieval 

RSSCN7 in [297] Multi-spectral optical RS imagery with R-G-B 
bands 

2800 400×400 Single-label from 7 
categories 

Single-label uni-source 
retrieval 

SIRI-WHU in [298] Multi-spectral optical RS imagery with R-G-B 
bands 

2400 200×200 Single-label from 12 
categories 

Single-label uni-source 
retrieval 

AID in [299] Multi-spectral optical RS imagery with R-G-B 
bands 

10,000 600×600 Single-label from 30 
categories 

Single-label uni-source 
retrieval 

NWPU-RESISC45 in  
[300] 

Multi-spectral optical RS imagery with R-G-B 
bands 

31,500 256×256 Single-label from 21 
categories 

Single-label uni-source 
retrieval 

PatternNet in [65] Multi-spectral optical RS imagery with R-G-B 
bands 

30,400 256×256 Single-label from 38 
categories 

Single-label uni-source 
retrieval 

RSI-CB128 in [301] Multi-spectral optical RS imagery with R-G-B 
bands 

36,707 128×128 Single-label from 45 
categories 

Single-label uni-source 
retrieval 

RSI-CB256 in [301] Multi-spectral optical RS imagery with R-G-B 
bands 

24,747 256×256 Single-label from 35 
categories 

Single-label uni-source 
retrieval 

AID++ in [302] Multi-spectral optical RS imagery with R-G-B 
bands 

Over 400,000 600×600 Single-label from 46 
categories 

Single-label uni-source 
retrieval 

SAT-4 in [303] Multi-spectral optical RS imagery with R-G-B- 
NIR bands 

500,000 64×64 Single-label from 4 
categories 

Single-label uni-source 
retrieval 

SAT-6 in [303] Multi-spectral optical RS imagery with R-G-B- 
NIR bands 

405,000 64×64 Single-label from 6 
categories 

Single-label uni-source 
retrieval 

EuroSat in [304] Multi-spectral optical RS imagery with 13 bands 27,000 64×64 Single-label from 10 
categories 

Single-label uni-source 
retrieval 

SAR-14 in [280] SAR imagery with the amplitude band 15,728 256×256 Single-label from 14 
categories 

Single-label uni-source 
retrieval 

ICONES-HIS in [111] Hyperspectral imagery with 224 bands 486 300×300 Single-label from 9 
categories 

Single-label uni-source 
retrieval 

UCM* in [305] Multi-spectral optical RS imagery with R-G-B 
bands 

2100 256×256 Multi-label from 17 
categories 

Multi-label uni-source 
retrieval 

AID* in [306] Multi-spectral optical RS imagery with R-G-B 
bands 

3000 600×600 Multi-label from 17 
categories 

Multi-label uni-source 
retrieval 

BigEarthNet in [307] Multi-spectral optical RS imagery with 13 bands 590,326 20×20–120×120 Multi-label from 43 
categories 

Multi-label uni-source 
retrieval  

Table 2 
RS image retrieval datasets based on two or more data modalities.  

Dataset Data modality Volume of 
images 

Image size Annotation information Task 

DSRSID in [252] Modality 1: Multi-spectral optical RS imagery with R- 
G-B-NIR bands 
Modality 2: Panchromatic optical RS imagery with one 
band 

60,000 64×64–256×256 Single-label from 6 categories Cross-source 
retrieval 

SEN12MS in [310] Modality 1: Multi-spectral optical RS imagery with 13 
bands 
Modality 2: SAR RS imagery with VV-VH bands 

180,662 256×256 Multi-label from global land 
cover maps 

Cross-source 
retrieval 

Aerial-SI in [260] Modality 1: Multi-spectral optical RS imagery with R- 
G-B bands 
Modality 2: Each RS imagery with one salient object 
sketch 

3300 600×600 Single-label from 10 categories Cross-source 
retrieval 

RSketch in [261] Modality 1: Multi-spectral optical RS imagery with R- 
G-B bands 
Modality 2: Each category contains 45 sketches 

2000 256×256 Single-label from 20 categories Cross-source 
retrieval 

TextRS in [262] Modality 1: Multi-spectral optical RS imagery with R- 
G-B bands 
Modality 2: Each RS imagery with 5 sentences 

2144 256×256 – Cross-source 
retrieval 

UCM-Captions in  
[311] 

Modality 1: Multi-spectral optical RS imagery with R- 
G-B bands 
Modality 2: Each RS imagery with 5 sentences  
Modality 3: Each RS imagery with one sound 

2100 256×256 Single-label from 21 categories Cross-source 
retrieval 

Sydney-Captions in  
[311] 

Modality 1: Multi-spectral optical RS imagery with R- 
G-B bands 
Modality 2: Each RS imagery with 5 sentences 
Modality 3: Each RS imagery with one sound 

613 500×500 Single-label from 7 categories Cross-source 
retrieval 

RSICD-Captions in  
[312] 

Modality 1: Multi-spectral optical RS imagery with R- 
G-B bands 
Modality 2: Each RS imagery with 5 sentences  
Modality 3: Each RS imagery with one sound 

10,921 224×224 Single-label from 30 categories Cross-source 
retrieval  
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results relevant to qi in the dataset. Suppose the relevant results are 
ordered as {r1,r2,⋯,rni}, and then Rikstands for the set of ranked retrieval 
results from the top result to rk. 

ANMRR considers both the number and order of the ground truth 
items that appear in the top retrievals. It is assumed that qi stands for one 
query with a GT size of NG(qi). The Rank(k) of the k-th GT item is defined 
as the position at which it is retrieved. A number K(qi) ≥ NG(qi) is chosen 
so that items with a higher rank are given a constant penalty: 

Rank(k) =
{

Rank(k), if Rank(k) ≤ K(qi)

1.25 ∗ K(qi), if Rank(k) > K(qi)
(2)  

where K(qi) is commonly chosen to be 2*NG(qi). The average rank (AVR) 
for a single query qi is then computed as: 

AVR(qi) =
1

NG(qi)

∑NG(k)

k=1
Rank(k) (3) 

To eliminate influences of different NG(qi), NMRR(qi) is further 
calculated by: 

NMRR(qi) =
AVR(qi) − 0.5∗(1 + NG(qi))

1.25 ∗ K(qi) − 0.5 ∗ (1 + NG(qi))
(4)  

Given a set of queries Q, ANMRR can be computed by Eq. (5) taking the 
average over Q. Different from the MAP score, ANMRR ranges in value 
between zero to one with lower values indicating better retrieval 
performance. 

NMRR =
1
|Q|

∑|Q|

i=1
NMRR(qi) (5) 

Besides these evaluation metrics, some improved evaluation mea
sures based on the specific tasks have been also widely used. For 
example, to fairly evaluate the hashing-based RS image retrieval 
methods, the aforementioned metrics are often used under the length 
condition (i.e., the length of hashing features) [240]. When evaluating 
the interactive RS image retrieval methods, both of the number of 
feedback operations and the aforementioned metrics are jointly 
considered. 

5.3. Performance discussion of remote sensing image retrieval 

In this section, we review two benchmarks about large-scale RS 
image retrieval including uni-source RS image retrieval and cross-source 
RS image retrieval, which may guide researchers to directly find the 
suitable methods to address their tasks. 

In the first benchmark, we discuss the performance of uni-source RS 
image retrieval methods. In this benchmark, we consider the UCM 
dataset [296] as it has been widely used to evaluate RS image retrieval 
methods. In order to augment the UCM dataset, the original RS images 
are rotated by 90∘, 180∘, and 270∘, separately. In this way, the volume of 
the UCM dataset is increased to 8400. In this evaluation, 7400 images 
are used as the retrieval database and to train retrieval methods and the 
remaining 1000 images are used as query data for testing. 

In this benchmark, the competitive baselines include the specific 
hashing methods for RS image retrieval and the general hashing 
methods for natural image retrieval. Specifically, the hashing methods 
proposed for RS image retrieval in recent years include PRH [226], 
KULSH [215], KSLSH [233], DHNN [240], and QDLH [247]. Moreover, 
we also consider some representative hashing methods used in the 
computer vision field in the experiments, such as LSH [214], supervised 
discrete hashing (SDH) [313], column sampling-based discrete super
vised hashing (COSDISH) [314], deep supervised hashing (DSH) [315], 
deep hashing net (DHN) [316], and deep pairwise-supervised hashing 
(DPSH) [317]. Among the various comparison methods, LSH, KULSH, 
and PRH are unsupervised hashing methods that do not use label in
formation for hash code generation, and the rest are supervised 

methods. Moreover, LSH, KULSH, PRH, KSLSH, SDH, and COSDISH are 
shallow methods and the remaining ones are deep hashing methods 
based on CNNs. For a fair comparison, we use the FC-7 feature of a 
pre-trained AlexNet as the input for the shallow methods and the raw RS 
images as inputs for the deep models. As a whole, the quantitative 
evaluation results have been summarized in Table 3. 

As depicted in Table 3, the supervised methods can significantly 
outperform the unsupervised methods including LSH, KULSH and PRH. 
In addition, the supervised methods with a shallow architecture achieve 
promising results because the pre-trained deep features are taken as the 
inputs of these methods. Due to lacking the specific consideration of RS 
image characteristics, the performance of the deep hashing methods in 
the computer vision domain, including DSH, DHN and DPSH, is still very 
limited. By contrast, the deep hashing models including DHNN [240] 
and QDLH [247], specifically designed for RS image retrieval, obviously 
outperform other methods. Moreover, the weights and activation func
tions in the QDLH framework are binarized to low-bit representations, 
which require much less storage and computing resources, which makes 
QDLH be suitable for on-orbit RS image retrieval. 

In the second benchmark, we review the performance of cross-source 
RS image retrieval methods. Here, we consider the DSRSID dataset 
[252] as it has been specifically collected to evaluate cross-source RS 
image retrieval methods. DSRSID is composed of a great quantity of 
pairs of panchromatic (PAN) and multi-spectral (MUL) images which are 
acquired by the GF-1 multi-spectral sensor and GF-1 panchromatic 
sensor, respectively. It includes 80,000 pairs of multi-source images of 8 
land-cover categories, including aqua-farm, cloud, forest, high building, 
low building, farm land, river, and water. Each category contains 10,000 
pairs of multi-source images. The size of multi-spectral image is 64×64 
with a resolution of 8 m, and the number of spectral channels is 4. While 
the size of panchromatic image is 256×256 with a spatial resolution of 2 
m, the number of spectral channels is 1. In this setting, 75,000 
multi-source images are used as the retrieval database and to train 
retrieval methods and the remaining 5000 images are used as the query 
data for testing. It is worth noting that the query image and images from 
the retrieval database come from different sources. 

In this benchmark, the evaluation methods include the hashing- 
based cross-source RS image retrieval methods and some recently pro
posed cross-source RS image retrieval methods with the high- 
dimensional retrieval feature. Specifically, the hashing-based cross- 
source RS image retrieval methods include canonical correlation anal
ysis (CCA) [213], semantic correlation maximum (SCM) [318], deep 
cross-modal hashing (DCMH) [319] and SIDHCNNs [252]. In addition, 
two recently proposed cross-source RS image retrieval methods [254, 
255] including multiple network-driven variants are also considered. As 
a whole, both CCA and SCM adopt the hand-crafted features where CCA 
is trained via an unsupervised manner but SCM is trained by a super
vised way. DCMH is first proposed in the computer vision domain and 
can be trained in an end-to-end manner. Here, we transfer it to the 

Table 3 
MAP comparison of large-scale RS image retrieval methods with different 
hashing lengths on UCM.  

Methods Architecture Supervision The length of hashing codes 
32 bits 64 bits 96 bits 

LSH in [214] Shallow Unsupervised 0.3886 0.5141 0.5540 
KULSH in [215] Shallow Unsupervised 0.5379 0.6246 0.6566 
PRH in [226] Shallow Unsupervised 0.5717 0.6561 0.6769 
KSLSH in [233] Shallow Supervised 0.8874 0.9023 0.9128 
SDH in [313] Shallow Supervised 0.9119 0.9342 0.9320 
COSDISH in  

[314] 
Shallow Supervised 0.8713 0.8704 0.8776 

DSH in [315] Deep Supervised 0.6317 0.6750 0.7502 
DHN in [316] Deep Supervised 0.6707 0.7313 0.7707 
DPSH in [317] Deep Supervised 0.7478 0.8174 0.8640 
DHNN in [240] Deep Supervised 0.9396 0.9718 0.9762 
QDLH in [247] Deep Supervised 0.9681 0.9764 0.9846  
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cross-source RS image retrieval task. As aforementioned, SIDHCNNs is 
specifically designed for cross-source RS image retrieval. Besides these 
hashing-based methods, we also evaluate the style transfer-based 
CI-GAN+VGG16 and CI-GAN+VGG19 [255], and the discriminative 
distillation-based Distillation-Res18 and Distillation-Res50 [254] on the 
DSRSID dataset. Based on two cross-source retrieval modes including 
PAN → MUL and MUL → PAN, all of the existing methods have been 
evaluated on the DSRSID dataset and the quantitative evaluation values 
are summarized in Table 4. It is noted that the evaluation results of 
CI-GAN+VGG16, CI-GAN+VGG19, Distillation-Res18 and 
Distillation-Res50 are generated based on their actual retrieval feature 
dimension as they don’t belong to the hashing-based methods. 

As depicted in Table 4, the supervised methods overall perform 
better than the unsupervised method (i.e., CCA), which reflects that the 
supervision plays a critical role on the cross-source retrieval task. Among 
the supervised methods, SCM with the shallow architecture lags behind 
the other methods using the deep architecture. Due to the adoption of 
more supervised constraints in the objective function, SIDHCNNs obvi
ously outperforms DCMH under different lengths of hashing codes. CI- 
GAN+VGG16, CI-GAN+VGG19, Distillation-Res18, and Distillation- 
Res50 slightly outperform the SIDHCNNs, but all of them depend on 
the high-dimensional retrieval feature, which restricts their applications 
on the large-scale retrieval task. To address the small-scale cross-source 
RS image retrieval, CI-GAN+VGG16, CI-GAN+VGG19, Distillation- 
Res18, and Distillation-Res50 would be good choices. However, to 
conduct cross-source retrieval from the over-sized RS image dataset, 
SIDHCNNs is recommended. 

6. Promising research directions 

In this section, we point out some promising research directions 
along the RS image retrieval avenue. 

6.1. Developing larger remote sensing image retrieval datasets 

Objectively speaking, deep learning has been the mainstream tech
nique of the state-of-the-art RS image retrieval methods [66]. As well 
known, the great success of deep learning highly depends on the quality 
and volume of annotation data [80]. However, the current RS image 
retrieval datasets are still very limited in terms of the volume of samples, 
the number of categories and the number of modalities. As a conse
quence, it’s very hard to train deep networks from scratch. Although 
transferring the pre-trained deep networks can avoid the lack of anno
tated data, fully training deep networks using sufficient labeled data is 
still the optimal solution as, in many cases, the RS data from the target 
domain may be totally unique. In addition, most of the current RS image 

retrieval datasets are collected based on the freely Google Earth Imag
ery, which can’t fully reflect the characteristic of satellite imagery. 
Hence, developing new large-scale RS image retrieval datasets with 
fine-grained categories becomes more and more urgent. Based on the 
previous experience, unsupervised aggregation [320] or active learning 
[321] would be reasonable techniques to accelerate the annotation 
process while maintaining the high annotation accuracy. 

6.2. Weakly supervised deep learning for remote sensing image retrieval 

In the RS big data era, we can easily collect a large amount of raw 
data, but accurately labeling oversized data becomes the real challenge 
because there exist so many kinds of RS images compared with the fixed 
R-G-B format of natural images in the computer vision domain. Hence, 
how to train deep networks with weak supervision (e.g., a relatively 
limited number of labeled samples or auxiliary data even containing a 
certain degree of noisy labels) will be promising research directions 
towards addressing image retrieval from RS big data. In the RS image 
classification tasks, semi-supervised deep learning [322] has been 
widely exploited to improve the classification performance by fully 
leveraging the limited number of labeled samples. In addition, 
error-tolerant deep learning methods [91,323–325] adopt the 
error-robust loss function or the error-label correction strategy to 
robustly learn deep networks from RS image datasets with noisy labels. 
Although RS image retrieval suffers from the similar data issue that RS 
image classification also meets, weakly supervised deep learning is 
seldom exploited in the context of RS image retrieval. Hence, weakly 
supervised deep learning would be a promising way to improve the 
performance of RS image retrieval based on the current limited but 
already available data. 

6.3. Visual reasoning for remote sensing image retrieval 

With massive training data and powerful computing resources, the 
key advantage of deep neural networks is the end-to-end design that 
generalizes to a large spectrum of domains, minimizing the human ef
forts in domain specific knowledge engineering. However, large gaps 
between human and machines can be still observed in ‘high-level’ 
vision-language tasks. In particular, recent studies in the RS community 
show that the end-to-end models are easily optimized to conduct cross 
image-text retrieval [262], image caption [326–328] and visual ques
tion answering [329]. However, these works still do not involve in visual 
reasoning [330–333] which attempts to understand the topological 
graph from the structured raw image and deductively draw inferences 
via conceptual rules and statements to proceed from known facts to 
novel conclusions. As well known, humans are not only capable of 

Table 4 
MAP comparison of cross-modal RS image retrieval methods on DSRSID.  

Methods Architecture Supervision The cross-source retrieval mode The length of hashing codes 
16 bits 32 bits 

CCA in [213] Shallow Unsupervised PAN → MUL 0.1593 0.1502 
MUL → PAN 0.1594 0.1505 

SCM in [318] Shallow Supervised PAN → MUL 0.3472 0.3767 
MUL → PAN 0.3671 0.3871 

DCMH in [319] Deep Supervised PAN → MUL 0.8076 0.8509 
MUL → PAN 0.8023 0.8445 

SIDHCNNs in [252] Deep Supervised PAN → MUL 0.9552 0.9643 
MUL → PAN 0.9725 0.9789 

CI-GAN+VGG16 in [255] Deep Supervised PAN → MUL 0.9766 
MUL → PAN 0.9683 

CI-GAN+VGG19 in [255] Deep Supervised PAN → MUL 0.9731 
MUL → PAN 0.9652 

Distillation-Res18 in [254] Deep Supervised PAN → MUL 0.9697 
MUL → PAN 0.9701 

Distillation-Res50 in [254] Deep Supervised PAN → MUL 0.9798 
MUL → PAN 0.9811  
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learning, but also talented at reasoning. Given one high-level question 
retrieval, it can be rationally expected that visual reasoning-driven RS 
image retrieval system can not only accurately return the expected RS 
images, but also semantically gives the question answer. Hence, visual 
reason deserves much more exploration in the context of RS image 
retrieval. 

7. Conclusion 

As one of the most fundamental and important tasks in RS big data 
mining, image retrieval (i.e., image information mining) from RS big 
data has attracted continuous research interests in the last several de
cades. This paper first discusses the opportunities and challenges of 
image retrieval from RS big data, then systematically reviews the 
emerging achievements. Besides the conventional CBIR application, this 
paper points out several RS-domain-specific applications based on RS 
image retrieval. To facilitate the quantitative evaluation of the RS image 
retrieval technique, the paper gives a list of publicly open datasets and 
evaluation metrics. In addition, it also gives some comments on two 
representative RS image retrieval benchmarks, which may help re
searchers intuitively find the mainstream methods over different RS 
image retrieval tasks. It is worth noting this paper emphasizes some 
interesting applications driven by RS image retrieval. Finally, it also 
gives some promising research directions of RS big data mining, which 
may guide young researchers to find the key unaddressed problems in a 
short time and attract more scientists in the related domains to collab
oratively address these issues. 
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