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Error-Tolerant Deep Learning for Remote Sensing
Image Scene Classification

Yansheng Li , Yongjun Zhang , Member, IEEE, and Zhihui Zhu , Member, IEEE

Abstract—Due to its various application potentials, the remote
sensing image scene classification (RSSC) has attracted a broad
range of interests. While the deep convolutional neural network
(CNN) has recently achieved tremendous success in RSSC, its
superior performances highly depend on a large number of accu-
rately labeled samples which require lots of time and manpower
to generate for a large-scale remote sensing image scene dataset.
In contrast, it is not only relatively easy to collect coarse and
noisy labels but also inevitable to introduce label noise when col-
lecting large-scale annotated data in the remote sensing scenario.
Therefore, it is of great practical importance to robustly learn a
superior CNN-based classification model from the remote sensing
image scene dataset containing non-negligible or even significant
error labels. To this end, this article proposes a new RSSC-
oriented error-tolerant deep learning (RSSC-ETDL) approach to
mitigate the adverse effect of incorrect labels of the remote sens-
ing image scene dataset. In our proposed RSSC-ETDL method,
learning multiview CNNs and correcting error labels are alter-
natively conducted in an iterative manner. It is noted that to
make the alternative scheme work effectively, we propose a
novel adaptive multifeature collaborative representation classifier
(AMF-CRC) that benefits from adaptively combining multiple
features of CNNs to correct the labels of uncertain samples. To
quantitatively evaluate the performance of error-tolerant meth-
ods in the remote sensing domain, we construct remote sensing
image scene datasets with: 1) simulated noisy labels by corrupting
the open datasets with varying error rates and 2) real noisy labels
by deploying the greedy annotation strategies that are practically
used to accelerate the process of annotating remote sensing image
scene datasets. Extensive experiments on these datasets demon-
strate that our proposed RSSC-ETDL approach outperforms the
state-of-the-art approaches.

Index Terms—Adaptive multifeature collaborative represen-
tation classifier (AMF-CRC), corrupted labels, remote sensing
image scene classification (RSSC), RSSC-oriented error-tolerant
deep learning (RSSC-ETDL).
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I. INTRODUCTION

D IFFERENT from the traditional pixel-level remote sens-
ing imagery classification [1]–[5], the remote sensing

image scene classification (RSSC) [6]–[10], which aims at
predicting the semantic category of one scene (i.e., one image
block) through perceiving the objects in the scene and their
spatial topology, benefits many applications, such as geospa-
tial object detection [11], [12]; content-based remote sensing
image retrieval [13], [14]; and so forth. In the literature,
lots of approaches have been proposed to cope with RSSC,
such as the classical methods [6], [7] and the deep-learning-
based methods [8]–[10]. In particular, as one representative
of deep learning [10], [15], [16], the deep convolutional
neural network (CNN) not only achieves tremendous suc-
cess in computer vision [17]–[19], speech recognition [20],
and natural language processing [21], but also dramatically
improves the performance of the RSSC task [10]. Because of
the fact that CNN obviously outperforms the traditional RSSC
methods based on the combination of traditional handcrafted
features and shallow classifiers, this article mainly focuses on
discussing the deep-learning-based RSSC technique.

In the remote sensing big data era, it is quite easy to col-
lect the remote sensing data itself, but labeling these data
from scratch becomes the real challenge as the state-of-the-
art RSSC methods (e.g., deep-learning-based methods) often
need a large-scale labeled dataset. To accelerate the process
of annotating remote sensing image scene datasets, two cat-
egories of greedy annotation approaches [22]–[25] have been
developed. In the former category of approaches [22], [23],
a large amount of remote sensing image scenes in the origi-
nal dataset is first aggregated into a small number of clusters
by unsupervised algorithms, and then the dataset is manually
labeled one cluster by one cluster instead of one scene by
one scene that is adopted by the traditional manual annotation
strategy. With the aid of the geographic coordinate registra-
tion between the remote sensing imagery and geospatial data,
the latter category of methods [24], [25] utilizes the crowd-
sourcing geospatial semantic information (e.g., the semantic
tags in the Google Map and the point of interests (POI) in
the OpenStreetMap) or the accumulated geodatabases (e.g.,
the released global land cover (GLC) product) to label the
remote sensing image scenes. Both of these two categories
of methods indeed save lots of manual annotation labor, but
inevitably bring in some error labels. Throughout this article,
a noisy label or error label refers to a wrong label in the sense
that the corresponding scene is labeled to other class instead of
the true one. Unfortunately, the value of the greedily collected
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remote sensing image scene datasets with label noise has not
been realized and mined.

As an open problem, the label errors in the classification
dataset would inevitably degenerate all kinds of supervised
learning classifiers, including shallow classifiers and deep
learning models. As is well known, deep learning models often
contain a large number of hyperparameters to be learned from
data [10], [15]. As a consequence, when the labels of the
classification dataset are corrupted, the performance degenera-
tion issue of deep learning models becomes more severe than
the shallow classifiers [26]. With this consideration, this arti-
cle mainly aims to pursue the excellent performance of deep
learning models even under the supervision of remote sensing
image scene datasets with corrupted labels.

In literature, pioneers in the computer vision domain
have developed many error-tolerant deep learning (ETDL)
methods to alleviate the adverse effect of inaccurate labels of
the natural image object recognition datasets from the Web
resource. Specifically, the existing ETDL methods can be
coarsely divided into two major categories: 1) label-noise-
minimization methods [27]–[32] and 2) label-noise-correction
methods [33], [34]. However, there was very little research
work on the classification of remote sensing image scenes
under error labels. Compared with natural images, remote
sensing images often present additional challenging charac-
teristics [35], including large resolution variations, arbitrary
orientations, and dense structures. In addition, compared with
object detection, scene classification is more difficult because
it not only needs to recognize the objects in the scene but also
requires perceiving the spatial layout among objects. Hence,
it is inadequate to address the RSSC problem under the influ-
ence of error labels by directly applying the existing ETDL
methods for natural image object recognition [27]–[34].
Thus, it becomes crucial to develop the RSSC-oriented ETDL
(RSSC-ETDL) technique to fully exploit the potential value
of the low-cost remote sensing image scene datasets with
noisy labels.

With these aforementioned considerations, this article pro-
poses a novel RSSC-ETDL approach to robustly learn a supe-
rior RSSC model from the corrupted remote sensing image
scene dataset. More specifically, the proposed RSSC-ETDL
approach is conducted in an iterative scheme and each iteration
step consists of learning multiview CNNs using multiple
nonoverlapped subdatasets which are randomly sampled from
the original dataset (or the iteratively refined dataset) and cor-
recting the potential error labels of the original dataset by
employing the learned CNNs. To pursue the high effectiveness
of the error correction process, a novel adaptive multifea-
ture collaborative representation classifier (AMF-CRC), which
takes the intermediate features of the learned CNNs as the
input, is proposed to cleanse the corrupted dataset. In return,
with more data correctly labeled, we can learn better CNNs
which then help to lift the performance of the error correction
process as the input of AMF-CRC is improved. It is worth not-
ing that our proposed AMF-CRC can adaptively employ the
intermediate features of CNNs based on their relative impor-
tance. Compared with the existing multiview ETDL methods
(e.g., iterative cross learning (ICL) in [34]), the recommended

robust error correction module in our RSSC-ETDL approach
is the key to lift the overall performance. Extensive experi-
ments on the remote sensing image scene datasets with noisy
labels show that the proposed RSSC-ETDL approach sig-
nificantly outperforms the existing methods. As an auxiliary
output of our RSSC-ETDL approach, the corrected training
dataset could be taken as the fuel of all supervised learn-
ing methods. The main contributions of this article can be
summarized as follows.

1) This article proposes a novel RSSC-ETDL framework,
which adopts a popular multiview manner to monitor
the uncertain labels and recommends a relearning mod-
ule to correct the uncertain labels where the relearning
module is highly flexible and can be implemented by
any shallow feature classifier based on the deep feature
representations of the learned multiview CNNs.

2) To improve the error correction performance, we pro-
pose a new AMF-CRC that can adaptively combine
multiple intermediate features of CNNs with optimally
learning the combination coefficients. In addition, we
give a strict mathematical proof of the optimization
convergence of the proposed AMF-CRC.

3) The effectiveness of our RSSC-ETDL approach has been
verified on multiple remote sensing image scene datasets
with kinds of error labels, including simulated and real
noisy labels.

The remainder of this article is organized as follows.
Section II specifically introduces the related work in the litera-
ture. Section III presents the RSSC-ETDL approach for RSSC
when the labels of the training dataset are corrupted by vari-
ous reasons and depicts the details of the proposed AMF-CRC
algorithm. Section IV depicts the experimental results in detail.
Finally, Section V gives the conclusions of this article.

II. RELATED WORK

In this section, we review the related work from two aspects:
1) the ETDL methods in the computer vision field and 2) the
error-tolerant classification approaches in the remote sensing
domain.

A. ETDL Methods in the Computer Vision Field

In the computer vision domain, lots of ETDL methods
have been proposed to learn deep networks from natural
image datasets containing some error labels. Generally speak-
ing, the existing ETDL methods can be coarsely divided
into two major categories: 1) label-noise-minimization meth-
ods and 2) label-noise-correction methods. The former adopts
the bootstrapping strategy [27], the noise modeling [28], and
the dropout regularization [29], which aims at minimizing
the adverse effect of label errors to train deep networks. In
recent years, Ghosh et al. [30] theoretically showed the mean
absolute error (MAE) can be robust against the uniform and
asymmetric label noise. To improve the robustness under label
noise and decrease the convergence time, Zhang and Sabuncu
proposed a generalized cross-entropy loss (i.e., the Lq loss
in [31]). To minimize the label noise memory of deep networks
under the Lq loss, a cross-training method [32] was proposed
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to gradually learn deep networks from data with error labels. In
contrast, the latter tries to correct the potential label errors and
the refined dataset is further adopted to train deep networks.
For example, the sentiments of adjective–noun pairs and tags
are used to refine the labels of noisy datasets from social
networks, and the deep learning model is further trained on
the refined dataset [33]. In an iterative manner, multiple deep
networks are first trained using nonoverlapped subdatasets and
then used to cleanse the original dataset [34]. As a whole,
these ETDL methods have achieved a certain extent of suc-
cess, but they still cannot well address the learning problem
from the remote sensing image dataset with label noise as
the remote sensing imagery shows a more complex structure
compared with natural images. Consequently, robustly learn-
ing deep networks from remote sensing image datasets with
noisy labels requires specific exploitation.

B. Error-Tolerant Classification Approaches in the Remote
Sensing Domain

As we move into the era of remote sensing big data, big
challenges arise on data acquisition and analysis [36]. As one
distinctive characteristic (i.e., veracity) of the remote sensing
big data, remote sensing image datasets with noisy labels grow
at an alarming rate. Without any special modification, CNN is
used to segment objects from remote sensing images under
the noisy supervision (i.e., the crowd-sourced maps) [37].
Even though CNN is directly trained under the supervision
of noisy labels, it also performs much better than many base-
lines that fully reveals the great value of remote sensing image
datasets with noisy labels. But on the other hand, the improved
performance can be rationally expected if CNN is tuned by
some error-tolerant skills. Afterward, researchers analyze the
effect of noisy labels on classification performance on satellite
image time series [38] and hyperspectral imagery [39]–[46].
To alleviate the adverse effect of noisy labels on RSSC,
Jian et al. [47] and Damodaran et al. [48] proposed loss
functions to learn the improved classification model. In sum-
mary, all of the existing error-tolerant methods [47], [48]
for RSSC are designed from the label-noise-minimization
perspective. Generally speaking, the label-noise-minimization
method is often designed for a specific model so that this kind
of algorithm lacks universality. Hence, combining the label-
noise-correction strategy and deep learning is a promising way
to address RSSC under noisy labels and deserves much more
exploitation.

III. ERROR-TOLERANT DEEP LEARNING FOR REMOTE

SENSING IMAGE SCENE CLASSIFICATION

To benefit clarifying the RSSC-ETDL method, we first
depict the AMF-CRC in Section III-A. Based on the AMF-
CRC, Section III-B further introduces the RSSC-ETDL
approach in detail. Finally, Section III-C introduces the RSSC
process based on the RSSC-ETDL approach.

A. Adaptive Multifeature Collaborative Representation
Classifier

Supposing that we have owned the feature extraction func-
tion (e.g., the handcrafted feature descriptor or the fully

connected layer output of one pretrained deep network), the
RSSC task predigests into the feature classification problem.
Naturally, feature classification can be addressed by the clas-
sic support vector machine (SVM) [49], which is famous for
its stable performance even under the supervision of a small
set of labeled samples. However, when the number of labeled
samples further decreases, the performance of SVM may dra-
matically degenerate. Considering the intensive demand (i.e.,
learning a robust feature classifier under the supervision of a
limited number of labeled samples) of the proposed RSSC-
ETDL framework in this article, we need to exploit a more
privileged feature classifier. From the representation perspec-
tive, the collaborative representation classifier (CRC) [50],
[51] is proposed to cope with the more challenging small-
sample-size problem. To pursue a faithful representation of
the testing sample, CRC encourages samples from all classes
to collaboratively represent the testing sample. However, the
existing CRC [50], [51] mainly considers the single fea-
ture case. In many practical applications, one sample can
be depicted by multiple heterogeneous features. To exploit
the effectiveness of multiple features, a multifeature dictio-
nary learning-based CRC (MDLCRC) approach was presented
in [52]. In MDLCRC, all the features are treated equally.
However, in our case, the features from different layers of
CNNs instead can have different importance in classification.
As a consequence, MDLCRC may not fully exploit the com-
plementary effectiveness of different features. Different from
MDLCRC, our AMF-CRC can automatically estimate the con-
tribution rates of different features. Intuitively, the advanced
performance of CRC can be rationally expected by adaptively
combining multiple heterogeneous features. In the following,
we introduce AMF-CRC in detail.

Assume we have M feature generators. The training dataset
includes N remote sensing image scenes with C classes, where
each remote sensing image scene can be represented by types
of features. Let X = {X1,X2, . . . ,XM} stand for the feature
set of the remote sensing image scenes in the training dataset,
where Xv ∈ R

dv×N denotes the feature matrix of the training
remote sensing image scenes using the vth kind of feature, dv

stands for the feature dimension of the vth kind of feature, and
N is the number of the training remote sensing image scenes.
In addition, each kind of feature matrix Xv ∈ R

dv×N also
follows the arrangement that Xv = [Xv

1,Xv
2, . . . ,Xv

C], where
Xv

i means the vth kind of feature matrix of the remote sensing
image scenes of the ith class, and each column of Xv

i stands
for the vth kind of feature vector of one remote sensing image
scene of the ith class.

Let y = {y1, y2, . . . , yM} denote the feature set of one testing
remote sensing image scene, where yv ∈ R

dv×1 denotes the vth
kind of feature and dv stands for the feature dimension of the
vth kind of feature. The proposed AMF-CRC can recover the
label of y = {y1, y2, . . . , yM} based on X = {X1,X2, . . . ,XM}
by the following three steps.

1) Calculating the Representation Coefficient Vector:
Given one testing remote sensing image scene, based on M
feature generators, we can calculate its corresponding feature
set y = {y1, y2, . . . , yM}. If we want to obtain the label of the
testing feature set y = {y1, y2, . . . , yM}, we can calculate its
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representation coefficient vector ρ ∈ R
N×1 along the training

feature set X = {X1,X2, . . . ,XM} by optimizing the following
loss function:

max
ρ,w

f (ρ,w):
M∑

v=1

wv
‖yv − Xvρ‖2

2

dv
+ α‖w‖2

2 + β‖ρ‖2
2

s.t. 0 ≤ wv ≤ 1,
M∑

v=1

wv = 1 (1)

where w = [w1,w2, . . . ,wM] stands for the weight vector of
different features. α and β are regularization constants.

As depicted in (1), the feature weight vector w and repre-
sentation coefficient vector ρ are jointly optimized, leading to
a nonconvex problem which does not have simple closed-form
solution. Fortunately, note that once the feature weight vector
w in (1) is determined, a closed-form solution can be obtained
to calculate the representation coefficient vector. After the rep-
resentation coefficient vector ρ is updated and determined,
the objective function in terms of the feature weight vector is
a quadratic programming which can be efficiently optimized
by the classic constrained quadratic optimization algorithm.
With this consideration, we adopt an iteratively alternating
optimization method to determine the feature weight vector
and representation coefficient vector. In particular, in the kth
step, we update the representation coefficient vector by

ρ(k) = arg min
ρ

f (ρ,w(k − 1))

=
(

M∑

v=1

wv(k − 1)
(Xv)TXv

dv
+ βI

)−1

×
(

M∑

v=1

wv(k − 1)
(Xv)Tyv

dv

)
(2)

where I denotes the identity matrix.
The feature weight vector is then updated by

w(k) = arg min f (ρ(k),w)

s.t. 0 ≤ wv ≤ 1,
M∑

v=1

wv = 1. (3)

It is noted that (3) can be efficiently solved by using off-
the-shelf quadratic programming solvers. The full procedure
is depicted in Algorithm 1. The following theorem establishes
the convergence guarantee for Algorithm 1.

Theorem 1 (Convergence of Algorithm 1): Let (ρ(k),w(k))
be the sequence generated by Algorithm 1. Then, the sequence
(ρ(k),w(k)) satisfies the following properties.

1) The sequence is regular and obeys sufficient decrease

f (ρ(k),w(k))− f (ρ(k + 1),w(k + 1))

≥ α‖w(k)− w(k + 1)‖2 + β‖ρ(k)− ρ(k + 1)‖2.

(4)

2) The sequence is bounded and converges to a stationary
point of (1).

The proof of Theorem 1 is in the Appendix. In words,
Theorem 1 guarantees that the alternating minimization algo-
rithm (i.e., Algorithm 1) finds a stationary point of (1). We

Algorithm 1 Alternating Minimization for Solving (1)

Input: The training feature set X = {X1,X2, · · · ,XM}, the
testing feature set y = {y1, y2, · · · , yM}

Output: The optimized the feature weight vector w, the
optimized representation coefficient vector ρ.
Initialization: w(0) = [w1(0),w2(0), . . . ,wM(0)] (e.g.,
w1(0) = · · · = wM(0) = 1/M)
for k = 1 : K do

• Update the representation coefficient vector by
ρ(k) = arg minρ f (ρ,w(k − 1)).

• Update the feature weight vector by
w(k) = arg minw f (ρ(k),w).

end for
w = w(K), ρ = ρ(K)

empirically observe that this alternative optimization algo-
rithm has rapid convergence speed, with a few iterations
giving reasonably good feature weight vector and represen-
tation coefficient vector. More specifically, the number of
iterations (i.e., K in Algorithm 1) is empirically set to 3 in
our implementation.

2) Calculating the Reconstruction Residuals: Based on the
optimized feature weight vector w and representation coeffi-
cient vector ρ, the class-specific reconstruction residual of the
testing feature set can be formulated as

Ri =
∑M

v=1 wv · (‖yv − Xv
i · ρi‖2

2/dv
)

‖ρi‖2
2

(5)

where i denotes the class index and i = 1, 2, . . . ,C; and ρi
denotes the representation coefficient subvector with respect
to remote sensing image scenes of the ith class.

3) Predicting the Label of the Testing Remote Sensing
Image Scene: The label of the testing remote sensing image
scene can be inferred from the class-specific reconstruction
residuals

t(y) = arg min
i

{Ri} (6)

where t(y) denotes the label of the testing remote sensing
image scene.

B. RSSC-Oriented Error-Tolerant Deep Learning Approach

Let �R = {(I1,O1), (I2,O2), . . . , (Ir,Or)} denote the orig-
inal training remote sensing image scene dataset, where r
denotes the number of remote sensing image scenes in the
original training remote sensing image scene dataset, I stands
for the remote sensing image scene, and O denotes the remote
sensing image scene label which may be incorrect. To robustly
learn high-quality deep networks under the supervision of
the training remote sensing image scene dataset with noisy
labels, we propose a new RSSC-ETDL framework, which is
visually illustrated in Fig. 1. Overall, our proposed RSSC-
ETDL method is designed based on the assumption that the
deep network can learn useful information even with noisy
labels [34]. As depicted in Fig. 1, our proposed RSSC-ETDL
is conducted via an iteration manner where each iteration step
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includes two alternative modules: 1) learning multiview deep
networks and 2) correcting potential error labels. In addition,
these two modules are detailed in the following.

1) Learning Multiview Deep Networks: To benefit per-
ceiving and correcting error labels, this substep aims at
learning multiview deep networks which could discriminate
remote sensing image scenes from different perspectives.
First, the original training dataset is randomly partitioned
into Z nonoverlapped subdatasets {�1, �2, . . . , �Z}, where
�R = �1 ∪ �2 ∪ · · · ∪ �Z and �i ∩ �j = ∅;i = 1, 2, . . . ,Z;
j = 1, 2, . . . ,Z. Second, we learn Z different CNN mod-
els on Z subdatasets, respectively. Here, the architecture of
Z CNN models follows the same style and is visually illus-
trated in Fig. 2. In addition, we conduct the learning process
on each subdataset just like the normal deep learning case
and the hyperparameters of Z CNN models are represented
by {�1,�2, . . . , �Z}.

2) Correcting Potential Error Labels: To correct poten-
tial error labels, we first use the learned Z CNN mod-
els to identify the samples with certain labels (i.e., the
labels of these samples are correct with a high proba-
bility) from the original training RS image scene dataset
�R = {(I1,O1), (I2,O2), . . . , (Itr,Otr)}. More specifically,
if one sample in the original training dataset is predicted
with the same label by all of Z CNN models, this sam-
ple seems to have a certain label and is moved to the
strong dataset along with its label; otherwise, the label of
this sample is probably incorrect and this sample is moved
to the weak dataset along with its label. The strong dataset
is depicted by �S = {(I1,O1), (I2,O2), . . . , (Isn,Osn)} with
sn samples and the weak dataset is denoted by �W =
{(I1,O1), (I2,O2), . . . , (Iwn,Own)} with wn samples, where
�R = �s ∪ �w and r = sn + wn.

Here, we have obtained Z trained CNN models, the strong
dataset, and the weak dataset. That means we have feature
function (i.e., the fully connected layer output of CNN models)
and the label supervision as the samples in the strong dataset
are assumed to have the correct labels. Furthermore, we train
feature classifier under the supervision of the strong dataset
to predict the label of samples in the weak dataset. More
specifically, as depicted in Fig. 2, the adopted deep network
architecture has three fully connected layers (i.e., FC1, FC2,
and FC3 in Fig. 2). Hence, on the basis of CNN models, each
remote sensing image scene can be represented by 3×Z feature
vectors. Based on the AMF-CRC introduced in Section III-A,
the label of samples in the weak dataset is recovered via a clas-
sification way instead of inheriting the original noisy labels.
As depicted in Fig. 1, the union of the strong dataset with
original labels and the weak dataset with predicted labels is
taken as the dataset with corrected labels, which is utilized to
train deep networks in the next iteration.

To facilitate understanding, we summarize our proposed
RSSC-ETDL approach in Algorithm 2. As depicted in
Algorithm 2, the strong dataset �S is fixed after the first round
iteration which mainly aims at avoiding the error propaga-
tion. In the RSSC-ETDL method, the number of iterations is
quantitatively analyzed in Section IV. Given one remote sens-
ing image scene dataset �R with noisy labels, the proposed

Algorithm 2 RSSC-ETDL Approach Based on AMF-CRC
Input: The original training remote sensing image scene

dataset �R = {(I1,O1), (I2,O2), . . . , (Ir,Or)}
Output: The hyper-parameters {�1,�2, . . . , �Z} of Z CNN

models
Initialization: The corrected remote sensing image scene
dataset �C = �R; The strong dataset �S = ∅; The weak
dataset �W = ∅

for iterID = 1 : maxIter do
• Randomly split the corrected dataset �C into

Z sub-datasets {�1, �2, . . . , �Z}
• for viewID=1 : Z do

Learn the hyper-parameter �viewID of CNN on the
sub-dataset �viewID.

end for
• if iterID==1

Split the original dataset �R into the strong dataset
�S and the weak dataset �W via the vote of the
learned Z CNN models with the corresponding
hyper-parameters {�1,�2, . . . , �Z}

end
• Utilize AMF-CRC to correct the label of each sample

in �W under the supervision of �S where the feature
extraction function is conducted by the fully connec-
ted layer output of the learned Z CNN models with
the corresponding hyper-parameters {�1,�2,

. . . , �Z}.
• Update the remote sensing image scene dataset
�C = �S ∪ �′

W where �
′
W denotes the refined

one of �W .
end for

RSSC-ETDL approach outputs Z high-quality CNN models
with hyperparameters {�1,�2, . . . , �Z} as well as the dataset
�C with refined labels.

C. Learning Deep Networks Under Noisy Labels for Remote
Sensing Image Scene Classification

As aforementioned, the proposed RSSC-ETDL approach
can automatically learn high-quality CNN models from the
remote sensing image scene dataset with noisy labels. It is
assumed that the RSSC-ETDL approach has learned Z CNN
models with hyperparameters {�1,�2, . . . , �Z}. As depicted
in Algorithm 2, these Z CNN models are trained under the
supervision of subdatasets which are not overlapped with
each other. As a general deduction, these Z CNN models
should own the complementary prediction performance. With
this consideration, the label of one testing remote sensing
image scene I can be predicted by the vote of multiview
complementary CNN models

t = arg max
c

(
Z∑

d=1

Vc
d

)
(7)

where c and d stand for the category component and the CNN
model index; and Vd = �(I;�d) ∈ R

T×1 denotes the softmax
layer output of the testing remote sensing image scene I using
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Fig. 1. Workflow of the proposed RSSC-ETDL framework. The dashed arrow means that the process just occurs in the first iteration and does not repeat in
the following iterations.

Fig. 2. Overall architecture of the adopted CNN.

the dth CNN model with the hyperparameter �d and T denotes
the number of categories.

IV. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to ver-
ify the effectiveness of the proposed approach for RSSC
with noisy labels. Section IV-A depicts the experimental set-
ting and the evaluation criteria. In Section IV-B, we conduct
the experiments on two remote sensing image scene datasets
with simulated label noise. In addition, Section IV-C reports
and discusses the experimental results on two remote sensing
image scene datasets with real noisy labels.

A. Experimental Setting and Evaluation Criteria

Because of its wide application and superior performance in
RSSC, VGG [53] is taken as the architecture of CNN in this

TABLE I
CONFIGURATION OF CNN

experiment. The specific configuration of the adopted CNN is
shown in Table I, and the CNN can process an input image
of 244 × 244 × 3. In Table I, “filter” specifies the number of
filters, the size of a field, and the dimensions of input data,
and it can be formulated as num × size × size × dim. The
“stride1” denotes the sliding step of the convolution operation,
“pool” denotes the downsampling factor, and “stride2” denotes
the sliding step of the local pooling operation. As shown in
Table I, the adopted CNN has five convolutional layers, three
fully connected layers, and one softmax classification layer.
Once the CNN is trained, each remote sensing image scene can
be represented by three feature vectors using the corresponding
three fully connected layers.

This article is implemented by MATLAB and conducted on
a Dell station with 8 Intel Core i7-6700 processors, 32 GB of
RAM, and the NVIDIA GeForce GTX 745.
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We train the model on the training dataset with noisy labels.
In addition, we test the performance of one trained model
on the testing dataset with accurate labels using the widely
adopted overall accuracy (OA) indicator.

B. Experimental Results on Remote Sensing Datasets With
Simulated Noisy Labels

1) Collection of Remote Sensing Datasets With Simulated
Noisy Labels: In the following experiments, we evaluate
the methods on two publicly open large-scale remote sens-
ing image scene datasets, including RSI-CB256 [24] and
PatternNet [54]. More specifically, RSI-CB256 includes 35
land cover categories and has a total of 24 000 remote sens-
ing image scenes where each remote sensing image scene is
with a size of 256 × 256. In addition, PatternNet includes
38 land cover categories and has a total of 30 400 RS image
scenes where each remote sensing image scene is with a size
of 256 × 256. In both remote sensing image scene datasets,
20% of the original dataset is randomly selected as the training
dataset and the rest is taken as the testing dataset. To quantita-
tively evaluate the error-tolerant learning methods, we corrupt
the labels of the training dataset with different error rates (i.e.,
eRate = 0.4, eRate = 0.6, and eRate = 0.8 in this experiment)
based on the existing noisy simulation methods [29], [34].

2) Sensitivity Analysis of the Critical Parameters: Fixing
the error rate (i.e., eRate = 0.8), we evaluate the performance
of our proposed RSSC-ETDL approach under different regu-
larization parameters α and β on RSI-CB256. More specifi-
cally, the corresponding results are summarized in Table II. As
depicted in Table II, the performance of our proposed RSSC-
ETDL approach obviously changes along with the variation of
α and β. This phenomenon fully verifies the effectiveness of
our proposed approach from two aspects: 1) the idea to adap-
tively combine multiple features and 2) the strategy to borrow
information from other classes to represent the testing sample.
As a tradeoff, our proposed RSSC-ETDL approach can achieve
the best performance when α = 3.0 × 103 and β = 1.0 × 103.
To reduce the computational expense, we follow this setting
in the following. Naturally, much better performance can be
rationally expected if we tune the parameter setting again in
the new data environment.

Furthermore, we evaluate the performance of our proposed
RSSC-ETDL approach under different view numbers (i.e.,
changing the view number in Algorithm 1) and the correspond-
ing results are summarized in Table III. Generally, the increase
of the view number would lift the accuracy of samples in the
strong dataset, but inevitably reduce the volume of the strong
dataset. As a whole, the increase of the view number does not
benefit in improving the performance. Hence, the view number
is set to 2 in the following.

3) Convergence Analysis of Our RSSC-ETDL Approach:
To conduct the convergence analysis, we summarize the
performance of our proposed RSSC-ETDL approach under
different iterations on RSI-CB256 in Fig. 3(a). As shown
in Fig. 3(a), more iterations indeed help to improve the
performance of our proposed approach especially when the
error rate is high (e.g., eRate = 0.6 and eRate = 0.8). In

TABLE II
OA VALUES OF OUR RSSC-ETDL APPROACH UNDER DIFFERENT

REGULARIZATION PARAMETERS ON RSI-CB256

TABLE III
OA VALUES OF OUR RSSC-ETDL APPROACH UNDER DIFFERENT

REGULARIZATION PARAMETERS ON RSI-CB256

addition, the performance improvement seems to be small
after three iterations. Obviously, the training complexity of our
proposed RSSC-ETDL approach is proportional to the num-
ber of iterations. To obtain a tradeoff between the training
complexity and classification performance, the number of iter-
ations is set to 3 in this experiment. Like the experiment on
RSI-CB256, we also conduct the convergence analysis of our
RSSC-ETDL approach on PatternNet and the corresponding
results are summarized in Fig. 3(b). As shown in Fig. 3(b), the
performance of our RSSC-ETDL approach on PatternNet can
obtain a similar variation trend on RSI-CB256. More specif-
ically, our RSSC-ETDL approach can reach the saturation
condition with three iterations. With this consideration, the
number of iterations is also set to 3 on PatternNet.

As depicted in Section III-B, our RSSC-ETDL approach
works in an iterative manner where each round of iteration
includes two main modules (i.e., learning multiview deep
networks and correcting potential error labels). Considering
that each round of iteration of our RSSC-ETDL approach
costs a fixed time, we report the separate running time of
two main modules in the first iteration. More specifically, the
running time of our RSSC-ETDL approach on RSI-CB256
and PatternNet under different error rates is summarized in
Tables IV and V. The potential readers can directly infer the
entire running time of our RSSC-ETDL approach once the
number of iterations is determined.

4) Comparison With the State-of-the-Art Approaches: To
verify the superiority of our proposed RSSC-ETDL approach,
we compare our method with five recently published meth-
ods, including the ETDL method via the MAE loss [30],
the ETDL approach via the Lq loss [31], the ETDL method
via bootstrapping [27], the ETDL approach via dropout [29],
and the ETDL algorithm via ICL [34]. In addition, to ver-
ify the effectiveness of the proposed AMF-CRC classifier
in our RSSC-ETDL approach, we consider two more base-
lines by extending our RSSC-ETDL approach. By naively
aggregating multiple features into one feature vector, the
AMF-CRC in our RSSC-ETDL approach can be replaced by
some traditional classifiers, such as SVM and CRC. More
specifically, RSSC-ETDL-SVM stands for our RSSC-ETDL
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Fig. 3. OA values of our RSSC-ETDL approach under different iterations on two remote sensing image scene datasets (i.e., AID-GA and BUD-GLC) with
real noisy labels. (a) Results on RSI-CB256 under different error rates. (b) Results on PatternNet under different error rates.

TABLE IV
RUNNING TIME OF OUR RSSC-ETDL APPROACH ON RSI-CB256 UNDER DIFFERENT ERROR RATES

TABLE V
RUNNING TIME OF OUR RSSC-ETDL APPROACH ON PATTERNNET UNDER DIFFERENT ERROR RATES

TABLE VI
COMPARISON WITH THE STATE-OF-THE-ART APPROACHES ON RSI-CB256 UNDER DIFFERENT ERROR RATES

approach equipped with the SVM classifier, RSSC-ETDL-
CRC denotes our RSSC-ETDL approach equipped with the
CRC classifier, and RSSC-ETDL denotes our RSSC-ETDL
approach equipped with the AMF-CRC classifier.

To verify the superiority of our RSSC-ETDL approach,
we evaluate the aforementioned methods on RSI-CB256 and
summarize the quantitative evaluation results in Table VI. As
shown in Table VI, our RSSC-ETDL and its variants can
dramatically outperform the state-of-the-art approaches [27],
[29]–[31], [34] which fully reflect the effectiveness of our
proposed error-tolerant learning framework. When eRate =
0.4 and eRate = 0.6, our RSSC-ETDL approach obtains
a similar performance level compared with RSSC-ETDL-
CRC and performs better than RSSC-ETDL-SVM. However,
when eRate = 0.8, our proposed RSSC-ETDL approach
outperforms RSSC-ETDL-SVM and RSSC-ETDL-CRC with
a large margin. When the labels are corrupted by heavy
noise, the number of samples in the strong dataset is
very small which makes the label recovery of the weak
dataset become a classic small-sample-size classification
problem. The significant performance improvement suffi-
ciently verifies the superiority of the presented AMF-CRC
compared with the traditional classifiers, including SVM
and CRC.

To check the universality of our RSSC-ETDL method, we
evaluate our method on another publicly open RS image scene
dataset (i.e., PatternNet). As depicted in Table VII, our RSSC-
ETDL approach and its variants obviously outperform the
recently published ETDL methods [27], [29]–[31], [34]. Under
the condition with a small error rate (i.e., eRate = 0.4 and
eRate = 0.6), the performance of our RSSC-ETDL method
obtains close to its two variants, including RSSC-ETDL-SVM
and RSSC-ETDL-CRC. When eRate = 0.8, our RS-ETDL
method obviously performs better than RSSC-ETDL-SVM
and RSSC-ETDL-CRC which reflects the robustness of the
proposed AMF-CRC classifier.

C. Experimental Results on Remote Sensing Datasets With
Real Noisy Labels

1) Collection of Remote Sensing Datasets With Real Noisy
Labels: As analyzed in Section I, the real label noise of remote
sensing image scenes mainly comes from the greedy anno-
tation process. To fully verify the validity of our proposed
RSSC-ETDL approach, we construct two remote sensing
image scene datasets with real label noise by adopting two
different greedy remote sensing image annotation strategies,
which can cover the main types of greedy remote sensing
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TABLE VII
COMPARISON WITH THE STATE-OF-THE-ART APPROACHES ON PATTERNNET UNDER DIFFERENT ERROR RATES

image scene annotation methods mentioned in Section I. In
the following, we detail the construction process of two remote
sensing image scene datasets with real label noise.

In the construction process of the first remote sensing image
scene dataset with real label noise, we deploy the greedy
annotation algorithm in [23]. In this annotation algorithm,
the image scenes in the original dataset are first aggregated
into a limited cluster by unsupervised methods, and then we
label the original dataset on the cluster level for accelerating
the annotation process and saving the labor cost. Here, we
take the publicly available dataset (i.e., AID in [55]) as the
source data. Specifically, AID includes 30 land cover cate-
gories and has a total of 10 000 remote sensing image scenes,
where each remote sensing image scene is with a size of
600 × 600. We randomly select 50% of the original dataset as
the training dataset and the rest is taken as the testing dataset.
Different from the noise simulation process in Section IV-B1,
we totally throw the labels of the training dataset of AID and
label it by the greedy annotation algorithm in [23]. In detail,
we set the greedy annotation rate as 5%, which means that
the annotation process is accelerated by 20 times. To facili-
tate clarifying, we call the greedily annotated training dataset
of AID and the testing dataset of AID as AID-GA in the
following.

We consider another greedy annotation strategy to construct
the second remote sensing image scene dataset with real label
noise. As examined in Section I, the existing geodatabase can
be taken as the semantic layer to automatically annotate the RS
imagery. As a first and primary attempt, we take the detection
of built-up (BU) areas as a case study. In many existing tech-
niques [12], [56], the detection of BU areas is taken as a binary
scene classification task (i.e., one scene is classified to BU or
non-BU) where the annotation of the BU scene dataset often
needs massive labor cost. Here, we take the recently released
GLC product (i.e., FROM-GLC10 in [57]) as the semantic ref-
erence map at a 10-m spatial resolution, and the Google Earth
imagery at a 0.5-m spatial resolution is taken as the source
imagery. After the geographic coordinate registration between
the Google Earth imagery and the FROM-GLC10 product,
the impervious layer in FROM-GLC10 is used to generate the
scenes of the BU category, and the other layers are adopted to
generate the scenes of the non-BU category where each image
scene is with a size of 256 × 256. We collect 5000 image
scenes as the training dataset. Considering that the FROM-
GLC10 product is generated by some interpretation methods
and the accuracy of the impervious layer is around 72% as
reported in [57], the training dataset inevitably contains a cer-
tain degree of error labels. In addition, we manually refine a
testing dataset containing 5000 image scenes, which does not
have any overlap with the training part. To facilitate clarifying,

TABLE VIII
RUNNING TIME OF OUR RSSC-ETDL APPROACH ON

AID-GA AND BUD-GLC

we call this dataset (i.e., the combination of the noisy train-
ing dataset and the clean testing dataset) BUD-GLC in the
following.

2) Convergence Analysis of Our RSSC-ETDL Approach:
Fixing the setting of hyperparameters, discussed in
Section IV-B2, we conduct the convergence analysis of
our RSSC-ETDL approach on two remote sensing image
scene datasets with real noisy labels. More specifically, we
report the quantitative evaluation results (i.e., OA) of our
RSSC-ETDL approach under different iterations on AID-GA
and BUD-GLC in Fig. 4(a) and (b), respectively. As shown
in Fig. 4(a) and (b), our RSSC-ETDL approach with two
iterations can dramatically outperform the approach with only
one round of iteration. In addition, our RSSC-ETDL approach
seems to converge to a stable state after three iterations.
Because of this empirical characteristic, the number of
iterations is also set to 3 on both datasets.

Similar to Section IV-B3, we also report the running time
of the first iteration of our RSSC-ETDL approach on AID-GA
and BUD-GLC. More specifically, the separate running time of
two main modules (i.e., learning deep networks and correcting
potential error labels) of the first iteration is summarized in
Table VIII.

3) Comparison With the State-of-the-Art Approaches:
Similar to the comparison setting in Section IV-B3, we also
compare our RSSC-ETDL approach with five recently pub-
lished methods, including the ETDL method via the MAE
loss [30], the ETDL approach via the Lq loss [31], the
ETDL method via bootstrapping [27], the ETDL approach via
dropout [29], and the ETDL algorithm via ICL [34]. In addi-
tion, to verify the effectiveness of the proposed AMF-CRC
classifier in our RSSC-ETDL approach, we consider two more
baselines (i.e., RSSC-ETDL-SVM and RSSC-ETDL-CRC) by
extending our RSSC-ETDL framework.

As shown in Tables IX and X, extensive experiments on
AID-GA and BUD-GLC show that our RSSC-ETDL and its
two variants (i.e., RSSC-ETDL-SVM and RSSC-ETDL-CRC)
can obviously outperform the state-of-the-art approaches [27],
[29]–[31], [34] which fully reflects the effectiveness of our
proposed error-tolerant learning framework. In addition, an
obvious performance improvement also verifies the superiority
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Fig. 4. OA values of our RSSC-ETDL approach under different iterations on two remote sensing image scene datasets (i.e., AID-GA and BUD-GLC) with
real noisy labels. (a) Results on AID-GA. (b) Results on BUD-GLC.

TABLE IX
COMPARISON WITH THE STATE-OF-THE-ART APPROACHES ON AID-GA

TABLE X
COMPARISON WITH THE STATE-OF-THE-ART APPROACHES ON BUD-GLC

of the presented AMF-CRC compared with the traditional
classifiers, including SVM and CRC.

V. CONCLUSION

Along with the development of information technology,
imaging technology, and manufacturing, we have been in the
era of remote sensing big data. As is well known, veracity
is one of the most distinctive characteristics of remote sens-
ing big data. How to mine the intrinsic knowledge from the
remote sensing data with noisy labels becomes a new learning
paradigm in the era of remote sensing big data. Driven by this
intensive demand, this article proposes a new RSSC-ETDL
approach for RSSC. The proposed RSSC-ETDL involves an
alternating procedure that learns multiview deep networks and
corrects potential error labels. To correct the error labels,
we proposed a novel AMF-CRC classifier which can adap-
tively combine multiple features to improve the classification
accuracy. To fully show the superiority of our RSSC-ETDL
method, we constructed two remote sensing image scene
datasets with simulated noisy labels by randomly corrupting
the existing open datasets under varying error rates, and col-
lect two remote sensing image scene datasets with real noisy
labels by employing the existing greedy annotation strategies.
Extensive experiments on multiple remote sensing image scene
datasets with varying kinds of error labels demonstrate that
our proposed RSSC-ETDL approach can dramatically out-
perform the state-of-the-art approaches. In addition, through
comparison with some traditional classifiers, including SVM
and CRC, the effectiveness of the proposed AMF-CRC classi-
fier is also verified. It is noted that as a general classifier, the
proposed AMF-CRC classifier may benefit more applications
in the computer vision domain.

APPENDIX

In this section, we first give out some necessary definitions.
Based on these definitions, we further give the proof of the
properties of Theorem 1, respectively.

Definition 1: Let ψ : R
N → R ∪ ∞ be a proper lower

semicontinuous function.
1) The domain of ψ is defined by domψ : {x ∈

R
N : ψ(x) < ∞}.

2) For any x ∈ domψ , the subdifferential ∂ψ is defined by

∂ψ(x) =
{

z : lim
y→x

inf
ψ(y)− ψ(x)− 〈z, y − x〉

‖x − y‖ ≥ 0

}

and ∂ψ(x) = ∅ if x /∈ domψ .
3) We say x ∈ domψ a stationary point if 0 ∈ ∂ψ(x).
To establish the convergence, one important property regard-

ing the objective function is the strong convexity of in (1) in
terms of w or ρ, namely

f (ρ,w)− f
(
ρ′,w

) ≥ (
ρ − ρ′)T∇ρ f

(
ρ′,w

) + β
∥∥ρ − ρ′∥∥2

f (ρ,w)− f
(
ρ,w′) ≥ (

w − w′)T∇wf
(
ρ,w′) + α

∥∥w − w′∥∥2
.

(8)

Denote by

W :=
{

w ∈ R
M : 0 ≤ wv ≤ 1,

M∑

v=1

wv = 1

}
.

Another useful property is that f is Lipschitz smooth for
bounded (ρ,w), that is, there exists L such that ‖∇2f (ρ,w)‖ ≤
L for any w ∈ W and bounded ρ.
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A. Proof 1) of Theorem 1

By the definition of (2), we have

f (ρ(k),w(k))− f (ρ(k + 1),w(k))

≥ β‖ρ(k)− ρ(k + 1)‖2
2 (9)

where the inequality follows because of strong convexity of
subproblem f (ρ,w(k)) as in (8). Similarly, it follows from the
definition of (3), strong convexity of subproblem f (ρ(k+1),w)
as in (8), and convexity of the set W, that:

f (ρ(k + 1),w(k))− f (ρ(k + 1),w(k + 1))

≥ α‖w(k)− w(k + 1)‖2
2 (10)

which together with (9) gives

f (ρ(k),w(k))− f (ρ(k + 1),w(k + 1))

≥ α‖w(k)− w(k + 1)‖2
2 + β‖ρ(k)− ρ(k + 1)‖2

2. (11)

Due to the fact that f (ρ,w) ≥ 0, the above equation
implies that the sequence {f (ρ(k),w(k))} is decreasing hence
is convergent. Summing (11) for all k from zero to infinty
gives

∞∑

k=0

‖w(k)− w(k + 1)‖2 + ‖ρ(k)− ρ(k + 1)‖2

≤ 1

min{α, β} f (ρ(0),w(0)). (12)

Furthermore, (12) implies that (ρ(k),w(k)) is regular

lim
k→∞

‖w(k)− w(k + 1)‖2 + ‖ρ(k)− ρ(k + 1)‖2 = 0. (13)

B. Proof 2) of Theorem 1

We first show that the sequence {f (ρ(k),w(k))} is bounded.
It is clear that w(k) is always bounded since w(k) ∈ W. Noting
that f (ρ(0),w(0)) ≥ f (ρ(k),w(k)) ≥ β‖ρ(k)‖2

2 we also have
‖ρ(k)‖2

2 ≤ f (ρ(0),w(0))/β.
Since the sequence {f (ρ(k),w(k))} is bounded, by the

Bolzano–Weiestrass theorem, we know this sequence has at
least one convergent subsequence. Let {f (ρ(∗),w(∗))} be the
limit point of any convergent subsequence {f (ρ(kk),w(kk))}.
To show {f (ρ(∗),w(∗))} is a stationary point, we first transfer
the constrained problem in (1) into the following equiva-
lent form without any constraints to simplify the notation of
subdifferential:

g(ρ,w) := f (ρ,w)+ δW(w) (14)

where f is defined in (1) and δW is the indicator function of
the set W, that is, δW(w) = 0 if w ∈ W and δW(w) = ∞ if
w /∈ W.

By the optimality of (2), we have

∇pf (ρ(k + 1),w(k)) = 0 (15)

which together with the Lipschitz continuity of ∇f (ρ,w) (i.e.,
‖∇2f (ρ,w)‖ ≤ L) that

∥∥∇pf (ρ(k + 1),w(k + 1))
∥∥ ≤ L‖w(k)− w(k + 1)‖. (16)

Recalling (13), we further have

lim
k→∞ ∇pf (ρ(k + 1),w(k + 1)) = 0. (17)

Similarly, by the optimality of (3), it always holds that

0 ∈ ∇wg(ρ(k + 1),w(k + 1))

∇wf (ρ(k + 1),w(k + 1))+ ∂δW.

This together with the above equation implies that

0 ∈ ∇ρg(ρ(∗),w(∗))+ ∇wg(ρ(∗),w(∗)). (18)

Thus, (ρ(∗),w(∗)) is a stationary point of g, that is, the
problem in (1). Finally, by noting that g obeys the so-
called Kurdyka–Lojasiewicz (KL) property [58], we obtain
that (ρ(∗),w(∗)) is the only limiting point of the sequence,
that is, (ρ(k),w(k)) itself converges to (ρ(∗),w(∗)). This
completes the proof of Theorem 1.
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