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A B S T R A C T   

Change detection plays a crucial role in observing earth surface transition and has been widely investigated using 
deep learning methods. However, the current deep learning methods for pixel-wise change detection still suffer 
from limited accuracy, mainly due to their insufficient feature extraction and context aggregation. To address 
this limitation, we propose a novel Cross Layer convolutional neural Network (CLNet) in this paper, where the 
UNet structure is used as the backbone and newly designed Cross Layer Blocks (CLBs) are embedded to incor-
porate the multi-scale features and multi-level context information. The designed CLB starts with one input and 
then split into two parallel but asymmetric branches, which are leveraged to extract the multi-scale features by 
using different strides; and the feature maps, which come from the opposite branches but have the same size, are 
concatenated to incorporate multi-level context information. The designed CLBs aggregate the multi-scale fea-
tures and multi-level context information so that the proposed CLNet can reuse extracted feature information and 
capture accurate pixel-wise change in complex scenes. Quantitative and qualitative experiments were conducted 
on a public very-high-resolution satellite image dataset (VHR-Dataset), a newly released building change 
detection dataset (LEVIR-CD Dataset) and an aerial building change detection dataset (WHU Building Dataset). 
The CLNet reached an F1-score of 0.921 and an overall accuracy of 98.1% with the VHR-Dataset, an F1-score of 
0.900 and an overall accuracy of 98.9% with the LEVIR-CD Dataset, and an F1-score of 0.963 and an overall 
accuracy of 99.7% with the WHU Building Dataset. The experimental results with all the selected datasets 
showed that the proposed CLNet outperformed several state-of-the-art (SOTA) methods and achieved competi-
tive accuracy and efficiency trade-offs. The code of CLNet will be released soon at: https://skyearth.org/public 
ation/project/CLNet.   

1. Introduction 

Land cover change detection is a crucial problem in earth observa-
tion, land-use monitoring, urban expansion, resource management, etc. 
(Akcay et al.,2010; P. Zhang et al., 2016; Chen et al.,2013; Hulley 
et al.,2014; Stramondo et al., 2006; Yang et al., 2012; Xian and Homer, 
2010; Liang and Weng, 2010). Change detection via multitemporal 
images has been widely investigated over the past decades. Before the 
recent explosive development of deep learning methods, researchers 
mainly solved the change detection problem by manually designing the 
complicated feature extractors, which required a great deal of expert 
domain knowledge, and the accuracy was hard to be improved. Deep 

learning methods, leveraging stacked neurons for empirical features 
encoding, have greatly decreased the demand of expert domain 
knowledge. Characteristics like deep feature representation and 
nonlinear modeling ability make deep learning methods more suitable 
for complex image understanding and therefore are attracting the 
attention of the remote sensing image change detection community (L. 
Zhang et al., 2016; Zhu et al., 2017). 

Pixel-wise optical remote sensing imagery change detection 
(ORSICD) is one of the most important branches of change detection in 
the remote sensing community. Essentially, pixel-wise ORSICD is to 
predict the pixels into changed/unchanged labels and then obtain the 
binary change maps. Therefore, this task can be regarded as dense pixel 
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classification in the deep learning field, and thus the successful experi-
ence of semantic segmentation can be embraced and transferred to deal 
with the ORSICD (Alcantarilla et al., 2018; Wang et al.,2018; Peng and 
Guan, 2019; R.C. Daudt et al., 2018a, 2018b). In recent years, many 
methods (Alcantarilla et al., 2018; Caye Daudt et al., 2018; R.C. Daudt 
et al., 2018a, 2018b) were proposed based on the fully convolutional 
network (FCN) (Long et al., 2015) and have been proved to be effective 
for ORSICD. 

It should be noted that there is some difference between the funda-
mental problem of bi/multitemporal ORSICD and the single-image 
dense pixel classification (i.e., semantic segmentation). Therefore, 
though the networks that proposed for single-image dense pixel classi-
fication can be transferred or modified to deal with ORSICD, some 
special characteristics should also be taken into consideration. First, the 
concatenated input image/fused features are not internally consistent 
due to the existence of change, that is, the same location of different 
feature channels might represent different semantic content. Second, 
how to define and detect accurate change in complex remote sensing 
scenes is also a crucial problem. Real changes under the negative in-
fluences (i.e., scale/season differences) should be distinguished with the 
determined training labels (i.e., whether regarding the changes of cars’ 
appearance/disappearance as change). These special characteristics 
make the bi/multitemporal change detection much more complicated 
than the single-image dense pixel prediction task and also put forward 
higher requirements of comprehensive feature representation for accu-
rate change detection. 

Currently, acquiring context information and incorporating multi- 
scale features of change areas in bi-/multitemporal images is proved 
to be effective to predict fine changes and improve change detection 
accuracy. Therefore, some works try to explore the combination of FCN 
and the excellent feature extraction blocks proposed for vision tasks for 
high accuracy ORSICD. Lei et al. (2019) proposed to use spatial pyramid 
pooling (SPP) (Lin et al., 2017) for better landslide inventory mapping. 
Zhang et al. (2019) applied atrous spatial pyramid pooling (ASPP) (L.C. 
Chen et al., 2017) for change detection, which combined the advantages 
of dilated convolution (Yu and Koltun, 2015) and feature pyramid 
network (Lin et al., 2017). Chen et al. (2019) proposed a multi-scale 
feature convolution unit and designed two novel deep Siamese con-
volutional networks for unsupervised and supervised multitemporal 
change detection. Most of the strategies used in ORSICD for accuracy 
improvement can be concluded into two categories: one is using 
different-size convolutions (i.e., dilated convolution) or multi-scale 
blocks (i.e., SPP) for receptive field increment; the other is aggre-
gating multi-level context information incorporation, i.e., UNet++

(Zhou et al., 2018). The multi-scale strategy can expand the receptive 
field or information incorporation while it only extracts features at the 
same feature level and neglects the relationships between different 
levels. On the other hand, although UNet++ can achieve multi-level 
context incorporation, the up-sampling operation it used greatly 
increased the memory occupation and thus limits the model’s learning 
ability. Thus, both strategies are still unable to incorporate image in-
formation sufficiently and cannot generate change maps with enough 
accuracy. 

To ease the contradiction between the feature representation re-
quirements and insufficient feature extraction problem in ORSICD, this 
paper designs a novel Cross Layer Block (CLB) for more sufficient feature 
extraction and representation, and proposes a novel network called 
Cross Layer Convolutional Neural Network (CLNet). This approach 
contributes to the remote sensing community in the following three 
major aspects:  

1. A novel Cross Layer Block (CLB) is designed to integrate multi-scale 
features and multi-level semantic context information. The CLB 
starts with the concatenated images/fused feature maps and then 
splits into two parallel but asymmetric branches, and thus achieves 
the comprehensive and sufficient feature representation.  

2. A novel end-to-end Cross Layer convolutional neural Network 
(CLNet) that is modified from UNet (Ronneberger et al., 2015) is 
proposed for accurate pixel-wise ORSICD, which contains two CLBs 
and a dimension compression operation at the encoder part. The 
stacked CLBs gradually aggregate the image information and the 
dimension compression operation eliminate the side influence 
introduced by abundant high-level features. Both of the strategies 
increase the feature representation ability and thus improved the 
accuracy for ORSICD.  

3. According to experimental results on two types of ORSICD tasks (all- 
objects change detection and building change detection), CLNet at-
tains new state-of-the-art (SOTA) accuracy and achieves competitive 
accuracy and efficiency trade-offs compared to several SOTA 
methods, which demonstrated its effectiveness and robustness for 
ORSICD. 

The remainder of this paper is organized as follows. Section 2 is an 
overview of the change detection literature. Section 3 provides details 
about the designed CLB and illustrates the architecture of CLNet. Section 
4 presents our comprehensive investigation of the superiority of CLNet 
along with a comparison of it to several SOTA FCN-based methods. 
Finally, Section 5 concludes our findings and future works. 

2. Related works 

Traditional pixel-wise change detection methods can be categorized 
generally as either pixel-based methods or object-based methods, 
depending on their specific procedures and optimizing targets. The 
pixel-based change detection algorithms (Bruzzone and Prieto, 2000; 
Benedek and Szirányi, 2009; Bovolo and Bruzzone, 2006; Zanetti et al., 
2015; Ghosh et al., 2009) prefer to generate a difference map by 
comparing the corresponding pixels in the given bitemporal images, and 
then the change map is generated by threshold segmentation or other 
decision strategies. The object-based methods (Hussain et al., 2013; 
Desclée et al., 2006; R.C. Daudt et al., 2018a, 2018b; Leichtle et al., 
2017; Yu et al., 2016; Xiao et al.,2017; Peng and Zhang, 2017), on the 
other hand, segment pixels into disjoint homogeneous objects under 
predetermined conditions, and then obtain the change detection results 
according to the segmented objects. Different from the traditional 
methods, the learning-based methods directly predict pixel-level clas-
sification maps as change detection results under an end-to-end frame-
work, which blurs the boundary between the pixel-based approaches 
and the object-based approaches (Zhang et al., 2019). 

In recent years, tremendous efforts have been made to exploit the 
deep learning methods for remote sensing imagery change detection. 
Based on convolutional neural network (CNN), Gong et al. (2015) 
trained a network for synthetic aperture radar (SAR) image, which could 
suppress speckle noise effectively, and generated a difference image 
with good performance. Wang et al. (2018) proposed a general end-to- 
end 2D CNN framework to handle the high dimension problem and 
explore abundant information in hyperspectral images. In their work, 
hybrid unmixing spectral information and abundant information were 
separately extracted and then combined to form mixed-affinity matrices. 
Since the image spectral affinity and the abundance affinity were 
distributed in the top-left and bottom-right corners of the mixed-affinity 
matrices, they utilized two different convolution kernels to explore the 
spectral features and abundant features. At last, fully connected layers 
were employed to fuse the features and predict the change maps. Liu 
et al. (2019) developed two approaches based on FCNs for multi-
temporal change detection. In their methods, the task of change detec-
tion was performed as a post-classification comparison, which allows 
multiple transitions of multitemporal data. Yang et al. (2020) presented 
an asymmetric siamese network to locate and identify semantic changes 
through feature pairs obtained from modules of widely different struc-
tures. Peng et al. (2019) proposed an unsupervised approach for ORSICD 
based on saliency analysis and deep feature representation. Due to the 
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superiority in sequential data processing, recurrent neural network 
(RNN) has been considered for multitemporal change detection tasks. 
For example, Lyu et al. (2016) proposed an end-to-end RNN for multi-
spectral/hyperspectral change detection tasks, where a long short-term 
memory (LSTM)-based RNN was employed. Generative adversarial 
network (GAN) (Goodfellow, 2016) is also applied for change detection, 
for example, Niu et al. (2018) proposed using conditional generative 
adversarial network (cGAN) for change detection between optical and 
SAR images. In addition, the superiority of combining different networks 
has been exploited as well. Wiratama et al. (2018) proposed a dual- 
dense convolutional network (DCN), which jointed two deep convolu-
tion networks and improved the change detection accuracy by opti-
mizing a contrastive loss. Mou et al. (2018) proposed a joint CNN and 
RNN framework (ReCNN) to learn joint spectral-spatial-temporal fea-
tures for multitemporal change detection. Moreover, considering the 
absence of training data, some researchers investigated the problem of 
change detection labels acquisition. Gevaert et al. (2020) combined rule- 
based (expert knowledge) methods to obtain the training label for deep 
learning methods, which avoids the cost of manual labelling and can still 
obtain reasonably accurate results. Gong et al. (2019) proposed a 
generative discriminatory classified network (GDCN) for multispectral 
image change detection, in which the labeled data, unlabeled data, and 
new fake data generated by GAN were all used as training samples. 

Due to the high relevance between pixel-wise change detection and 
dense pixel classification, fully convolutional networks (FCN) (Long 
et al., 2015) based methods have become one of the most developed 
branches of pixel-wise change detection. To deal with pixel-wise change 
detection in street view scenes, a change detection network (CDNet) was 
investigated with stacking contraction and expansion blocks (Alcantar-
illa et al., 2018). R.C. Daudt et al. (2018a, 2018b) proposed three FCN 
networks for change detection in satellite images, namely, fully 
convolutional-early fusion network (FC-EF), fully convolutional 
Siamese-concatenation network (FC-Siam-conc), and fully convolu-
tional Siamese-difference network (FC-Siam-diff). The FC-EF stacked the 
image pairs and then fed the six-channel images into the network, in 
which the joint features were learned. The siamese network took two 
parallel encoding streams with a weight-sharing process for better 
weight reuse, which reduced the number of parameters. Therefore, 
using the Siamese network as a part of the feature extraction, the FC-EF 
was extended to the FC-Siam-conc and the FC-Siam-diff. The difference 
between FC-Siam-conc and FC-Siam-diff is in the network input. FC- 
Siam-conc took the element-add results as the network input while 

FC-Siam-diff took the difference of the image pairs. In addition, Peng 
et al. (2019) employed an effective deep supervision strategy on the 
UNet++ structure (Zhou et al., 2018) for remote sensing change 
detection, which was proven better than the several SOTA FCN-based 
methods by capturing the minimal changes. 

The current methods of ORSICD mainly utilize either the multi-scale 
features or the multi-level context information to improve the change 
detection accuracy. The proposed CLNet aggregates the multi-level 
context information with the multi-scale features through two parallel 
but asymmetric branches. Experimental results demonstrate the effec-
tiveness of CLNet on pixel-wise ORSICD. 

3. Methodology 

This section firstly describes the detailed settings of the designed 
CLB, and its general version that might be modified for other tasks is 
extended. Next, the whole network architecture is illustrated, which is 
modified from the typical UNet backbone, contains two CLBs and a 
dimension compression operation in the encoder part. At last, the loss 
function is introduced. 

3.1. Cross-Layer Block (CLB) 

3.1.1. Motivation and interior structure of CLBs 
In deep works, multi-scale feature representation can enlarge 

receptive fields for better parsing the scenes, while multi-level feature 
representation can aggregate semantic context information and spatial 
details (Zhao et al., 2017). Therefore, it is a natural idea to incorporate 
them for improving the performance of dense pixel prediction tasks. 
From this point, the designed CLB tried to use two parallel but asym-
metric branches to simultaneously extract the multi-scale and multi- 
level features and aggregate them for comprehensive feature 
representation. 

Fig. 1(a) shows the interior structure of the CLBs. Suppose F0 is the 
concatenated images or fused feature maps of a network, then the multi- 
scale feature maps F0

1 and F0
2 are extracted through the opposite 

branches. Both branches of F0 are performed with two conv units 
(equipped with the sequence 3× 3Conv-ReLU-BN) and a max-pooling 
with stride 2. The only difference is the stride of the first conv unit of 
the two branches, of which the stride is 1 for the left-branch and 2 for the 
opposite. After that, F0

1 repeats the operation of F0 to extract higher-level 
multi-scale features F1

2 and F1
3. According to the above operations, the 

Fig. 1. Structure of the Designed CLB.  
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size of F0
1, F0

2, F1
2 and F1

3 are 1/2, 1/4, 1/4 and 1/8 of F0, respectively. F0
2 

and F1
2 are with the same size and thus can be concatenated as F2 conc. F1

2 
obtains higher-level context information while F0

2 maintains larger 
receptive fields by bigger stride, thus F2 conc achieves aggregation of the 
multi-scale features and multi-level context information. Besides, the 
highest-level feature map F1

3 is an optional branch, which indicates that 
it can whether be concatenated with other feature maps or be removed if 
it is unnecessary. Since the concatenation operation is always with 
feature maps from different layers (F0

2 and F1
2in Fig. 1(a)), we named the 

designed block as Cross-Layer Block (CLB). 

3.1.2. General version of CLB 
Except using the CLB described in Fig. 1(a) for ORSICD in this paper, 

we further summarize the general version of CLB which may be helpful 
for other dense pixel prediction tasks. The general version of CLB re-
quires the following constraints to be satisfied: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F1
2 : F0 →Δ F0

1 →Δ F1
2

F0
2 : F0 →∇ F0

2

F2 conc : F1
2 ⊕ F0

2 , if Size
(
F0

2

)
= Size

(
F1

2

)

F1
3 : F0

1 →∇ F1
3 , optional

(1)  

where Δ represents Conv&ScaleOperationsI; ∇ represents 
Conv&ScaleOperationsII; ⊕ represents concatenation. 

In deep networks, the size of the output feature map (denoted as I) 
can be calculated with the size of the input feature map (denoted as i) by: 

I =
⌊

i + 2 × p − k
s

⌋

+ 1 (2)  

where k is the size of the convolution kernel; s is the adopted stride; and 
p is the size of the padding operation. 

According to Eq. (1), F0
2 and F1

2 must have same size to achieve 
feature aggregation. Suppose the size of F0 as I0, the scale factor of Δ and 
∇ as s1and s2, then s1and s2must satisfy the following constraints with 
proper p and k: 
{

s2 = αs1(α > 1); if s1 = 1
s2 = s1

2; if s1 > 1 (3) 

Therefore, the outputs of CLB meet either of the following situations 
and thus, F0

2and F1
2 can be concatenated as F2 conc:  

(1) When s1 > 1, the size of F0
1, F0

2, F1
2 and F1

3 are 1
s1

I0, 1
s2
1
I0, 1

s2
1
I0 and 1

s3
1
I0, 

respectively.  
(2) When s1 = 1, the size of F0

1, F0
2, F1

2 and F1
3 are 1

αI0, 1
α2 , 1

α2 and 1
α3, 

respectively. 

Notice that other convolution units and pooling operations, such as 
ResNet Block (He et al., 2016) and average pooing can also be imple-
mented in CLB, but in our experiments we observe no significant accu-
racy improvement for ORSICD. 

3.1.3. Learning ability of CLB 
Overall, the designed CLB has following abilities:  

i) The two asymmetric branches of F0 enable multi-scale feature 
extraction, as well as the two asymmetric branches of F0

1. The 
feature mapsF1

2 and F0
2 enable higher-level and lower-level 

context information representation, respectively.  
ii) The concatenation operation of F0

2 and F1
2 further aggregates 

multi-level context information, which enables comprehensive 
feature representation. Moreover, the optional branch F1

3 pro-
vides potential possibility of multi-level feature aggregation.  

iii) The designed CLB directly concatenates the extracted feature 
maps that come from different branches but have the same size, 
which is different from most multi-scale blocks which up-sample 
features for aggregation. This operation concatenates feature 
maps at a smaller size and reduces the memory occupation. 

By combining these learning abilities, the designed CLB can leverage 
both multi-scale features and multi-level context information. Experi-
ments in Ablation Studies demonstrated that such architecture can 
exploit more image information and boost the accuracy of ORSICD. 

3.2. Cross-Layer network (CLNet) architecture 

The CLNet is proposed under the structure of UNet (Ronneberger 
et al.,2015), which contains two CLBs and a dimension compression 
operation in the encoder part. Fig. 2 displays the specific architecture of 
CLNet. 

3.2.1. Encoder part 
Stack of CLBs: As indicated in R.C. Daudt et al. (2018a, 2018b) and 

Fig. 2. Architecture overview of the proposed CLNet. (The detailed model parameters are provided in Appendix A.)  
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Peng et al. (2019), the input image pairs are concatenated to a six- 
channel image as network input. Then a CLB with branch F1

3 (named 
CLB1 in Fig. 2) is implemented to extract multi-scale features and 
incorporate multi-level context information. In CLB1, L2l and L2r are 
concatenated to L2cat, which aggregates image features for the first time. 
With feature maps L2cat as input, a CLB without branch F1

3 (named CLB2 
in Fig. 2) is performed to further exploit image information, where the 
feature maps L4l and L4r are concatenated as L4cat to aggregate image 
features for the second time. In addition, the feature maps L3l and L3r 
that namely extracted by CLB1 and CLB2 are also concatenated. These 
operations achieve comprehensive information aggregation at different 
feature stages, which greatly increases the feature representation ability 
of CLNet and is demonstrated to be effective for ORSICD by the 
experiments. 

Due to the GPU memory limitation, the training samples were usu-
ally cropped to small-size patches (i.e., 256 × 256 pixels). With using 
two CLBs described as Section 3.1.1, the deepest layers of CLNet already 
down-sample the feature maps’ size to 1/16 of the input patches. In 
order to avoid excessive information loss, no extra operations are 
implemented to extract deeper features and thus, the branch F1

3 of CLB2 
is removed. As a substitution, L4l2 is added to the end of the encoder 
part. 

Dimension compression: The network is performed with 24 chan-
nels to extract the preliminary features and the channels of higher-level 
feature maps are set as twice of the feature maps where they come from. 
As a result, the channels of L1l, L2r, L2l and L3l are 24, 24, 48 and 48. 
The channels of L2cat are 72. The channels of L3r,L4l and L4r are 144, 
288 and 144. The channels of L3cat and L4cat are 192 and 432. To 
enhance the representation ability, a convolution unit with kernel size 1 
is added to the end of the encoder to compress L4cat to 144 channels, 
which can ease the side influence of abundant information introduced 
by overmuch high-level features. 

3.2.2. Decoder part 
The decoder part is similar to other UNet-based networks, which 

leverages conv-transpose operations (equipped with the sequence 3×

3Deconv-ReLU-BN) to generate 2 × up-sampled feature maps. After 
that, the feature maps of the encoder and decoder parts at the same layer 
are concatenated by skip connections. Finally, a classifier, consisting of a 
3 × 3 convolution and a sigmoid function, is used to generate the final 
change map. 

3.3. Loss function 

Binary cross-entropy loss is widely used in the binary classification 
tasks. As the pixel-wise change detection is treated as a binary classifi-
cation task in this paper, we selected weighted binary cross-entropy loss 
as a part of our loss function, which is as follows: 

Ebce =
1
N
×

[

α
∑

yn=1

yn × log(pn) + (1 − α)
∑

yn=0

(1 − yn) × log(1 − pn)

]

(4)  

where N is the number of pixels in an image patch; α is used to balance 
the changed and unchanged areas in the given dataset; yn is the state of 
the n-th pixel with yn=1 representing the changed and yn=0 representing 
the unchanged.pn is the possibility of change. 

Meanwhile, the severe proportion imbalance of the changed/un-
changed area in the remote sensing images need to be addressed. 
Therefore, the dice coefficient loss Edc is selected as the other part of the 
final loss to eliminate the negative effect of the data imbalance to some 
extent and to improve the classification performance. The dice coeffi-
cient loss is defined as: 

Edc = 1 −
2YŶ

Y + Ŷ
(5)  

where Y is the ground-truth change map and Ŷ indicates the predicted 
change map. 

The overall loss function is the combination of Ebce and Edc: 

E = Ebce + λEdc (6)  

where λ is used to balance Ebce and Edc. 

4. Experiments 

This section presents the comprehensive experiments on three public 
datasets to evaluate CLNet’s performance of dealing with two types 
pixel-wise ORSICD tasks. Experiments on a public VHR remote sensing 
dataset (named VHR dataset (Lebedev et al., 2018)) was conducted to 
observe its performance on all-objects change detection. Experiments on 
LEVIR-CD dataset (Chen and Shi, 2020) and WHU Building dataset (Ji 
et al., 2019) were conducted to observe its performance of detecting 
small-and-dense building change and large-and-sparse building change, 
respectively. As a result, all experiments demonstrate the superior ac-
curacy performance and competitive efficiency of the proposed CLNet, 
as well as the robustness. 

4.1. Data description, implementation details, comparison methods and 
evaluation indicators 

4.1.1. Data description 
The VHR dataset collected eleven VHR remote sensing image pairs 

from Google Earth, which contains the all-object change in each image 
pairs. The seasonal radiometric differences and varied resolutions make 
the VHR dataset a challenging dataset for all-object change detection. In 
this dataset, the objects change caused by seasonal radiometric differ-
ences was not considered as change (e.g., trees in different seasons), 
while the appearance/disappearance of cars was regarded as change. 

Both the LEVIR-CD dataset and the WHU Building dataset are served 
for building change detection, where the former focuses on small-and- 
dense building change while the latter focuses on large-and-sparse 
building change. The LEVIR-CD dataset contains 637 image pairs with 
0.5 m resolution whose acquisition dates varied from 2002 to 2018. 
These images were collected from Google Earth in Austin, Lakeway, Bee 
Cave, and other cities of Texas, US. The WHU Building dataset covers an 
area reconstructed after a 6.3-magnitude earthquake. The collected 
image pairs were taken in 2012 and 2016 and whose resolution is 1.6 m. 
In this dataset, the appearance/disappearance of cars is neglected. 
Detailed data description and some data samples can be found in Ap-
pendix B. 

4.1.2. Implementation details 
The network was implemented using Keras with Tensorflow as the 

backend. The network parameters were initialized with the initializer 
proposed in He et al. (2016). Adam (β1 = 0.9, β2 = 0.999) was selected 
as the optimizer, and sigmoid was used as the activation function of the 
last fully connected layer for binary classification. In all experiments, α 
in the weighted binary cross-entropy loss function (Ebce) was set as 0.5 by 
default; and λ in the overall loss function (E) was set as 0.5. Notice that 
other values can also be used for α and λ, but we observe no significant 
improvement with different settings in our experiments. The end-to-end 
training was implemented under Ubuntu16.04 on a workstation with 
two Inter Xeon(R) E5-2620 v4 cores at 2.10 GHz and 32 GB RAM 
memory and a single NVIDIA Titan X (Pascal) GPU with 12 GB GPU 
memory. 

4.1.3. Comparison methods 
Several SOTA FCN-based methods were selected for comparison, 

including UNet (Ronneberger et al.,2015), DeepLabv3 (Liang-Chieh 
Chen et al., 2017), CDNet (Alcantarilla et al.,2018), FC-EF (R.C. Daudt 
et al., 2018a, 2018b), FC-Siam-conc (R.C. Daudt et al., 2018a, 2018b), 
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FC-Siam-diff (R.C. Daudt et al., 2018a, 2018b), FCN-PP (Lei et al.,2019), 
UNet (Ronneberger et al.,2015) + ASPP (L.C. Chen et al., 2017), and 
Peng et al.(2019). Among these methods, UNet and DeepLabv3 are 
typical semantic segmentation network, and CDNet is a typical and basic 
FCN-based network. FC-EF, FC-Siam-conc and FC-Siam-diff are FCN- 
based Siamese networks with different network input. FCN-PP and 
UNet + ASPP utilize spatial pyramid pooling for multi-level feature 
extraction. The method of Peng et al. can be regarded as a kind of multi- 
scale and multi-level method, where the UNet++ network incorporates 
the multi-level context information and the multiple side out fused deep 
supervision (MSOF) (Xie and Tu, 2015) strategy aggregates the multi- 
scale outputs. 

For fairy comparison, all the methods were reproduced in the same 
experiment environment and were trained from the scratch. The 

hyperparameters of the selected methods were strictly followed the 
descriptions in their original literature, except the setting of the batch 
size. The batch size of the compared methods was also set to 20 if there 
was enough GPU memory. Otherwise, it was set as large as possible 
under the GPU memory limitation. 

4.1.4. Evaluation indicators 
In order to evaluate the performance of CLNet, four indicators were 

selected for accuracy evaluation (namely, overall accuracy, precision, 
recall, and F1 score). The range of all four indicators is [0, 1], where 
higher values represent better model performance. 

4.2. All-objects change detection 

Experiments were conducted on the VHR dataset to evaluate CLNet’s 
performance for all-objects change detection. In the experiments, the 
model was trained from the scratch for 15 epochs with an initial learning 
rate of 0.0001, and the batch size was set as 20. After 10 epochs, the 
learning rate was decreased by 10%. 

Data augmentation was applied to the raw VHR dataset to avoid the 
potential overfitting problem caused by the lack of data. Specifically, the 
raw training and validation samples were augmented by shifting, 
scaling, and rotating with an angle of 90◦, 180◦, or 270◦, and flipping 
horizontally or vertically. Thus, we had seven times the number of raw 
samples in the augmented VHR dataset. (The experiments conducted on 
the raw VHR Dataset are displayed in Appendix C. Even though CLNet 
outperformed the compared methods, its detection accuracy still lied at 
a low level.). 

4.2.1. Quantitative evaluation 
Table 1 lists the change detection results for the augmented VHR 

dataset with the augmented VHR dataset, CLNet outperformed all the 

Fig. 3. Visual Comparison of generated change maps of small objects.  

Table 1 
The quantitative comparison on the augmented VHR dataset. (The best per-
formance is emphasized in bold.)  

Methods Precision 
(%) 

Recall 
(%) 

F1 
Score 

OA 
(%) 

UNet (Ronneberger et al., 2015) 84.6 70.0 0.765 94.7 
DeepLabv3 (Liang-Chieh Chen 

et al., 2017) 
86.7 76.0 0.810 95.6 

CDNet (Alcantarilla et al., 2018) 87.4 73.3 0.792 95.4 
FC-EF (R.C. Daudt et al., 2018a, 

2018b) 
79.3 62.1 0.697 93.3 

FC-Siam-conc (R.C. Daudt et al., 
2018a, 2018b) 

89.2 87.3 0.882 97.1 

FC-Siam-diff (R.C. Daudt et al., 
2018a, 2018b) 

89.3 84.8 0.870 96.9 

FCN-PP (Lei et al., 2019) 87.9 69.2 0.775 95.0 
UNet + ASPP 86.9 80.3 0.833 96.0 
Peng et al. (Peng et al., 2019) 87.6 85.9 0.868 96.7 
CLNet 94.7 89.7 0.921 98.1  
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Fig. 5. Visual Comparison of generated change maps of large objects.  

Fig.4. Visual Comparison of generated change maps of a thin road.  
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compared methods on all the indicators. CLNet increased the accuracy of 
the F1 Score by 0.039 and the OA by 1%, in comparison with FC-Siam- 
conc; by 0.051 of the F1 Score and 1.2% of the OA in comparison with 
FC-Siam-diff; and even more compared to the other methods. The above 
quantitative results demonstrated the superior performance of the pro-
posed CLNet for all-objects change detection. 

4.2.2. Qualitative evaluation 
The obtained change maps of the four typical scenes (the changes of 

small objects, thin objects, large objects, and complex scenes) were 
selected to qualitatively evaluate the performance of CLNet and are 
displayed from Figs. 3–6. 

Fig. 3 shows the change detection results of small objects and a thin 
closed wall. The proposed CLNet and Peng et al. (2019) detected almost 
all the small object change (see the red box in each change map), while 
the others missed some of them. In addition, the change maps obtained 
by CLNet and Peng et al. (2019) in the orange boxes are almost identical 
to the ground truth change map. 

Fig. 4 shows the change detection results of thin roads. The proposed 
CLNet detected almost all the detailed changes in the red box, and the 
change map it generated was the most similar to the ground truth, 
except for the small piece of false alarms in the orange box. All the other 
methods obtained poor change detection results for thin roads. 

Fig. 5 shows the change detection results of large objects (e.g., 
buildings). The proposed CLNet and Peng et al. (2019) obtained better 
change maps compared to those obtained by the other methods. CLNet 
reserved a sharper boundary and did not produce an inexplicable hole 
inside the changed area (compared to the others as shown in the red 
boxes in Fig. 5). In addition, CLNet effectively distinguished the un-
changed area between the changed areas (see the orange boxes in 
Fig. 5). 

Fig. 6 shows the change maps of a complex scene, where the 

proposed CLNet once again exhibited the optimal visual performance, 
especially in the red and orange boxes. 

Figs. 3–6 verified the robustness of the proposed CLNet as well. The 
seasonal radiometric differences, all-objects change and different reso-
lutions make VHR dataset a complex dataset. Even so, the proposed 
CLNet performed well and always generated better change maps 
compared to the other methods. However, none of the other methods 
obtained good performance in all the selected situations. For example, 
Peng et al. (2019) did not detect the complete and consistent roads in the 
thin-road scene (see Fig. 4(i)). 

4.3. Building change detection 

To evaluate the performance of CLNet on building change detection, 
experiments were conducted on LEVIR-CD dataset and WHU Building 
dataset. The former dataset was to verify the performance of detecting 
small-and-dense building change, and the latter one aimed at detecting 
large-and-sparse building change. Sections 4.3.1 and 4.3.2 displayed 
part of experimental results on the two datasets and illustrated the 
performance of CLNet. (More experimental results were displayed in 
Appendix D.) 

4.3.1. Experiments on LEVIR-CD dataset 
On this dataset, the model was trained from the scratch for 20 epochs 

with an initial learning rate of 0.001, and the batch size was set as 12. 
After 10 epochs, the learning rate was decreased by 10% each 5 epochs. 
It needs to be mentioned that we implemented all the compared 
methods with settings described in their original literatures, while the 
accuracy performance was always in a relatively low level (see Appendix 
D). For a fair comparison, the loss functions of all the compared methods 
were modified to the one used in CLNet to eliminate the performance 
difference caused by the loss function. The quantitative assessment of 

Fig. 6. Visual Comparison of generated change maps of complex scenes.  
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the modified methods is listed in Table 2 and several selected samples 
for qualitative comparison are displayed in Figs. 7 and 8. 

Quantitative evaluation: Compared to the results of the modified 
methods, the proposed CLNet still achieved the best performance with 
the highest precision (89.8%), recall (90.3%), F1 Score (0.900) and OA 
(98.9%) on the LEVIR-CD dataset, which verified its superior ability of 
detecting small change and further reflected its robustness. 

Qualitative evaluation: Two groups of change maps were selected 
from the test set of the LEVIR-CD dataset for qualitatively evaluating the 
performance of CLNet. As shown from Figs. 7 and 8, CLNet achieves 
better visual results compared to the other methods with less false 
detection and less misdetection (see the orange boxes). In addition, the 
changed areas detected by CLNet are with sharp boundaries, while the 
other methods (i.e., FC-Siam-conc, FC-Siam-diff, Peng et al.) tend to 
misclassify more unchanged pixels as changed pixels and thus obtained 
inaccurate building boundaries (see the red boxes). 

4.3.2. Experiments on WHU building dataset 
As for the WHU Building dataset, the buildings in this dataset are 

much larger than the ones in LEVIR-CD dataset and the specific structure 
of each changed building is also enlarged because of the higher image 
resolution. On this dataset, the model was trained from the scratch for 
40 epochs with an initial learning rate of 0.0001 and the batch size was 
set as 20. The learning rate was decreased by 10% each 5 epochs. The 
quantitative assessment on this dataset is listed in Table 3 and several 
selected samples for qualitative comparison are displayed in Figs. 9 and 
10. 

Quantitative evaluation: Table 3 lists the change detection results 
for the WHU Building dataset. It can be seen that the proposed CLNet 
still achieved the best performance with the highest precision (96.9%), 
recall (95.7%), F1 Score (0.963) and OA (99.7%). It needs to be noted 
that the recall of CLNet is much higher than the compared methods 
(1.6% compared to the result of Peng et al. (2019), which is the second- 
best result), which indicated that CLNet detected more changed areas 
when little change occurred. 

Qualitative evaluation: Two groups of the obtained change maps 
were selected from the test set of the WHU Building dataset to qualita-
tively evaluate the performance of CLNet. As shown from Figs. 9 and 10, 
CLNet achieves better change detection results compared to the other 
methods by generating the most similar change maps to the ground 
truth. Fig. 9 showed the CLNet’s ability of obtaining sharper building 
boundaries (Fig. 9) and finding real change (i.e., neglecting the uncon-
cerned cars’ appearance/ disappearance in the scene). Fig. 10 showed 
that CLNet could greatly preserve the actual shape of changed objects 
and generated more accurate change maps. 

4.4. Accuracy/efficiency trade-offs 

We first evaluated the model efficiency on the VHR dataset according 

Fig. 7. Visual Comparison of generated change maps in the LEVIR-CD dataset (image index: test_19).  

Table 2 
Quantitative performance comparison on the LEVIR-CD dataset. (The best per-
formance is emphasized in bold.)  

Methods Precision (%) Recall (%) F1 Score OA (%) 

modified_UNet 84.6 85.2 0.849 98.4 
modified_DeepLabv3 84.4 86.0 0.851 98.5 
modified_CDNet 82.9 88.9 0.858 98.3 
modified_FC-EF 81.0 88.4 0.845 98.2 
modified_FC-Siam-conc 89.1 84.4 0.867 98.5 
modified_FC-Siam-diff 84.7 89.7 0.871 98.5 
modified_FCN-PP 89.1 84.0 0.866 98.4 
modified_UNet + ASPP 85.3 85.4 0.853 98.5 
modified_Peng et al. 86.7 86.9 0.868 98.5 
CLNet 89.8 90.3 0.900 98.9  
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to the time complexity and space complexity. In this paper, time 
complexity was represented by the average time cost for each epoch of 
the training procedure as well as the entire prediction time cost; and the 
space complexity was represented by the number of parameters. Table 4 
lists the time consumption and model parameters for all methods. 
Table 4 lists the time consumption and model parameters for all 
methods. According to the model parameters, the compared methods 
were divided into two groups: 1) lightweight models (UNet, DeepLabv3, 
CDNet, FC-EF, FC-Siam-conc,FC-Siam-diff and UNet + ASPP) and 2) 
heavyweight models (FCN-PP, Peng et al. (2019) and the proposed 
CLNet). 

For ease of illustration, the indicator ’time/parameters’ was calcu-
lated in Table 4 to represent the model efficiency, where lower values 
represent better trade-offs between time complexity and space 
complexity. In addition, F1 Score and OA were selected to reflect the 
model accuracy, since they have a higher tolerance to data imbalance 
and can better illustrate the comprehensive performance of a model. As 
shown in Table 4, the lightweight models had lower time complexity, 

but they barely achieved enough detection accuracy, which indicated 
that their feature representation abilities were insufficient in complex 
remote sensing scenes. Among the lightweight models, FC-Siam-conc 
achieved the optimal accuracy. Compared with FC-Siam-conc, Peng 
et al. (2019) achieved similar accuracy but had a high memory cost (5.5 
× ) and time cost (4.2 × ). FCN-PP reached the optimal trade-offs, but its 
performance was not as good as FC-Siam-conc. The proposed CLNet 
reached an acceptable trade-offs, in that the number of parameters was 
4.9 × of FC-Siam-conc while its time consumption was only 1.2 × of FC- 
Siam-conc. In addition, the proposed CLNet only cost about 450 s to 
generate the change maps for the entire test set (about 0.15 s on average 
for each 256 × 256 change map), which was acceptable for most change 
detection tasks. In conclusion, CLNet’s efficiency was competitive 
compared with the several SOTA methods. 

Fig. 11 displays the trade-offs between accuracy and efficiency 
intuitively. The indicator ’time/parameters’ in Table 4 was selected as 
the x-axis, and the F1 Score and OA were selected as the y-axis (see 
Fig. 11(a) and (b)). A lower time/parameters ratio and a higher accuracy 

Fig. 8. Visual Comparison of generated change maps in the LEVIR-CD dataset (image index: test_45).  

Table 3 
Quantitative performance comparison on the WHU building dataset. (The best performance is emphasized in bold.)  

Methods Precision (%) Recal l(%) F1 Score OA (%) 

modified_UNet 84.1 84.4 0.842 98.9 
modified_DeepLabv3 85.1 85.7 0.854 99.0 
CDNet (Alcantarilla et al., 2018) 82.8 85.8 0.843 98.9 
FC-EF (R.C. Daudt et al., 2018a, 2018b) 77.6 88.3 0.826 98.7 
FC-Siam-conc (R.C. Daudt et al., 2018a, 2018b) 79.0 90.9 0.845 98.9 
FC-Siam-diff (R.C. Daudt et al., 2018a, 2018b) 78.2 87.6 0.826 98.9 
FCN-PP (T. Lei et al.,2019) 93.9 88.6 0.909 99.4 
UNet + ASPP 94.3 84.0 0.889 99.3 
Peng et al. (2019) 96.0 94.1 0.951 99.6 
CLNet 96.9 95.7 0.963 99.7  
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Fig. 9. Visual Comparison of generated change maps in the WHU Building dataset.  

Fig. 10. Visual Comparison of generated change maps in the WHU Building dataset.  
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in Fig. 11 indicate better accuracy/efficiency trade-offs. Therefore, the 
lowest time/parameters ratio and the highest accuracy (the left-top 
corner in Fig. 11(a) and (b)) represent the optimal accuracy/ effi-
ciency trade-offs while the highest time/parameters ratio and lowest 
accuracy (the right-bottom corner in Fig. 11(a) and (b)) represent the 
worst accuracy/efficiency trade-offs, respectively. As shown in Fig. 11, 
the proposed CLNet was the closest one to the left-top corner both in 
Fig. 11(a) and (b), while FCN-PP was the closest one to the left-bottom 
corner; the CDNet was the closest one to the right-bottom corner, and 
the other methods were near the central axis. Fig. 11 shows that the 
proposed CLNet had competitive accuracy/efficiency trade-offs 
compared to the SOTA methods. 

4.5. Ablation study on VHR dataset 

To verify the effectiveness of the proposed CLNet, we conducted 
experiments on VHR dataset with several settings including the usage of 
CLB1, CLB2 and dimension compression operation (DC). Since the 
CLNet is derived from the UNet (Ronneberger et al., 2015), we selected 
UNet as the baseline method. Different network settings were added to 
the UNet to obtain the model variants, and the quantitative results were 
listed in Table 5. As shown in Table 5, the proposed CLB module shows a 
significant performance improvement for the change detection accu-
racy, especially on the indicator recall (i.e., see the comparison between 
UNet and UNet + CLB1). The results demonstrated that the designed CLB 
enhanced the scene understanding ability and could capture more 
change information in the scene. After combining the CLB1 and the 
CLB2, the precision improved a little (i.e., 1.5% to UNet + CLB2), while 
the recall dropped (i.e., 2.1% to UNet + CLB2). This might be caused by 
too much high-level features, as CLB module introduced more high-level 
features compared to the single branch network. The proposed CLNet 
demonstrated the assumption. After the dimension compression opera-
tion was added to the UNet + CLB1 + CLB2, which reduced the channels 
of high-level features, the model’s accuracy improved a lot and the best 
performance compared to the other settings were achieved. 

4.6. Discussion 

4.6.1. Difference between CLB and several multi-scale blocks 
As shown in Fig. 12, Inception Block (Szegedy et al., 2015) enables 

multi-scale feature extraction with different-size convolution kernels. 
ASPP (L.C. Chen et al., 2017) consists of parallel dilated convolutions 
with different rates to obtain multi-scale features. Different from 
Inception Block and ASPP, PPM (Zhao et al., 2017) implements pyramid 
pooling to replace convolutions for multi-scale feature extractions. All 
these blocks enlarge the receptive fields with different strategies and 
then concatenate the feature maps at the size of input feature maps. 

The proposed CLB simplifies the multi-scale feature extraction by 

using parallel branches with different strides, and it further incorporates 
multi-level context information with the two asymmetric branches. 
Moreover, CLB allows feature concatenation at a smaller size rather than 
up-samples features for concatenation, which naturally reduces memory 
consumption and improves efficiency. As a result, more image infor-
mation is exploited and thus the ability of comprehensive feature rep-
resentation is boosted. By stacking CLBs in networks, features extracted 
from different-scale and different-level can be gradually aggregated. 

Experiments demonstrated the effectiveness of our work. Among the 
compared methods, UNet + ASPP is an implementation to test the 
performance of ASPP, and FCN-PP is performed with FCN and PPM. The 
experimental results show that the proposed CLNet always achieves 
higher accuracy and is more robust when it comes to deal with different 
change detection tasks. 

4.6.2. Performance discussion 
The ablation studies demonstrated that the designed CLBs are 

effective for ORSICD and can improve the detection accuracy. The 
quantitative results show that the proposed CLNet obtained higher ac-
curacy compared to the several SOTA FCN-based methods, which 
demonstrated that the strategy of aggregating the multi-scale features 
and multi-level context information could exploit more image infor-
mation and boost feature representation ability. 

According to the qualitative experiments, the change maps of UNet 
and DeepLabv3 were not as good as other methods’ in most selected 
scenes, which indicated that just transferring semantic segmentation 
networks into the change detection field might unable to achieve ex-
pected results. Peng et al. (2019) obtained the second most satisfactory 
results in most situations on the VHR dataset (see Fig. 4(i) and Fig. 5(i)) 
and all the situation on the WHU Building dataset, which indicated that 
the (MSOF) (Xie and Tu, 2015) strategy was also useful for accuracy 
improvement, while its performance was not as good as the other 
methods on the LEVIR-CD dataset. As for the proposed CLNet, all three 
datasets showed its ability of capturing accurate change. More precisely, 
experiments on the VHR dataset and LEVIR-CD dataset demonstrate that 
the proposed CLNet is sensitive to the change of small targets and can 
detect fine change, i.e., small and thin targets. Experiments on VHR 
dataset and WHU Building dataset indicate that it can also find the real 
changes under negative influences, such as the scale and season varying 
in VHR dataset and the appearance/disappearance of cars in WHU 
Building dataset. 

The calculated indicator ‘time/parameters’ on the VHR dataset of the 
proposed CLNet was 1.94, which was very close to the indicator of FCN- 
PP (1.46) and much smaller than the other compared methods (8.57, 
6.14, 18.06, 7.64, 8.1, 8.47, 3.74 and 6.19 for UNet, DeepLabv3, CDNet, 
FC-EF, FC-Siam-conc, FC-Siam-diff, UNet + ASPP and Peng et al. (2019), 
respectively). These results indicate that the proposed cross-layer 
strategy of aggregating multi-scale features and multi-level context 

Table 4 
Performance and speed trade-offs. (The best performance is emphasized in bold.)   

Train Test 

Methods F1 Score OA (%) T/E Para. T/P (×102 s/M) Test time (3000 images) 

UNet (Ronneberger et al.,2015) 0.765 94.7 ~540 s ~0.63 M 8.57 ~190 s 
DeepLabv3 (Liang-Chieh Chen et al., 2017) 0.810 95.6 ~1315 s ~2.14 M 6.14 ~300 s 
CDNet (Alcantarilla et al.,2018) 0.792 95.4 ~2250 s ~1.24 M 18.06 ~1040 s 
FC-EF (R.C. Daudt et al., 2018a, 2018b) 0.697 93.3 ~1100 s ~1.44 M 7.64 ~250 s 
FC-Siam-conc (R.C. Daudt et al., 2018a, 2018b) 0.882 97.1 ~1320 s ~1.63 M 8.10 ~290 s 
FC-Siam-diff (R.C. Daudt et al., 2018a, 2018b) 0.870 96.9 ~1270 s ~1.50 M 8.47 ~290 s 
FCN-PP (Lei et al.,2019) 0.775 95.0 ~1450 s ~9.95 M 1.46 ~150 s 
UNet + ASPP 0.833 96.0 ~650 s ~1.74 M 3.74 ~210 s 
Peng et al. (2019) 0.868 96.7 ~5570 s ~9.00 M 6.19 ~1530 s 
CLNet 0.921 98.1 ~1550 s ~8.00 M 1.94 ~450 s 

*T/E represents time/epoch; Para. represents parameter of models; T/E represents time/parameters. 
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information could greatly reuse the extracted feature information and 
reduce the time cost. 

In all the selected scenes on the three datasets, the proposed CLNet 
achieved better accuracy and visualization performance than the 
compared FCN-based methods, demonstrating that the proposed CLNet 
is a better choice since it could obtain better change detection results 

more efficiently. 
Although good performance was achieved on the experimental 

dataset, the proposed CLNet was also found to have some limitations. 
The concatenation operations at each layer resulted in rapid increases in 
the feature channels and a large number of model parameters, which 
increased the GPU memory cost and hindered the model’s efficiency. 

Fig. 11. Trade-offs between Accuracy and Efficiency (the left-top corner indicates the best trade-offs).  

Table 5 
Evaluation of CLNet with different settings. We computed the quantitative accuracy of the model variants on the VHR dataset.   

Network Setting Experimental Results on VHR Dataset  

CLB1 CLB2 DC Precision (%) Recall (%) F1-Score OA (%) 

UNet £ £ £ 84.6 70.0 0.765 94.7 
UNet + CLB1 √ £ £ 88.5 86.4 0.875 96.9 
UNet + CLB2 £ √ £ 89.8 87.0 0.884 97.2 
UNet + CLB1 + CLB2 √ √ £ 91.3 84.9 0.880 97.1 
Proposed CLNet √ √ √ 94.7 89.7 0.921 98.1 

(DC indicates dimension compression). 
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5. Conclusion 

In this paper, a new end-to-end convolution neural network called 
CLNet was proposed for bitemporal ORSICD, in which two novel CLBs 
were embedded. The designed CLB can effectively aggregate the multi- 
scale features and multi-level context information and is capable of 
reusing information with minimal extra memory requirements. 

The experiments on a public VHR dataset and two building change 
detection datasets show that the proposed CLNet obtained higher ac-
curacy, generated better change maps, and achieved competitive accu-
racy/efficiency trade-offs compared to several SOTA methods, which 
demonstrated the prominent performance and robustness of the pro-
posed CLNet. Moreover, since the input image pairs are integrated 
together as the network input, it holds great natural potential for 
extension to the change detection tasks of multitemporal image 
sequences. 

The designed CLB is a general module and thus can be extended with 
some basic/advanced blocks. Besides, the proposed CLNet in this paper 
still have some limitations (i.e., its large number of parameters, which 
increases the GPU memory requirements). Future works will focus on 

transferring the designed CLB into other remote sensing tasks and 
designing new lightweight ORSICD architectures. 
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Appendix A. The detailed network architecture 

See Table 6. 

Fig. 12. A comparison about Inception Block, PPM, ASPP and our CLB.  
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Appendix B. Description of datasets 

All-Object Change Detection: The VHR-Dataset is a real VHR remote sensing image change detection dataset from Lebedev et al. (2018), which 
contains all-objects change. The dataset contained 11 images pairs collected from Google Earth. The dataset publisher used seven images (4725 × 2700 
pixels) to create manual ground truth and the other four images (1900 × 1000 pixels) to add additional objects manually. The dataset was randomly 
cropped to 16,000 256 × 256 patches by Lebedev et al. (2018), and each patch had at least one changed object to meet the input requirements of the deep 
learning methods. Among the patches, 10,000 were used as the training set, 3000 were used as thevalidation set and the other 3000 were used as the test 
set. The spatial resolutions of the dataset varied from 3 cm to 100 cm. In this dataset, the seasonal radiometric differences of the same objects (like trees or 
bare land) were not considered as change, while the appearance/disappearance of cars was regarded as change. Fig. 13illustrates several of the change- 
types of the VHR dataset, including the changes of small objects, thin objects, large objects, and complex scenes. 

Building Change Detection: The LEVIR-CD dataset, which focuses on the small-and-dense buildings change, is a large and challenging building change 
detection dataset that contains 637 pairs of very-high-resolution (0.5 m/pixel) image patch with a size of 1024 × 1024 pixels (Chen and Shi, 2020). These 
bitemporal images were collected from Google Earth in Austin, Lakeway, Bee Cave, and other cities of Texas, US. The acquisition dates vary from 2002 to 
2018. In this dataset, there are extra spectral differences caused by seasonal changes and illumination changes, which made it more challenging to 
distinguish real changes. The dataset was randomly split into three parts, where 70% samples for training (445 image pairs), 10% for validation (64 image 
pairs), and 20% for testing (128 image pairs) by Chen and Shi (2020). In addition, each sample in both the training and validation parts was split into 16 

Table 6 
Parameters of the Proposed CLNet Architecture. Construction of basic blocks in Fig. 2 are designated in brackets. The usage of ReLU and batch normalization follows 
Peng et al. (2019). The layer names correspond to the description in Fig. 2 in main manuscript. H and W denote the height and width of the input image.  

Blocks Input Layer Settings Output Dimension 

/ Input images Concat H× W× 6  
L1l  input 

⎡

⎣
3 × 3, 24, s = 1
3 × 3, 24, s = 1
Maxpool,2 × 2

⎤

⎦
1
2

H×
1
2

W× 24        

L2l  L1l  
⎡

⎣
3 × 3, 48, s = 1
3 × 3, 48, s = 1
Maxpool,2 × 2

⎤

⎦
1
4

H×
1
4

W× 48       

L2r  input 
⎡

⎣
3 × 3, 24, s = 2
3 × 3, 24, s = 1
Maxpool,2 × 2

⎤

⎦
1
4

H×
1
4

W× 24       

L2cat  L2l ,L2r  concat 1
4

H×
1
4

W× 72  
L3l  L1l  

⎡

⎣
3 × 3, 48, s = 2
3 × 3, 48, s = 1
Maxpool,2 × 2

⎤

⎦
1
8

H×
1
8

W× 48       

L3r  L2cat  
⎡

⎣
3 × 3, 144, s = 1
3 × 3, 144, s = 1
Maxpool,2 × 2

⎤

⎦
1
8

H×
1
8

W× 144       

L3cat  L3l ,L3r  concat 1
8

H×
1
8

W× 192  
L4l  L3r  

⎡

⎣
3 × 3, 288, s = 1
3 × 3, 288, s = 1
Maxpool,2 × 2

⎤

⎦
1
16

H×
1
16

W× 288       

L4r  L2cat  
⎡

⎣
3 × 3, 144, s = 2
3 × 3, 144, s = 1
Maxpool,2 × 2

⎤

⎦
1
16

H×
1
16

W× 144       

L4cat  L4l ,L4r  concat 1
16

H×
1
16

W× 432  
L4c  L4cat  conv,1× 1, 144  1

16
H×

1
16

W× 144  
L4l2  L3cat  

⎡

⎣
3 × 3, 384, s = 1
3 × 3, 384, s = 1
Maxpool,2 × 2

⎤

⎦
1
16

H×
1
16

W× 384       

L4cat2  L4conv,L4l2  concat 1
16

H×
1
16

W× 528  
L4de  L4cat2  

[
3 × 3, 384, s = 1
3 × 3, 384, s = 1

] 1
16

H×
1
16

W× 384       

L3sk  L4de  deconv,3× 3, 192  1
8

H×
1
8

W× 384  
L4de,L3cat  skipconnection 

L3de  L3sk  
[

3 × 3, 144, s = 1
3 × 3, 144, s = 1

] 1
8

H×
1
8

W× 144    

L2sk  L3de  deconv,3× 3, 72  1
4

H×
1
4

W× 144  
L3de,L2cat  skipconnection 

L2de  L2sk  
[

3 × 3, 48, s = 1
3 × 3, 48, s = 1

] 1
4

H×
1
4

W× 48    

L1sk  L2de  deconv,3× 3, 24  1
2

H×
1
2

W× 48  
L2de,L1l  skipconnection 

L1de  L1sk  
[

3 × 3, 24, s = 1
3 × 3, 24, s = 1

] 1
2

H×
1
2

W× 24    

deconv,3× 3, 24  H× W× 24  
conv,3× 3, 1  H× W× 1  

FC L1de  sigmoid H× W   
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small patches with a size of 256 × 256 pixels. WHU Building dataset, which is a hybrid dataset of aerial images and satellite images, is mainly designed for 
building extraction, but part of it can be extended for building change detection (Ji et al., 2019). The images used for change detection cover an area where a 
6.3-magnitude earthquake occurred in February 2011 and then reconstructed in the following years. The images with 1.6 m-resolution were acquired in 
April 2012 (with 12,796 buildings in 20.5 km2) and 2016 (with 16,077 buildings in the same area), respectively. This dataset focuses on the large-and-sparse 
buildings change, and the appearance/disappearance of cars is neglected. The dataset was randomly cropped into 2260 small patches with a size of 256 ×
256 pixels, of which 1622 were used as the training set, 169 were used as the validation set and the rest 169 were used as the test set. 

Figs. 14 and 15 illustrate the change of building growth, building decline and no change areas in LEVIR-CD dataset and WHU Building dataset, 
respectively. 

Fig. 13. Several samples of the change-types in the VHR dataset. Subfigures (a), (b), (c) and (d) display the bitemporal images and ground truth change maps of small 
objects (i.e., car), a thin road, large objects (i.e., building) and a complex scene, respectively. 

Fig. 14. Several samples of the change-types in the LEVIR-CD dataset. Sub-
figures (a), (b) and (c) display the bitemporal images and ground truth change 
maps of building update, building decline and no change, respectively. 

Fig. 15. Several samples of the change-types in the WHU Building dataset. 
Subfigures (a), (b) and (c) display the bitemporal images and ground truth 
change maps of building update, building decline and no change, respectively. 
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Appendix C. Experiments on raw VHR dataset 

Table 7 lists the change detection results for the raw VHR dataset in our experiments. The proposed CLNet outperformed the compared methods on 
all the indexes for the dataset. The CLNet results were acceptable but still unsatisfactory. Although the precision and OA reached 91.4% and 96.5%, the 
recall and F1 Score were only 79.5% and 0.851. The low recall indicated that a large amount of missed detection occurred (see Fig. 16). 

Fig. 16. Visual Comparison of generated change maps in the LEVIR-CD dataset (image index: test_25).  

Table 7 
The quantitative comparison on the raw VHR dataset. (The best performance is emphasized in bold.)  

Methods Precision (%) Recall (%) F1 Score OA (%) 

UNet (O. Ronneberger et al.) 79.3 63.4 0.693 93.2 
DeepLabv3 (Chen, Liang-Chieh, et al.) 69.0 48.8 0.573 91.0 
CDNet (P.F. Alcantarilla et al.) 79.6 70.0 0.745 94.0 
FC-EF (R.C. Daudt et al.) 72.6 36.6 0.486 90.5 
FC-Siam-conc (R.C. Daudt et al.) 84.7 60.0 0.700 93.7 
FC-Siam-diff (R.C. Daudt et al.) 84.7 35.5 0.500 91.2 
FCN-PP (T. Lei et al.) 79.2 72.1 0.754 94.2 
UNet þ ASPP 77.9 66.7 0.718 92.9 
Peng et al. (D. Peng et al.) 87.9 76.4 0.818 95.8 
CLNet 91.4 79.5 0.851 96.5  
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Appendix D. More experimental results of building change detection  

I) Experiments of Comparison methods on LEVIR-CD dataset with the settings in their original literatures. 

Table 8 shows the experiment results of the comparing methods under the settings described in the original literature. It can be found that their 
accuracy lied at a relatively low level, especially in the precision and F1 Score. For a fair comparison, the loss functions of all the compared methods 
were modified to the one used in CLNet to eliminate the performance difference caused by the loss function. After modifying the loss function, the 
accuracy of all the compared methods increased to a large margin (i.e., the precision and F1 Score of UNet were increased by 20.2% and 0.094).  

II) More experimental results on LEVIR-CD dataset 

See Fig. 17. 

Fig. 17. Visual Comparison of generated change maps in the LEVIR-CD dataset (image index: test_39).  

Table 8 
Quantitative performance comparison on the LEVIR-CD dataset with the settings in their original literatures.  

Methods Precision (%) Recall (%) F1 Score OA (%) 

UNet (Ronneberger et al., 2015) 64.4 89.8 0.755 97.1 
DeepLabv3 (Liang-Chieh Chen et al., 2017) 77.3 86.0 0.821 98.1 
CDNet (Alcantarilla et al., 2018) 74.6 89.1 0.812 97.1 
FC-EF (R.C. Daudt et al., 2018a, 2018b) 76.5 85.6 0.808 97.9 
FC-Siam-conc (R.C. Daudt et al., 2018a, 2018b) 75.1 88.4 0.712 97.9 
FC-Siam-diff (R.C. Daudt et al., 2018a, 2018b) 73.5 84.9 0.782 97.6 
FCN-PP (Lei et al., 2019) 84.4 79.3 0.818 98.2 
UNet + ASPP 78.6 84.2 0.809 98.0 
Peng et al. (2019) 79.8 82.1 0.810 98.0  
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III) More experimental results on WHU building dataset 

See Figs. 18 and 19. 

Fig. 18. Visual Comparison of generated change maps in the WHU Building dataset.  
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detection in VHR remote sensing imagery–an object-based clustering approach in a 
dynamic urban environment. Int. J. Appl. Earth Observ. Geoinform. 54, 15–27. 

Liang, B., Weng, Q., 2010. Assessing urban environmental quality change of indianapolis, 
united states, by the remote sensing and gis integration. IEEE J. Selected Topics 
Appl. Earth Observ. Remote Sensing 4 (1), 43–55. 

Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017. Feature 
pyramid networks for object detection. In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, pp. 2117–2125. 

Liu, R., Kuffer, M., Persello, C., 2019. The temporal dynamics of slums employing a CNN- 
based change detection approach. Remote Sensing 11 (23), 2844. 

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic 
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, pp. 3431–3440. 

Fig. 19. Visual Comparison of generated change maps in the WHU Building dataset.  

Z. Zheng et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0924-2716(21)00068-X/h0010
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0010
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0020
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0020
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0020
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0025
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0025
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0025
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0040
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0040
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0040
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0045
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0045
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0045
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0050
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0050
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0065
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0065
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0065
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0075
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0075
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0075
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0080
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0080
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0080
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0085
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0085
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0085
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0090
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0090
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0090
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0105
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0105
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0105
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0110
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0110
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0110
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0115
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0115
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0115
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0120
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0120
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0120
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0130
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0130
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0130
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0140
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0140
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0140
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0150
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0150
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0155
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0155
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0155


ISPRS Journal of Photogrammetry and Remote Sensing 175 (2021) 247–267

267

Lyu, H., Lu, H., Mou, L., 2016. Learning a transferable change rule from a recurrent 
neural network for land cover change detection. Remote Sensing 8 (6), 506. 

Mou, L., Bruzzone, L., Zhu, X.X., 2018. Learning spectral-spatial-temporal features via a 
recurrent convolutional neural network for change detection in multispectral 
imagery. IEEE Trans. Geosci. Remote Sensing 57 (2), 924–935. 

Niu, X., Gong, M., Zhan, T., Yang, Y., 2018. A conditional adversarial network for change 
detection in heterogeneous images. IEEE Geosci. Remote Sensing Lett. 16 (1), 45–49. 

Peng, D., Guan, H., 2019. Unsupervised change detection method based on saliency 
analysis and convolutional neural network. J. Appl. Remote Sensing 13 (2), 024512. 

Peng, D., Zhang, Y., 2017. Object-based change detection from satellite imagery by 
segmentation optimization and multi-features fusion. Int. J. Remote Sensing 38 (13), 
3886–3905. 

Peng, D., Zhang, Y., Guan, H., 2019. End-to-end change detection for high resolution 
satellite images using improved unet++. Remote Sensing 11 (11), 1382. 

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for 
biomedical image segmentation. In: International Conference on Medical Image 
Computing and Computer-Assisted Intervention. Springer, pp. 234–241. 

Stramondo, S., Bignami, C., Chini, M., Pierdicca, N., Tertulliani, A., 2006. Satellite radar 
and optical remote sensing for earthquake damage detection: results from different 
case studies. Int. J. Remote Sensing 27 (20), 4433–4447. 

Szegedy, Christian, et al., 2015. Going deeper with convolutions. Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition. 

Wang, Q., Yuan, Z., Du, Q., Li, X., 2018. GETNET: a general end-to-end 2-D CNN 
framework for hyperspectral image change detection. IEEE Trans. Geosci. Remote 
Sensing 57 (1), 3–13. 

Wiratama, W., Lee, J., Park, S.E., Sim, D., 2018. Dual-dense convolution network for 
change detection of high-resolution panchromatic imagery. Appl. Sci. 8 (10), 1785. 

Xian, G., Homer, C., 2010. Updating the 2001 national land cover database impervious 
surface products to 2006 using landsat imagery change detection methods. Remote 
Sensing Environ. 114 (8), 1676–1686. 

Xiao, P., Yuan, M., Zhang, X., Feng, X., Guo, Y., 2017. Cosegmentation for object-based 
building change detection from high-resolution remotely sensed images. IEEE Trans. 
Geosci. Remote Sensing 55 (3), 1587–1603. 

Xie, S., Tu, Z., 2015. Holistically-nested edge detection. In: Proceedings of the IEEE 
International Conference on Computer Vision, pp. 1395–1403. 

Yang, K., Xia, G., Liu, Z., Du, B., Yang, W., Pelillo, M., 2020. Asymmetric Siamese 
Networks for Semantic Change Detection, arXiv:2010.05687. 

Yang, J., Weisberg, P.J., Bristow, N.A., 2012. Landsat remote sensing approaches for 
monitoring long-term tree cover dynamics in semi-arid woodlands: comparison of 
vegetation indices and spectral mixture analysis. Remote Sensing Environ. 119, 
62–71. 

Yu, F., Koltun, V., 2015. Multi-scale context aggregation by dilated convolutions. arXiv 
preprint arXiv:1511.07122. 

Yu, W., Zhou, W., Qian, Y., Yan, J., 2016. A new approach for land cover classification 
and change analysis: Integrating backdating and an object-based method. Remote 
Sensing Environ. 177, 37–47. 

Zanetti, M., Bovolo, F., Bruzzone, L., 2015. Rayleigh-rice mixture parameter estimation 
via EM algorithm for change detection in multispectral images. IEEE Trans. Image 
Process. 24 (12), 5004–5016. 

Zhang, P., Gong, M., Su, L., Liu, J., Li, Z., 2016a. Change detection based on deep feature 
representation and mapping transformation for multi-spatial-resolution remote 
sensing images. ISPRS J. Photogram. Remote Sensing 116, 24–41. 

Zhang, C., Wei, S., Ji, S., Lu, M., 2019. Detecting large-scale urban land cover changes 
from very high resolution remote sensing images using cnn-based classification. 
ISPRS Int. J. Geo-Information 8 (4), 189. 

Zhang, L., Zhang, L., Du, B., 2016b. Deep learning for remote sensing data: a technical 
tutorial on the state of the art. IEEE Geosci. Remote Sensing Mag. 4 (2), 22–40. 

Zhao, Hengshuang, et al., 2017. Pyramid scene parsing network. Proceedings of the IEEE 
conference on Computer Vision and Pattern Recognition. 

Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J., 2018. Unet++: A nested u-net 
architecture for medical image segmentation. In: Deep Learning in Medical Image 
Analysis and Multimodal Learning for Clinical Decision Support. Springer, pp. 3–11. 

Zhu, X.X., Tuia, D., Mou, L., Xia, G.S., Zhang, L., Xu, F., Fraundorfer, F., 2017. Deep 
learning in remote sensing: a comprehensive review and list of resources. IEEE 
Geosci. Remote Sensing Mag. 5 (4), 8–36. 

Z. Zheng et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0924-2716(21)00068-X/h0160
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0160
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0165
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0165
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0165
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0170
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0170
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0175
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0175
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0180
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0180
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0180
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0185
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0185
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0195
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0195
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0195
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0200
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0200
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0205
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0205
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0205
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0210
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0210
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0215
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0215
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0215
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0220
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0220
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0220
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0225
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0225
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0235
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0235
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0235
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0235
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0245
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0245
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0245
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0250
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0250
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0250
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0255
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0255
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0255
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0260
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0260
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0260
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0265
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0265
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0270
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0270
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0280
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0280
http://refhub.elsevier.com/S0924-2716(21)00068-X/h0280

	CLNet: Cross-layer convolutional neural network for change detection in optical remote sensing imagery
	1 Introduction
	2 Related works
	3 Methodology
	3.1 Cross-Layer Block (CLB)
	3.1.1 Motivation and interior structure of CLBs
	3.1.2 General version of CLB
	3.1.3 Learning ability of CLB

	3.2 Cross-Layer network (CLNet) architecture
	3.2.1 Encoder part
	3.2.2 Decoder part

	3.3 Loss function

	4 Experiments
	4.1 Data description, implementation details, comparison methods and evaluation indicators
	4.1.1 Data description
	4.1.2 Implementation details
	4.1.3 Comparison methods
	4.1.4 Evaluation indicators

	4.2 All-objects change detection
	4.2.1 Quantitative evaluation
	4.2.2 Qualitative evaluation

	4.3 Building change detection
	4.3.1 Experiments on LEVIR-CD dataset
	4.3.2 Experiments on WHU building dataset

	4.4 Accuracy/efficiency trade-offs
	4.5 Ablation study on VHR dataset
	4.6 Discussion
	4.6.1 Difference between CLB and several multi-scale blocks
	4.6.2 Performance discussion


	5 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	Appendix A The detailed network architecture
	Appendix B Description of datasets
	Appendix C Experiments on raw VHR dataset
	Appendix D More experimental results of building change detection
	References


