
8100 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

A Learnable Joint Spatial and Spectral
Transformation for High Resolution Remote

Sensing Image Retrieval
Yameng Wang, Shunping Ji , Member, IEEE, and Yongjun Zhang

Abstract—Geometric and spectral distortions of remote sens-
ing images are key obstacles for deep learning-based supervised
classification and retrieval, which are worsened by cross-dataset
applications. A learnable geometric transformation model imbed-
ded in a deep learning model has been used as a tool for handling
geometric distortions to process close-range images with different
view angles. However, a learnable spectral transformation model,
which is more noteworthy in remote image processing, has not yet
been designed and explored up to now. In this paper, we propose a
learnable joint spatial and spectral transformation (JSST) model
for remote sensing image retrieval (RSIR), which is composed of
three modules: a parameter generation network (PGN); a spatial
conversion module; and a spectral conversion module. The PGN
adaptively learns the geometric and spectral transformation pa-
rameters simultaneously from the different input image content,
and these parameters then guide the spatial and spectral con-
versions to produce a new modified image with geometric and
spectral correction. Our learnable JSST is imbedded in the front-
end of the deep-learning-based retrieval network. The spatial and
spectral-modified inputs provided by the JSST endow the retrieval
network with better generalization and adaptation ability for cross-
dataset RSIR. Our experiments on four open-source RSIR datasets
confirmed that our proposed JSST embedded retrieval network
outperformed state-of-the-art approaches comprehensively.

Index Terms—Convolutional neural network (CNN), remote
sensing image retrieval (RSIR), spatial transformation, spectral
transformation.

I. INTRODUCTION

IMAGE retrieval technology makes it possible to retrieve a
certain number of ranked images from an image dataset or the

internet according to their degree of similarity to a query image
or keyword. Remote sensing image retrieval (RSIR), which
searches related or similar images from a remote sensing image
set, can be categorized into text-based RSIR and content-based
RSIR. The former finds labeled images from a dataset according
to query keywords or labels [1]–[3] and often requires an early
labor-intensive data annotation process to label each image in
the search dataset. The latter searches images according to the

Manuscript received April 9, 2021; revised June 20, 2021 and July 26,
2021; accepted August 3, 2021. Date of publication August 12, 2021; date of
current version August 27, 2021. This work was supported by the National Key
Research and Development Program of China under Grant 2018YFB0505003.
(Corresponding author: Shunping Ji.)

The authors are with the School of Remote Sensing and Information Engi-
neering, Wuhan University, Wuhan 430079, China (e-mail: ymw@whu.edu.cn;
jishunping@whu.edu.cn; zhangyj@whu.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2021.3103216

similarity between the contents of the search and query images,
which is close to human visual perception and is the current
mainstream thought. CBRSIR roughly can be divided into three
steps: feature extraction; feature reduction; and similarity calcu-
lation. Feature extraction employs a feature extractor, which is
usually implemented by a convolutional neural network (CNN),
to obtain the abstract feature representation of each image in a
remote sensing dataset, all of which then form a feature library.
The feature representation of the query image is extracted by the
same extractor. Feature reduction, such as pooling or encoding
technologies, may not be necessary in some conventional meth-
ods that have designed compact features; but in deep learning,
the feature reduction is usually required. Similarity calculation
then matches the reduced features in the library with the query
feature one-by-one using a specific similarity measure. The
search images then are ranked according to the similarity score,
and the top-ranked images are returned as the retrieval result.

The one aspect of RSIR is to extract distinctive features for
representing each category; and over the last few decades, the
computer vision and remote sensing communities have contin-
ued to innovate feature extraction to improve its feature represen-
tation ability. Early feature representation relied on empirical de-
sign from a human expert’s understanding of the images, which
usually was restricted to the simple and intuitive patterns of an
image, such as lines, shapes, and textures, and the often-called
low-level features, of which SIFT [4], LBP [5], and HOG [6]
are well known. These features describe the local patterns of an
image that then are aggregated sometimes to form global feature
representations, which are called middle-level features. bag-
of-words (BoW) [7], vector of locally aggregated descriptors
(VLAD) [8], Fisher kernels (FK) [9], and recent efficient match
kernels (EMK) [10] and memory vectors [11] are examples of
middle-level features. Most of them also function as feature
reduction approaches by controlling the feature dimension to
be the output. Nowadays, mainstream feature representation
technology is based on deep learning. Image features extracted
by deep learning methods, especially CNN, are realized with
multiple convolutional layers abstraction [12]–[14], which are
often called high-level features. These features are reduced with
pooling [15], [16] or encoding methods [7]–[11] to form a library
of image retrieval. Both traditional and deep learning-based
feature extraction methods have been applied to RSIR [17]–[23].

Recently, some studies focused on designing special deep neu-
ral network structures. Zhou et al. [20] introduced a three-layer
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perceptron to learn low-dimensional features. Noh et al. [24]
utilized an attention mechanism to score the relevant features.
SENet [25] exploits a channel-weighted attention strategy to
realize feature recalibration. SKNet [26] is regarded as a multi-
branch version of SENet that can obtain the adaptive receptive
field size. NTS-Net [27] uses a self-supervision mechanism to
locate the area of interest. SBS-CNN [28] combines a feature
learning network and a similarity learning network to predict the
similarity percentage between two images directly for unsuper-
vised RSIR task.

Other studies paid more attention to the feature aggregation
and reduction aspects of the CNN-based features. Borrowing
ideas from sum pooling, Babenko and Lempitsky [29] aggre-
gated deep convolutional features into a compact descriptor by
distributing different weights to each pixel within a channel.
Kalantidis et al. [30] added the influence of channels to pixels
on the basis of SpoC. In [31], the outputs of the convolutional
layer were encoded by VLAD, which generated the column
features for similarity matching. Wang et al. [23] generated
distinctive and compact features by introducing bilinear pooling
and a channel and spatial attention module. Radoi and Datcu [32]
introduced error-correcting output codes encoding and decoding
to translate multilabel classification to binary classification.

However, the other aspect, i.e., how to preprocess the original
remote sensing images for better retrieval performance, has not
been deeply investigated. It is crystal clear that the performance
of a retrieval model is profoundly affected by geometric and
spectral distortions in a remote sensing image, especially in
cross-dataset applications. A robust RSIR model that addresses
geometric and radiometric distortion, caused by different view
angles, dynamic atmosphere, sensors, under- or over-exposure,
etc., is greatly needed but is still lacking in current deep learning-
based retrieval methods. The widely used data augmentation
approach in machine learning has been introduced to RSIR,
but it is empirically performed outside deep learning models
through the production of the redundant counterparts of the
original input, instead of end-to-end learning. In fact, a learnable
geometric or spectral transformation approach has its distinct
advantage in image retrieval. As a basic understanding, RSIR is
highly affected by the content of the current remote image. A
rigid transformation with fixed or empirical parameters hardly
adapts to various situations. A learnable geometric or spectral
transformation module imbedded in a deep learning network can
better understand the content of the current image and generate
a proper image from both of the geometric and spectral views
for the image retrieval task in the same training/prediction loop.

There are several methods in the machine learning community
that have geometric transformation imbedded in their learning-
based models without an increase in the amount of training data.
Kosiorek et al. [33] achieved viewing angle independent recon-
struction from the part capsule to the object capsule considering
the geometric relationship within an object. By adding deforma-
tion parameters in the convolution layers and ROI pooling layers,
a deformable convolutional network [34] changed the range of
the receptive field to adapt to the geometric deformation of
objects. Esteves et al. [35] made use of the so-called “polar origin
predictor” and “polar transformer” to achieve rotation and scale
invariance. Jaderberg et al. [36] performed spatial transform on

CNN feature maps to improve their recognition ability on the
MNIST dataset. There are also studies that attempt to boost
geometric robustness with aggregating features extracted from
different features [37] or different spatial scales [38], [39].

Unfortunately, there are currently no learning-based spectral
transformation approaches that were designed for spectral dis-
tortions to the best of our knowledge, although the spectral
transformation may be more important in RSIR. Instead, his-
togram equalization [40], gamma correction [41], and Wallis
transformation [42] are widely used, all of them are conven-
tional empirical-based spectral transformation methods, and the
former two are nonlinear-based methods and the latter is linear-
based. Obviously, the learning-based integrated geometric and
spectral transformation approaches simply do not yet exist in
either computer vision or remote sensing community.

To tackle this problem, we propose a compact plug-in anti-
distortion model within an end-to-end learning scheme specif-
ically designed for RSIR, called the joint spatial and spectral
transformation (JSST) model. It adaptively learns different pa-
rameters from the specific content of an image and generates a
revised image with geometric and spectral correction. It consists
of three parts: a parameter generation network (PGN); a spatial
conversion module; and a spectral conversion module. The PGN
adaptively learns spatial and spectral transformation parameters
simultaneously and guides the two conversions to output a
revised image with the repaired spatial and spectral distortions,
thereby increasing the robustness of the retrieval network.

The proposed JSST integrates conventional distortion correc-
tion strategies into a deep learning framework and automatically
adjusts correction parameters. JSST fills the blank of lacking
learning-based spectral transformation approaches and learns
unique correction parameters for each input image instead of
applying empirical parameters for all images. Furthermore, our
method combines spatial and spectral correction as a learn-
able module embedded in an end-to-end network for the first
time.

The main contributions of this article are as follows.
1) The first learnable spatial and spectral transformation

model. Our JSST is designed for correcting the possible
spatial and spectral distortions of an image for the follow-
ing RSIR task. It is fully imbedded in a deep learning re-
trieval model and adaptively learns parameters according
to the contents of an image and performs spatial and spec-
tral transformations on the input image simultaneously.
It is totally different from empirical data augmentation
executed outside a learning procedure.

2) The conciseness and interpretability of our JSST. Our
JSST is expressed with explicit mathematical models; and
under loose assumptions, it can simulate most of the spatial
and special distortions. Moreover, the mathematical mod-
els used in our JSST can be easily replaced with alternative
models chosen by the users.

3) The high performance of the JSST. With the same base-
line retrieval network, JSST significantly outperformed
other recent image retrieval methods and reached the
state-of-the-art methods in different open-source datasets.
This achievement highlights the importance of learning-
based image preprocessing in RSIR with respect to the
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Fig. 1. Proposed JSST for image retrieval.

mainstream studies of merely concentrating on network
structure adjustment and feature reduction.

Section II provides a detailed description of our JSST module;
our extensive experiments to demonstrate the effectiveness of
JSST are presented in Section III; further general discussion
is offered in Section IV; and our conclusions are provided in
Section V.

II. JOINT SPATIAL AND SPECTRAL TRANSFORMATION MODEL

In Section II-A, we describe our JSST and its three core mod-
ules: the PGN; the spatial conversion module; and the spectral
conversion module. Then, in Section II-B, we show how it is
integrated it into a complete RSIR network that was specifically
designed for cross-dataset image retrieval.

A. Joint Spatial and Spectral Transformation

Our JSST, which is shown in Fig. 1, automatically learns the
proper spatial and spectral parameters to convert an original in-
put image into another image for emphasizing the objects/scenes
of interest and achieving better spectral and visual presentation.
Its goal is to better describe the content of the image so that it
is more easily discriminated by an image retrieval network. The
PGN module outputs two sets of parameters simultaneously,
each of which guides the subsequent spatial conversion and
spectral conversion modules. The spectral conversion module
is executed on the resampled image from the spatial conversion
module, which outputs enhanced image for the image retrieval
process.

1) Parameter Generation Network: The PGN adaptively
learns the geometric and spectral distortion parameters of each
image in a deep learning model, which is image-customized
(i.e., each input image passing through the PGN corresponds to a
unique set of conversion parameters) and conceptually-different
from the commonly-used data augmentation approach that re-
samples the image with uniform and empirical parameters out-
side a deep learning model. The PGN is mathematically denoted
as a nonlinear function f(·), with an input image U0�RC×H×W,
where C, H, and W are the number of spectral channels, image
height, and image width, respectively. Through f(·), the input
image is transformed into a set of parameters denoted as θ,
which is the combination of spatial conversion parameter θs

and spectral conversion parameter θr in this work, as shown in

θ = f (U0) where θ = {θs, θr} . (1)

In this article, f(·) is implemented by a light convolutional
network with a series of convolutional layers, pooling layers,
a fully connected (FC) layer, and a last regression layer (see
Fig. 1). The convolutional layers extract the geometric and
spectral features from the image, and the FC layer and regression
layer compress them into the parameters θ with fixed numbers
according to the defined conversion models.

2) Spatial Conversion Model: The spatial conversion mod-
ule is designed to highlight the objects or scenes of interest in the
image from a new viewing angle. In this work, it is implemented
through a warp module, which consists of two steps: a pixel
coordinate conversion and a pixel interpolation.

Suppose the transformed regular grid is Gs and the orig-
inal grid is G0, which share the same image size. For an
arbitrary point indexed i, its transformed coordinate is Xs

i =
(xs

i , y
s
i ) ∈ Gs and the corresponding original coordinate is

X0
i = (x0

i , y
0
i ) ∈ G0. The mapping relationship between the

original image coordinates and the transformed image coordi-
nates is as follows:

X0
i = Γθs(X

s
i ). (2)

The symbolΓ represents the spatial conversion function, with
the corresponding spatial conversion parameters θs. It has been
proven that an eight-parameter perspective projection can be
well approximated by a six-parameter affine projection in a small
local region of an image [43], and a push-broom imaging model
can be simulated as the perspective model within a small region
[44]. Therefore, we can reasonably apply six-parameter affine
transformation, as shown in (3), because the remote sensing
images have been cropped into small patches before inputting
them into a retrieval model

(
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⎞
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where Aθ represents the six-parameter affine projection. θsi (i =
12, …6) are six scalar elements.

A pixel-based interpolation function Ψ then translates the
original image to a new image according to the affine parameters.
In order to realize the end-to-end training strategy, Ψ must be
derivable for the iterative back propagation of the network. We
chose bilinear interpolation [45] as it is differentiable.

The whole warp module can be mathematically written as

Us = Ψ(Γθs(G
s)). (4)

The functions Γ and Ψ can have other implementations. For
example, thin plate spline (TPS) [46] is another widely-used
geometric transformation with nonlinear fitting ability besides
the rigid affine and perspective projection. As for pixel-based
interpolation, high order polynomials, such as bicubic interpo-
lation [47] are options.

3) Spectral Conversion Model: We established the spectral
conversion model according to two empirical observations: first,
between-pixel calibration in a remote sensing image patch is
not necessary because the patch is typically very small (e.g.,
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Fig. 2. Structure of the proposed retrieval network with imbedded JSST. ResNet-34 is used for feature abstraction. The output vector is obtained from the FC
layer in training stage, and from PCA in retrieval stage for better generalization ability.

512×512 pixels); second, the overall spectral difference be-
tween patches is the main factor. Hence, we only need to adjust
the linear and independent changes of each spectral channel to
simulate almost all the radiometric variations, including illumi-
nation change, underexposure or overexposure, and color cast, of
an image patch. The brightness ratio among the spectral channels
is then parameterized. Four parameters θr = {θr1,θr2,θr3,θr4},
the first three for linear stretching and the last one for shared
translation bias, are constructed as follows:

Usri = θriUsi + θr4, i ∈ [1, 3] (5)

where Usr is the converted image and i denotes one of the three
spectral channels. If multispectral images are used, the spectral
channel number will be set accordingly.

According to Fig. 1, the spectral conversion is applied on the
spatially converted image. We will discuss the order of execution
of the two conversions in Section III-D.

B. JSST-Imbedded Image Retrieval Network

Fig. 2 shows the complete RSIR network with the integrated
JSST. The input image is processed by the PGN, which then
outputs two sets of parameters to guide the spatial and spectral
conversion modules. The output image of JSST is then processed
by a series of plain convolutions and a series of ResNet-style [48]
shortcut blocks (see in Fig. 2). The convolutions and shortcut
blocks were pretrained on the ImageNet [49]. The last feature
is compressed by a FC layer FC1 to output a one-dimensional
(1-D) vector with 4096 units. In the training stage, the vector
is further compressed by another FC2 to obtain a vector with
the same length of category number. In the retrieval stage, FC2
is replaced by a principal component analysis (PCA) operation.
As FC2 is highly related to the training dataset, PCA can lead
to a better generalization ability, which is highly required in the
cross-dataset retrieval task. The performance of FC and PCA are
discussed in Section III-C.

III. EXPERIMENT AND RESULT

A. Data

Six independent open-source RSIR datasets were prepared
for our comprehensive evaluation of the effect of our proposed

JSST. Among them, only the PatternNet [50] dataset was used to
train our network and for comparing with the other methods. The
trained CNN models were directly applied to three frequently
used RSIS datasets: WHU-RS19 [51], UC Merced Land-Use
Dataset (UCM) [52], and RSSCN [53] and two related and more
complicated ones: aerial image dataset (AID) [54], and NWPU-
RESISC45 (NWPU) [55] for the evaluation process.

PatternNet [50] contains 38 categories of remote sensing
scenes or ground objects (airplane, baseball field, basketball
court, beach, bridge, cemetery, chaparral, Christmas tree farm,
closed road, coastal mansion, crosswalk, dense residential, ferry
terminal, football field, forest, freeway, golf course, harbor,
intersection, mobile home park, nursing home, oil gas field, oil
well, overpass, parking lot, parking space, railway, river, runway,
runway marking, shipping yard, solar panel, sparse residential,
storage tank, swimming pool, tennis court, transformer station,
and wastewater treatment plant). Each category is composed
of 800 256×256 high-resolution images selected from Google
Earth.

RS19 [51] covers 19 types of scenes (airport, beach, bridge,
commercial, desert, farmland, football field, forest, industrial,
meadow, mountain, park, parking, pond, port, railway sta-
tion, residential, river, and viaduct), which were acquired from
Google satellite imagery for scene classification or retrieval. The
dataset has a totally of 1005 600×600 images with approxi-
mately 50 images for each category.

UCM [52] contains 21 categories (agricultural, airplane, base-
ball diamond, beach, buildings, chaparral, dense residential,
forest, freeway, golf course, harbor, intersection, medium res-
idential, mobile home park, overpass, parking lot, river, runway,
sparse residential, storage tanks, and tennis court) and has a
total of 2100 256×256 remote sensing images from the USGS
National Map Urban Area Imagery series.

RSSCN7 [53] consists of seven typical scene categories (field,
forest, grass, industry, parking, resident, and rivers-lakes) and
has a total of 2800 400×400 diverse remote sensing images that
were taken under different seasons and weather changes and
were sampled in four different scales.

AID [54] contains 30 categories (airport, bare land, baseball
field, beach, bridge, center, church, commercial, dense resi-
dential, desert, farmland, forest, industrial, meadow, medium
residential, mountain, park, parking, playground, pond, port,
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railway station, resort, river, school, sparse residential, square,
stadium, storage tanks, and viaduct) and a total of 10000
600×600 aerial scene images.

NWPU [55] is a scene classification dataset containing 45
classes (airplane, airport, baseball diamond, basketball court,
beach, bridge, chaparral, church, circular farmland, cloud, com-
mercial area, dense residential, desert, forest, freeway, golf
course, ground track field, harbor, industrial area, intersection,
island, lake, meadow, medium residential, mobile home park,
mountain, overpass, palace, parking lot, railway, railway station,
rectangular farmland, river, roundabout, runway, sea ice, ship,
snowberg, sparse residential, stadium, storage tank, tennis court,
terrace, thermal power station, and wetland) and a total of 31 500
images. Each class consists of 700 256×256 images.

B. Experimental Setup

To compare the performance of our proposed JSST to other
state of the art retrieval methods under the same baseline, we
used the classic ResNet structure [48] with 34 trainable layers
(ResNet34) as the backbone network. ResNet-34 was pretrained
on the ImageNet dataset [49] to initialize the weights. Then, with
the first three shortcut structures of the ResNet-34 architecture
frozen, JSST and the other methods performed fine-tuning on
the PatternNet dataset [50]. The pretraining and the fine-tuning
constituted the training phase. Please note that the trained model
on PatternNet is the final model to be applied on the other
datasets for retrieval performance evaluation. All the input im-
ages were uniformly resized to 224×224 in both the fine-tuning
and retrieval phases. The strategy of learning rate decay during
the fine-tuning phase was applied. There were 40 epochs in the
process of fine-tuning, among which the learning rates of the
1st–15th epochs were 10-3, those of the 16th-30th epochs were
10-4, and those of the last 10 epochs were 10-5. The batch size
was set to 64. SGD for gradient descent was applied to all the
retrieval methods except compact bilinear pooling (CBP) [23],
which used Adam and did not converge when using SGD. All
the experiments were completed on a Linux PC equipped with
an NVIDIA GeForce RTX 2070 8G GPU and the PyTorch deep
learning framework.

In the retrieval phase, the Pearson correlation coefficient was
used to perform similarity matching between the features ex-
tracted from the query images and all the remaining images in the
dataset. We used precision at k (P@k), where k was the pre-set
number of returned images in a query, and the mean average
precision (mAP) as measures to evaluate the performance of the
different methods.

C. Retrieval Result and Analysis

We mainly compared our JSST with three recent excellent
classification networks and other four outstanding image re-
trieval methods. SENet [25] was the champion of ILSVRC 2017
classification task. SKNet [26] was an improvement on the basis
of SENet. NTS-Net [27] used a self-supervision mechanism for
the fine-grained visual categorization task to locate the area of
interest. DFLA [22] combined an attention module with center
loss to form a multi-task learning network structure. In LDCNN

[20], network in network [57] was introduced into RSIR, fol-
lowed by a global average pooling to obtain one-dimensional
features. Deep hashing network (DHN) [56] generated binary
hash code from an FC layer and introduced a double-branch
loss to maintain similarity and hash quality. The recent work
[23] proposed an attention boosted CBP and demonstrated better
than BoW [7], IFK [58] and other classic aggregation methods in
RSIR. In addition, some recent Embedding and Hashing based
methods are also compared [59]–[62].

1) Overall Evaluation: The retrieval results of the different
methods on the three datasets RS19, UCM, and RSSCN are given
in Table I. Our JSST achieved the best results on all three datasets
and significantly outperformed the baseline method (ResNet34)
and the other recent methods. On RS19, JSST exceeded the base-
line more than 5% on mAP and 7% on P@5 and exceeded the
second best SENet 1.2% on mAP. On UCM, JSST outperformed
the baseline and the second best SENet 2% and 1.3% on mAP.
On RSSCN, JSST outperformed the baseline 6% and the second
best SENet 1.2% on mAP. NTS-Net did not perform well and
was even worse than the baseline method with PCA pooling.
On all the datasets, PCA reduction performed better than the
commonly used FC layer as the latter was highly affected by the
training datasets; this observation is consistent with the previous
studies [23], [63].

To save time, we compare our method with only the excellent
SENet, SKnet and NTS-Net on the extraordinary large datasets
AID and NWPU, the results are given in Table II. The conclusion
is similar to that of the Table I, that our JSST outperforms all
the other methods on all the evaluation indexes.

The retrieval results of the query images from RS19, UCM,
and RSSCN retrieval datasets are shown in Fig. 3, where the
query images are shown in the first row, followed sequentially
by the results of ResNet34(PCA), CBP, SENet, SKNet, and our
JSST.

Fig. 3(a) is from the RS19 dataset, and the left query image
is labeled with the airport area, which easily can be confused
with the commercial area or the industrial area. ResNet made
many such mistakes. Our JSST made only one error at the second
lowest rank. In the right column, the category of pond is queried,
which ResNet34, CBP, and SKNet confused with football fields.
Our JSST made a perfect prediction.

Fig. 3(b) is from the UCM dataset, and the left query image is
labeled with dense residential area, which is quite complicated
to discriminate from other areas containing houses, such as
medium residential, sparse residential, mobile home parks, etc.
However, our JSST almost perfectly recognized their distinct
differences. In contrast, ResNet, CBP, and SENet made many
mistakes. The right image is labeled as a freeway; and all five
methods returned some overpass scenes, whereas our JSST
performed the best

Fig. 3(c) is from the RSSCN dataset, and the left query image
is labeled as an industry area. Distinguishing the industry area
from parking or residential areas can be a difficult problem, even
for humans. Compared with other methods that made at least
four wrong predictions, our JSST made only one mistake. The
right query image is categorized as a river lake. ResNet, CBP,
and SENet mistook grass or forest areas as rivers or lakes more
than three times. Our JSST achieved the best performance.
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TABLE I
RETRIEVAL RESULTS OF DIFFERENT METHODS ON THE THREE REMOTE SENSING RETRIEVAL DATASETS

TABLE II
RETRIEVAL RESULTS OF DIFFERENT METHODS ON THE EXTRAORDINARY LARGE AID AND NWPU DATASETS
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Fig. 3. Examples of retrieval results on (a) RS19, (b) UCM, and (c) RSSCN. The query images are shown in the first row, followed by the results of ResNet34(PCA),
CBP, SENet, SKNet, and our JSST. The retrieval images are listed sequentially with their ranks.

The above examples demonstrate the difficulties of RSIR; and
the subtle differences between related categories that challenge
not only an algorithm but even humans. Even the well-known
classification network ResNet was not able to fulfill this task
entirely, which points up the difference between a classification
problem and a retrieval problem. In any of our challenging
cases, our JSST, which is based on integrated and learning-based
spatial and spectral transformation, demonstrated its powerful
discrimination ability.

2) Category Level Evaluation: We also compared the perfor-
mance of our method to that of other methods at the category
level. Fig. 4 visualizes the retrieval mAP of each category on
the three datasets. The green, turquoise, blue, magenta, and red
lines represent the methods of ResNet34, CBP, SENet, SKNet,
and JSST with PCA reduction. Our JSST comprehensively
outperformed the other methods with the exception of a few

categories (e.g., resident and runway) where the performance of
SENet exceeded JSST.

3) Effects of JSST: The greatest difference between JSST and
the other methods is the novel learning-based transformation
we imbedded in a deep learning model that aims to generate
a new input image for better learning outcomes instead of the
common revisions of building blocks in a CNN. The effects
of JSST are visually demonstrated in Fig. 5, where, for each
pair, the left image is the original input and the right image
is the output of the spatial or spectral transformer. The cases
in the first and second row clearly demonstrate the function
of the spatial transformation, which predicts the foreground
(region of interest) of an image and resamples it for highlighting.
By doing this, a deep learning model can concentrate on the
most informative region of an image from the interference of
various and noisy backgrounds. The third row shows the effect
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Fig. 4. Category-level mAP of different methods on the three datasets.

Fig. 5. Input images processed by JSST. The first and second rows are processed by the spatial transformation and the last row is processed by the spectral
transformation.

of the spectral transformation, which changes the spectral bands
of an input image to a better visual display, from which the
deep learning model becomes more robust to changes in the
radiometric conditions.

4) Effects of Parts: Our JSST is the combination of the spatial
module and the spectral module. We tested the effectiveness
of each module, and listed the results in Table III. Table III
demonstrates that spatial or spectral transformation alone does
improve the performance of the baseline, however, either of them

is slightly worse than SE [25]. Their combination, i.e., JSST, has
achieved the best.

D. Variations

We conducted several experiments regarding the alterna-
tive implementation of the proposed spatial and spectral
transformation.
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TABLE III
EXPERIMENTS WITH ONLY SPATIAL TRANSFORMATION OR ONLY SPECTRAL TRANSFORMATION. “SPATT” MEANS ONLY SPATIAL TRANSFORMATION USED.

“SPECT” MEANS ONLY SPECTRAL TRANSFORMATION USED

TABLE IV
DIFFERENT SPATIAL TRANSFORMATION (TPS AND AFFINE) IMBEDDED IN OUR JSST ON THE THREE DATASETS

1) Spatial Transformation: Two classic geometric transfor-
mations, TPS [46] and affine transformation, are integrated in
JSST. The length and width of the TPS sampling grid were set to
6. The retrieval results of different spatial transformations on the
three datasets are given in Table IV. It can be seen that adding a
spatial transformation module, either TPS or affine, significantly
improved the retrieval accuracy, and the affine transformation
performed slightly better. TPS implements nonrigid transfor-
mation by fitting the control points with the minimum curvature
surface, which may not be as suitable as affine transformation
for rigid objects/scenes in a remote sensing image.

2) Spectral Transformation: As for the spectral transfor-
mation, we conducted experiments from two points of view
(i.e., intrachannel and interchannel). The intrachannel spectral

conversion experiment performed gamma transformations [41]
on pixels of different positions to handle the local radiomet-
ric distortions of an image patch. In the interchannel spectral
conversion experiment, we applied linear transformation with
independent parameters to the three channels (i.e., the pixel-level
conversion within one channel is uniform). All the transforma-
tion parameters of the two types were generated from PGN.
The retrieval results of the different spectral transformations
on the three datasets are given in Table V. It can be seen that
the introduction of intra-channel conversion did not boost the
retrieval performance, whereas the interchannel conversion was
shown effective on all three datasets, with the latter adjusting
the relative brightness difference between the RGB channels
to simulate most of the overall illumination change, color bias,
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TABLE V
COMPARISON OF DIFFERENT SPECTRAL TRANSFORMATION ON THREE REMOTE SENSING RETRIEVAL DATASETS. INTRA-C IS INTRACHANNEL TRANSFORMATION

(GAMMA TRANSFORMATION); INTER-C IS INTERCHANNEL TRANSFORMATION (LINEAR TRANSFORMATION)

TABLE VI
DIFFERENT COMBINATION MANNERS OF SPATIAL AND SPECTRAL TRANSFORMATION ON THREE REMOTE SENSING RETRIEVAL DATASETS. SPEC+SPAT MEANS

SPECTRAL TRANSFORMATION IS EXECUTED BEFORE SPATIAL TRANSFORMATION

and atmosphere conditions. This experiment verified that local
spectral distortion is not important; and as we indicated before,
we did image retrieval only on the cropped small patches of
original images. Treating the spectral distortion channel-wise is
a better choice.

These two experiments proved that either the spatial trans-
formation or the spectral transformation on their own can ef-
fectively improve the accuracy of retrieval task. The manner of
combining them was further investigated.

3) Arrangement of the Spatial and Spectral Transformation:
Three strategies were tested: placing the spatial transformation
at the front of the spectral transformation; placing the spectral
transformation first; and implementing a hybrid mode. The
hybrid mode consisted of performing the affine transformation
of the spatial transformation and the spectral transformation on
the original input images, but the interpolation of the spatial
transformation is performed on the output images of spectral
conversion to generate the output of the JSST. The results of the
different strategies on three datasets are given in Table VI.

It can be seen that the sequential spatial-spectral mode per-
formed better for the RS retrieval task, although the hybrid mode
also improved the performance. Putting the spatial transformer
before the spectral transformer achieved the best performance
because the spatial transformation emphasizes the foreground
objects/scenes, which further boosts the spectral transformation,

whereas the facilitating role of the latter to the former is not that
explicit.

4) Parameter Generation Network: PGN can be executed
in two schemes: learning the parameters of spatial and spec-
tral transformations independently or simultaneously. The for-
mer refers to the PGN having two separate feature extraction
branches and outputs of six spatial and four spectral parameters
independently. The latter refers to PGN performing feature
extraction on the input image only once to output the whole
10 conversion parameters, which was our approach.

The retrieval results of the two strategies of PGN on three
datasets are given in Table VII, where “PGN-I” represents the
independence strategy, and “PGN-S” represents the simultaneity
strategy.

Table VII gives that both of the strategies can effectively
improve the effect of image retrieval and that the simultaneity
scheme is superior. These results also indicate that the training of
two branches may be more difficult than a branch, considering
that the two branches outputting the same type of parameters
(float scalar) can theoretically merge.

IV. DISCUSSION

The effectiveness and strength of our JSST method lies in the
adjustment of sample space. The direct adjustment of sample
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TABLE VII
RETRIEVAL RESULTS FOR THE TWO STRATEGIES OF PGN ON THE THREE DATASETS. PGN-I IS THE INDEPENDENCE STRATEGY. PGN-S IS SIMULTANEITY STRATEGY

TABLE VIII
RETRIEVAL RESULTS OF DIFFERENT SAMPLE PROCESSING METHODS. THE BASELINE IS RESNET34 WITH PCA. ITERATIONS 12 AND 3 OF SELF-TRAINING HAVE

TRAINING SAMPLES OF 2100 + 6057, 2100 + 14722, AND 2100 + 21344, RESPECTIVELY. THE SMALL UCM IS USED AS THE TRAINING SET. THE

SELF-TRAINING INTRODUCES NEW SAMPLES FROM PATTERNNET (TREATED AS UNLABELED)

space is apparently more efficient compared to data augmenta-
tion as the latter expands sample space through resampling the
original labeled inputs to many counterparts. Another method for
expanding sample space is self-training, which incorporates the
unlabeled samples as the labeled ones gradually. We conducted
experiments to compare the performance of our JSST and the
very recent self-training method [64], which uses a trained
model from a small labeled dataset to label unlabeled data and
then iteratively updates the training dataset by adding those
highly-reliable samples for the unlabeled dataset to train a better
model. We chose UCM [52] as the labeled small dataset with
2100 labeled samples, and PatternNet [50] as the supplementary
unlabeled dataset. There were three iterations of self-training;
and for each iteration, the number of training samples was 2100
+ 6057 (iteration 1), 2100 + 14722 (iteration 2), and 2100 +
21344 (iteration 3). The labeling confidence was set to 0.85 (i.e.,
an unlabeled sample was added to the training dataset when its
confidence exceeded 0.85). The retrieved datasets were RS-19
[51] and RSSCN [53]. The results are given in Table VIII where it
can be seen that JSST, with much less training samples, achieved
higher accuracy than [64] on the retrieval datasets. From the
limited experiments, it can be seen that the adjustment of the
sample space was more elegant and accurate than the expansion
of the sample space for image retrieval.

SGD and Adam are two of the mainstream gradient descent
methods. We found that using SGD instead of Adam [65]
allowed not only faster convergence in the training phase, but
also achieved higher accuracy in the retrieval phase in most of
the experiments. The only exception was CBP [23], where SGD

caused training divergence, which may have been caused by the
backpropagation of special bilinear pooling. Note that although
in-depth review of the theoretical difference between Adam and
SGD was beyond the scope of this article, a review of the past
literature is worthwhile here. For example, Wilson et al. [66]
believed that the use of an adaptive learning rate method such
as Adam may overemphasize the features that appear in the
early stage, and as a result, may suppress the contribution of the
features in the later stage. Reddi et al. [67] experimentally proved
that Adam did not converge in some cases. Keskar and Socher
[68] conducted a comparative experiment on the CIFAR-10
dataset and found that although Adam had a faster convergence
speed, the final effect was not as good as that of the group using
SGD.

We used ResNet34 as our lightweight backbone and did not
consider heavier backbones (e.g., ResNet101 or Hourglass104
[69]) for the sake of efficiency. The other commonly used
lightweight backbone is VGG [70]. However, the number of
parameters and amount of calculation of ResNet34 are only
a fifth and a fourth of that of VGG16. Furthermore, we have
experimentally demonstrated that ResNet performed better than
VGG for RSIR in our previous work [23].

In this article, our JSST is applied to high resolution or
very high resolution RSIR. However, we believe that it can
also benefit the multispectral or hyperspectral image retrieval.
However, there is few such dataset (e.g., EuroSAT Dataset
[71]) for scene classification or image retrieval up to now. If
more multispectral or hyperspectral image retrieval datasets are
available, the only modification of the proposed JSST is to set
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accordingly the output vector length of the regression layer in
the spectral module.

Besides its superiority when compared to other recent meth-
ods in our extensive experiments, JSST also has the advantage of
being a generic and plug-in front-end module of a deep learning-
based image retrieval network that can be implemented in most
of the other retrieval methods, especially those emphasizing a
network structure or back-end pooling/encoding improvement
but lacking the pre-processing of inputs, for example, JSST can
provide a lot of room for boosting the performance of advanced
retrieval methods such as SENet [25] and CBP [23].

V. CONCLUSION

In this article, we proposed a lightweight module to per-
form specific geometric and spectral modification on the input
image called the JSST model. Our JSST automatically learns
the spatial and spectral parameters through a PGN to convert
the original input image into an output image, which can then
be better described and discriminated by the image retrieval
network through emphasizing the objects/scenes of interest and
correcting spectral distortions.

We conducted extensive experiments on four RSIR datasets.
Our results demonstrated that introducing the JSST made a
significant difference when compared with a baseline method
and state-of-the-art models.
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