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Abstract
This paper presents a novel corner detection and scale estimation algorithm for image feature description and matching. 
Inspired by Adaboost’s weak classifier, a series of sub-detectors is elaborately designed to obtain reliable corner pixels. The 
new corner detection algorithm is more robust than the FAST and HARRIS algorithm, and it is especially suitable for the 
implementation in FPGA. The new scale estimation method can be directly implemented in the original image without build-
ing Gaussian pyramid and searching max response value in each level, which not only increase computational efficiency but 
also greatly reduces memory requirement. Based on the proposed algorithm, a CPU-FPGA cooperative parallel processing 
architecture is presented. The architecture overcomes the memory space limitation of FPGA and achieves high-speed feature 
matching for massive high-resolution aerial images. The speed of the CPU-FPGA cooperative process is hundred times faster 
than SIFT algorithm running on CPU, and dozens of times faster than SIFT running in CPU + GPU system.

Keywords Image matching · Corner detection · Scale estimation · Parallel computing · CPU-FPGA cooperative processing

1 Introduction

Nowadays, it is a big challenge to effectively and efficiently 
handle massive high-resolution images in the field of pho-
togrammetric and remote sensing. Massive aerial images 
can be captured from ongoing satellite platforms or various 
Unmanned Aerial Vehicles (UAVs). The traditional ways 
of feature matching undoubtedly are not suitable to process 
massive aerial images, because they cannot meet the require-
ments of the image data throughput, time cost and power 
consumption. Image matching is the fundamental step of 
aerial images processing, such as pose estimation, image 
geo-registration, object detection and tracking, geometrical 
calibration, 3D reconstruction and so on. So high-speed 
(near) real-time image matching of massive high-resolution 

images is the key in emergency remote sensing applications 
[1].

The existing image matching methods can be roughly 
classified into two categories [2]: Local Matching and 
Global Matching. So far, the local matching methods are 
represented by SIFT [3], ASIFT [4], Hessain affine [5], etc., 
and they have been able to obtain robust and reliable match-
ing results under obvious illumination, geometric transfor-
mation (rotation, scaling, affine [6]. The global matching 
methods are represented by SGM [7], Graph Cut [8], Belief 
Propagation [9], etc., and they can output high-quality dense 
disparity images even in difficult image areas, e.g. texture 
deficiency, repetition and gray discontinuity boundaries. 
However, along with the improvement of matching robust-
ness and disparity quality, the computational complexity 
and time cost of matching algorithms increase dramatically 
[10]. Because of high complexity, these algorithms cannot 
meet the demand for high-speed processing on CPU. For 
this reason, parallel processing is an effective strategy to 
improve computational efficiency for meeting the real-time 
processing requirements of massive image data.

Basically, the classical CPU processors based on the Von 
Neumann architecture are not suitable for large amounts of 
duplicated data calculation, but the acceleration devices 
GPU and FPGA are suitable because of powerful parallel 

 * Jun Wu 
 wujun93161@163.com

1 School of Electrical Engineering and Automation, Guilin 
University of Electronic Technology, Guilin, China

2 Guangxi College’s Emphasis Laboratory Foster Base 
for Optoelectronics Information, Guilin, China

3 School of Remote Sensing and Information Engineering, 
Wuhan University, Wuhan, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-020-01012-8&domain=pdf


706 Journal of Real-Time Image Processing (2021) 18:705–722

1 3

computing capacity [11]. Due to the limit of the Single 
Instruction Multiple Data calculation model and correspond-
ing Pipeline Stage division, the algorithm parallelization 
requires all calculation units to have the same pace in GPU 
when different data is processed; so many time-delays are 
inevitable in the calculation. The algorithm parallelization 
in FPGA is with extremely low latency [30], and there is a 
lower power consumption and competitive market price than 
GPU. Because it is quite different between Von Neumann 
architecture processor and Harvard architecture proces-
sor, the complex of FPGA development is closely related 
to the parallelism, computational complexity and storage 
requirements of implemented models [31]. At present, the 
implementations of high-performance algorithm in FPGA, 
e.g., SIFT and SURF, are limited, which is just suitable for 
low-resolution images, decreased accuracy and the number 
of feature points. It can be implemented that using corner 
to do feature-point matching in the FPGA. But if the image 
has an obvious change of luminance or shooting angle, 
detected corners usually cannot be tracked repeatedly [32]. 
A reliable corner detection and scale estimation algorithm 
is proposed in this paper and further implemented in a way 
of “CPU + FPGA” cooperative process, which can meet the 
requirement of the high-speed feature detection and match-
ing for aerial images with large pixel arrays.

To summarize, we make the following contributions. 
First, we proposed a robust parallel corner detection algo-
rithm which is suitable for FPGA implementation. Second, 
a direct scale estimation algorithm is proposed in the origi-
nal image, which avoids to build Gaussian pyramid. Third, 
we implement the proposed algorithm in the CPU + FPGA 
cooperative processing architecture for high- resolution 
aerial images.

2  Related work

Feature matching can be roughly divided into two types 
of algorithm: matching and feature point-based matching. 
Classical region-based feature matching algorithms have 
Medial features (MFD), edge-based region detector (EBR) 
and maximally stable extremal regions (MSER). Medial 
features (MFD) [12] are detected based on shape. In MFD, 
although more information is used, gradient strength is sen-
sitive to lighting and scale variations. The EBR starts from 
corner points and exploits nearby edges by measuring pho-
tometric quantities across them. EBR is suitable for man-
made structures like buildings, but not for generic matching, 
as shown in [5]. The MSER of [13] is a similar watershed 
segmentation and matching algorithm, it can detect regions 
of stable intensity and, therefore, avoids common prob-
lems of gradient-based methods like localization accuracy 
and noise. MSER can only detect bright or dark extremal 

regions, and it cannot detect gray regions that are adjacent 
to both brighter and darker ones. Classical feature matching 
algorithms based on feature-point have high-performance 
local matching methods SIFT, SURF, and corner detection 
algorithm Hessain-affine, Harris-affine, etc. The proposed 
algorithm belongs to the feature matching algorithm based 
on feature-point. In the practice, for the parallel implemen-
tation of high-speed feature matching, there are two paral-
lel methods which can be used to accelerate algorithm, by 
GPU and FPGA. Some researchers have got many valuable 
research achievements in the past.

Acharya et al. [14] presented a parallel implementation 
of SIFT on a GPU by combined a kernel optimization, and 
obtained a speed of around 55 fps for 640 × 480 images. At 
the same time, there are some researchers have also imple-
mented SIFT and SURF algorithm on GPU, e.g., [15–17], 
but compared to CPU implementation, they all are no more 
than 20 times the acceleration. Because of necessary many 
time-delays in the calculation and the limit of the pipeline 
number, the acceleration performance is limited using GPU.

The implementation of feature-point matching on FPGA 
has two types of algorithm: classical high-performance fea-
ture-point matching algorithms (SIFT, SURF) and corner 
pixel matching algorithm (Harris, FAST, and so on). The 
implementation of classical high-performance feature-point 
matching algorithms on FPGA: Huang et al. [18] and Zhong 
et al. [19] partly implement the SIFT algorithm in FPGA 
board, and feature detection and matching can be finished 
in about 80 ms for a frame video image. For the purpose of 
real-time traffic sign detection, Zhao et al. [20] implement 
SURF in FPGA board and handle with 800*600 resolution 
video streams with the speed of 60 fps. [21] detected and 
matched the feature points by combined SURF detector and 
Binary Robust Independent Elementary Features (BRIEF) 
descriptor by FPGA, and the speed is about 27 times of 
CPU-based implementation. [22] has present multiple hard-
ware implementations of the semi-global matching (SGM) 
algorithm on the FPGA by simplified SGM, and achieved 
the real-time performance of 30 frames/s with 128 matching 
pairs per frame for the image resolution of 640_480. When 
the high-performance feature-point matching algorithm is 
implemented on FPGA, because of high computational com-
plexity, the algorithm usually need to be simplified, the num-
ber of feature-point is limited for several hundreds and the 
resolution of image usually is less than one million pixels.

The corner detector, e.g., FAST [27] and Harris [23] are 
widely used for image matching for the high detection 
efficiency. [24] implemented the Harris corner detection 
algorithm on the FPGA using a sliding window, which can 
avoid the demand of large buffer memory. [25] proposed 
an efficient hardware approach that offloads the repetitive 
feature extraction procedures into logic gates, and the result 
shown that the speed and accuracy of the feature detector 
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are good enough for many real-world applications. [26] 
implemented FAST algorithm on the FPGA, which can real-
timely detects corner. FAST has been incorporated into ORB 
[28] and further implemented with FPGA [29], which offer 
higher frame rates than CPU. At now, corner algorithm can 
be implemented on the FPGA, and finish high-speed feature 
matching. But the corner detection algorithm is not robust, 
if the image has an obvious change of luminance or shoot-
ing angle, detected corners usually can’t be track repeatedly.

3  Corner detection and matching algorithm

The aim of this paper is to develop one high-speed corner 
detection and matching algorithm, which can handle with 
massive aerial images with large pixel arrays using FPGA 
hardware acceleration. To this end, proposed corner detec-
tion and matching algorithm in this paper is not only robust 
but also suitable for FPGA implementation. Commonly, 
there are two big challenges for handling image in FPGA 
board: At first, because the on-board Static Random-Access 
Memory (SRAM) of FPGA is limited, usually 3 ~ 4 M Byte, 
image pixels have to be loaded into the FPGA locally and 
dynamically so as to occupy less buffer space, meanwhile, 
the image operation in the big size window or variable-size 
window should be avoided. The second, the implementation 
of floating-point arithmetic, e.g., division, square root, loga-
rithm and complex arithmetic operation, is very difficult and 
inefficiency on FPGA. In this paper, corner detection and 
matching algorithm are proposed with a concise arithmetic 
operation, as well as the structure of algorithm is suitable 
for timing convergence and clock optimization management 
on FPGA.

3.1  Corner detection

Due to high information entropy in image, corner points are 
widely used in the field of computer vision. Several defini-
tions of the corner are proposed as [33]: the pixel with the 
biggest gradient of gray in the local area; the cross-point of 
two or more edge lines; the pixel whose value and direction 
of gradient all change rapidly, etc. Based on those definitions 
and inspired by the Adaboost weak classifier [34], a series 
of sub-detector is elaborately designed to get reliable corner 
pixels in the paper.

3.1.1  Sub‑detector C
1

The purpose of sub-detector C1 is to remove background 
pixels in the image, according to the gradient function 
∇(x, y) = ||∇x

|| + |||∇y
||| . If a pixel’s gradient value is smaller 

than given threshold D1, this pixel will be discarded as a 

background pixel. The D1 is defined as: D1 = K1 ∗ Ixy, where 
Ixy is the average gray in the local area and k1 is an empirical 
constant ranged between 1.0 and 1.5.

3.1.2  Sub‑detector C
2

The aim of this sub-detector is to obtain candidate corners 
by means of the symmetry of gray distribution and non-
maximum suppression of gray change on both sides of cor-
ners. As seen in Fig. 1, a polar coordinate system is set up 
for each candidate corner, of which pixel P is the origin point 
and the direction of the gradient � is set as the direction of 
polar coordinate. Two points [ p4(xa, ya) and p�

4
(xb, yb) ] are 

got on the perpendicular line ( � = 0 and � ) of gradient direc-
tion. The ruler of symmetry is set to require that the local 
gray value of p4(xa, ya) and p�

4
(xb, yb) is close to each other |||Iw(xa, ya) − Iw(xb, yb)

||| < D2 . The D2 is a given threshold and 
defined as D2 = K2 ∗ Ixy , where Ixy is the average gray in the 
local area, and k2 is an empirical constant ranged between 
0.05 and 0.2. Finally, the candidate corner is got by means 
of non-maximum suppression on the gray change of the 
pixel under the symmetry of gray distribution in the local 
area (5*5 window). The gray value change function ∇m(x, y) 
is expressed as formula (1)

3.1.3  Sub‑detector C
3

The purpose of sub-detector C3 is to remove non-corner edge 
pixels using the ruler of gradient direction change. The ruler 

(1)
∇m(x, y) =

|||Iw(x, y) − Iw(xa, ya)
||| +

|||Iw(x, y) − Iw(xb, yb)
|||

2

Fig. 1  The polar coordinate of the candidate corner and distribution 
of detection pixels
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of gradient direction change is that the corner is asked to 
have a different gradient direction between center pixel and 
adjacent pixels on the vertical line of gradient direction. As 
shown in Fig. 1, two points P4 and P′

4
 are got in the direction 

of � = 0 and � . The gradient direction ∇�4 and ∇��
4
 of P4 and 

P′
4
 are calculated, respectively. If ∇�4 and ∇��

4
 meet the con-

dition C3 ∶
||∇𝜃4|| > D3 ∩

|||∇𝜃�4
||| > D3 , the center pixel (x0, y0) 

is a candidate corner, or it is discarded. Usually, the angle 
range of a corner ranges from 0o to 160o , and the value of 
threshold D3 set to 20 which is a good choice in practice. 
Because the sub-detector C3 excludes the non-corner pixels 
by gradient direction change instead of gradient value, it can 
effectively avoid the influence of different angle light 
changes on the detection results.

3.1.4  Sub‑detector C
4

The purpose of sub-detector C4 is to remove random non-
corner noise pixels based on the shape of corner. The pixels 
in the neighborhood of corner candidate are divided into two 
connected sets. As shown in Fig. 1, the 16 pixels are deter-
mined by computing its distance to the center point (x0, y0). 
The shape ruler of corner is that there is a connected set of 
“1” around of P0 and a connected set of “0” around of P′

0
.

Real corners can be got by synthesizing the output of 
4 sub-detectors as C = C1 ∩ C2 ∩ C3 ∩ C4. Because the cal-
culation of pixel gradient and average gray level in C1 and 
non-maximum suppression in C2 only involve small neigh-
bourhood (5*5 or 3*3 windows), the division calculation in 
C2 can be implemented by shift operation, the calculation 
and comparison of the angle between gradient direction in 
C3 can be accomplished directly by coordinate vector sub-
traction, proposed corner detector is easy to be implemented 
by FPGA. Considering the pixel gradient and neighbour-
hood average gray calculation (pre-processing), the corner 
detection process in this paper can be roughly designed as 

two ways: serial and parallel, as seen in Fig. 2. The former 
has the advantage of avoiding repeated processing of non-
corner pixels. The latter has the advantage of large parallel 
granularity and is adopted for the realization of the functions 
on FPGA.

3.2  Corner scale estimation

In the classical feature-point matching algorithm, the DoG 
convolution function is commonly used to get feature scale. 
There are two problems which are often involved: large 
RAM requirement when building Gaussian pyramid; and 
massive calculation when doing convolution on each level 
of pyramid. In this paper, we propose to directly estimate 
corner scale in original image without building Gaussian 
pyramid and searching max response value in each level of 
pyramid. This is achieved by replacing the DoG convolution 
function with the square wave function, as seen in Fig. 3. 
Figure 3a shows the DoG convolution functions (1D) at 5 
continuous scales (k = 1.26, σ  = 1.6) in SIFT Gaussian pyra-
mid Octave 1; and Fig. 3b is the approximation of Fig. 3a 
using square wave function.

It can be seen from Fig. 3 that the DoG convolution func-
tions of different scale is corresponding to the square wave 
functions with different “width” and “height”. The differ-
ence of “width” means that the size of convolution template 
is different; and the difference of “height” means that the 
convolution coefficient is different. Considering two square 
wave functions on continuous scales, we can observe their 
convolution difference on the image will be caused by two 
kinds of pixel: (1) Non-overlapped pixels belonging to the 
large-scale convolution template and not covered by small-
scale convolution template; (2) Overlapped pixels covered 
both by the small-scale and large-scale convolution template 
but have different template coefficient. The observed image 
convolution difference can be expressed as formula (2):

C1 C2 C3 C4

F F FF

T T T
Candidate 

pixel

Rejected false corner

True 
corner

T

synthe
sizing

Candi-
date 
pixel True 

corner

C1

C2

C3

C4

Rejected false corner

pre-calculation
Corner 

judgment

F

T

 (a) The serial-structure. (b) The parallel-structure. 

Fig. 2  The structure of the corner detection procedure



709Journal of Real-Time Image Processing (2021) 18:705–722 

1 3

where, ∇DoG� is the observed image convolution difference 
for a certain feature pixel at different scale spaces estimated 
with square wave function; ‘0′ and ‘1′ represent adjacent two 
scale spaces and the lager number corresponds to the large 
scale space; ‘inner’ and ‘outer’ represent the overlapped and 
non-overlapped pixels, respectively; DOG�

(1,outer)
 is the result 

of image convolution contributed by the non-overlapped 
pixels; DOG�

(1,inner)
− DOG�

(0,inner)
 is the result of image con-

volution contributed by the overlapped pixels.
We impose a constraint on the adjacent two scale spaces 

in formula (2) that, the size of large-scale convolution tem-
plate is expanded a circle than that of small-scale convolu-
tion template. It is easily to understand that the non-over-
lapped pixels in formula (2) will belong to the boundary of 
large-scale convolution template (called outer circle). In 
addition, though the overlapping pixels in formula (2) have 
two coefficients of large-scale convolution template and 
small-scale convolution template at the same time, but most 
coefficients are the same or very close except at the bound-
ary of small-scale convolution template. So the result of 
DOG�

(1,inner)
− DOG�

(0,inner)
 in formula (2) will be mainly con-

tributed by the overlapped pixels belonging to the boundary 

∇DoG� = DoG�
(1,outer)

+ DoG�
(1,inner)

− DoG�
(0,inner)

of small-scale convolution template (called outer circle). 
When using square wave functions as convolution template 
with imposed constraint, we can make a comparison of adja-
cent scale spaces for a feature pixel by directly inspecting 
pixels belonging to the inner and outer circle aforemen-
tioned, thus eliminating the need to construct a differential 
Gauss pyramid.

With the change of image scale, it is not difficult to under-
stand that significant difference will happened between a 
given feature point and its neighbourhood pixels at the spe-
cific direction. So we confine the comparison of adjacent 
scale spaces to the pixels in a particular direction (equivalent 
to introducing direction constraint) on the two circles afore-
mentioned. rij, r′ij be the radius of inner circle and outer circle 
around a detected corner pixel, where ‘i’ indicates the 
Octave in predefined scale space, similar to SIFT algorithm, 
and ‘j’ indicates the level in each Octave. Figure 4 shows the 
method, which we code the pixels belonging to the inner and 
outer circle to estimate the scale for a certain feature point.

As seen in Fig. 4a, the pixels on the inner circle and 
outer circle are compared with each other based on prede-
fined specific directions. Here the “specific directions” are 
determined by the overlapped pixels with local maximum 
template coefficient difference and belonging to the inner 

Fig. 3  Depict the square wave 
function and DoG convolu-
tion function in SIFT Gaussian 
pyramid

Fig. 4  The areas are selected 
and coded on the inner circle 
and outer circle when i equal 0, 
j equal 2
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circle. In addition, for the better anti-noise performance, 
the gray level of pixels to be replaced with the average 
gray of the sampling window Sij where the size of sam-
pling window is connected with the radius of circle at spe-
cific scale space to be estimated. Figures 5 and 6 show the 
size of sampling window, Sij 02, respectively, correspond-
ing to the radius of outer/ inner circle at different scale 
space (Octave). Finally, as seen in Fig. 4b, we quantize 
the image convolution difference at adjacent scale spaces 
for a given corner pixel by coding its specific neighbour 
pixels as formula (3):

where xn,i,j  is the average gray in the sampling window, 
which the centre is at the n-th neighbour pixel belong to 
outer circle; and x′

n,i,j
 is the average gray in the sampling 

window, which the centre is at the n-th neighbour pixel 
belong to the inner circle. The number of encoded “1” will 
be the quantized result Mi, j Since the number of sampling 
pixels in formula (3) is varied with the radius of the inner 
circle, we normalize Mi, j using formula (4).

where Ni,j is the number of pixels to be inspected on the 
inner circle.

bn,i,j =

{
1 xn,i,j > x�

n,i,j

0 xn,i,j ≤ x�
n,i,j

M
�

i,j
=

M
i,j

Ni,j

, i = 0, 1, 2, 3 j = 1, 2, 3, 4, 5

As shown in Fig. 7, the optimal feature scale of the corner 
is obtained by searching for the minimum value M′

i,j
 in con-

tinuous scale space. For any one corner pixel, if its reliable 
scale cannot be found, this corner will be discarded, other-
wise, the scale will be used to get feature descriptor for the 
corner. Usually, the precise scale value is got using two order 
polynomial fit method.

3.3  Corner description and matching

In the paper, BRISK feature description algorithm [35] is 
used to get the corner feature, and the result is 512-bits 
binary feature vector for each corner. The range of neighbor-
hood is delimited using the method in the corner scale esti-
mation section to estimate scale. Consequently, the matching 
of any two corner feature vector is a simple computation of 
Hamming Distance (HD) [36].
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Fig. 5  The radius value of the outer circle and the size of the sampling window Sij with a different scale
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Fig. 6  The radius value of the inner circle and the size of the sampling window Sij with a different scale

Fig. 7  Depicts the search of optimal feature scale and its precision 
position
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From the aforementioned algorithm of corner detection 
and matching, we can find the HD computation for mas-
sive corner feature vectors will be very efficient in FPGA 
through a bitwise XOR operation. Meanwhile, proposed cor-
ner detector is quite concise in numerical (symbol) operation 
due to low computational complexity, e.g., simple division 
operation in C2 can be accomplished by one shift, the calcu-
lation and comparison of gradient orientation angles in C3 
can be accomplished directly by coordinate vector subtrac-
tion, the calculation of pixel gradient, average gray level and 
non-maximum suppression in C1 only involve small neigh-
bourhood operations (5*5 or 3*3 windows), and thus, it is 
very suitable for FPGA implementation. However, for the 
corner scale estimation and feature description in this paper, 
either large neighbourhood (the size of the window is up to 
hundreds pixel) or complex division/trigonometric function 
are required, and thus, it is difficult for FPGA implemen-
tation. To this end, a CPU-FPGA cooperative processing 
framework is proposed in the next section for high-speed 
image corner detection and matching.

4  CPU‑FPGA cooperative processing

4.1  Computing framework

Proposed algorithm is implemented in a CPU-FPGA coop-
erative processing way. The assignment is assigned by (1) 
feature detection and HD calculation of feature vectors in 
the proposed algorithm are implemented on FPGA board 
because they have intensive computation and are easy to 
be processed in parallel. (2) Feature scale estimation and 
description in proposed algorithm involve complex func-
tion operations (e.g., division, triangular function) in larger 
neighborhoods, as well as huge memory space is required to 
store a large number of feature descriptors, so we implement 

them on CPU. CPU is also responsible for overall task 
scheduling, data transmission and matching distance com-
parison. Figure 8 shows the CPU-FPGA collaborative com-
puting framework. The processes as following:

(1) Image data is transmitted from CPU to FPGA through 
PCIE interface and stored in FPGA’s static random access 
memory (SRAM). FPGA detects corners and return them 
to CPU in real time. Synchronously, CPU completes the 
corner scale estimation and feature description, and save 
all the feature descriptors (vectors). Once feature descrip-
tors are available for the image matching, their HD dis-
tance computation will be triggered in FPGA.
(2) Feature vectors of the reference image are at first 
transferred from CPU to FPGA board and stored in Dou-
ble-Data-Rate Three Synchronous Dynamic Random 
Access Memory (DDR3 SDRAM). Then, the feature 
vectors of the image are transferred to FPGA one by one, 
and their HD to all the feature vectors of the reference 
image are computed parallelly. Finally, the optimal and 
sub-optimal HD of the matching points are returned to 
the CPU, and CPU outputs the tie points by judging their 
ratio of optimal HD to sub-optimal one according to a 
given threshold value.

Usually, a computer CPU can cooperate with several 
FPGA boards using PCIE as a transmission interface. Thus, 
it’s easily understood that the processing capacity of the 
CPU-FPGA collaborative computing framework in this 
paper is proportional to the number of FPGA boards config-
ured on the computer motherboard. Because the frequency 
of CPU is higher than FPGA, we transfer data using Direct 
Memory Access (DMA) technology based on the PCI-E 
hardcore. In the paper, 64 bits PCIE × 8 data bus is used and 
4 pixels are transferred each time. The max speed at 4 GB/S 
can be achieved. Using FPGA to realize PCI-E function 

Fig. 8  The CPU-FPGA coop-
erative processing framework 
for high-speed corner detection 
and matching Reading pixel, temporary storing size

11*2048
Pre-calculation(gradient, average gray)

Corner detection C1 C2 C3 C4 ,
Non-maximum suppression

Reading feature vector DDR3 3Gb ,
Vector distance calculation(SRAM: 1Mb)

FPGACPU

Synchronous Matching 
judgment and output 

matching result

synchronous Scale 
estimation and Feature 

description

Output pixels by block

Pixel 
stream

Pixel location

Feature vector

Vector distance

PCIE
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is simply to complete the processing of TLP (Transaction 
Layer Packet). Avalon-ST (Avalon Streaming Interface) is 
defined by Altera Company, which is used to transmit TLP. 
Avalon-ST includes receiving signals and sending signals, 
and the time sequence between receiving and sending is 
similar. Figure 9 depicts the transmitting timing diagram of 
Avalon-ST interface in PCI-E.

4.2  Algorithm Implementation on FPGA

As seen in Fig. 8, implemented an algorithm module on 
FPGA including image pre-processing, corner detecting and 
HD computation in feature matching.

4.2.1  Image pre‑processing

The implementation of image pre-calculation in FPGA is 
showed in Fig. 10. The width of image is inputted to FPGA 
and set as 2048. At first, we need to implement a paral-
lel sliding window function. We use a Shift_RAM with 11 
lines, 2048 data in each line and 8bits for each data, which 

is a shift register chain, to get the pixel matrix of 11*11 in 
FPGA, as seen in Fig. 10a. At the same time, the output of 
each Shift-Register is saved in cache and gets the pixel matrix 
of 11*11 size, as seen in Fig. 10b. Then we synchronously get 
the gradient value ∇y and ∇x with the convolution between 
the pixel matrix and convolution kernel, as seen in Fig. 10c 
and Fig. 10d. In the implementation of gradient value ∇y , at 
first, we calculate the sum of 3 pixels in the first line and the 
sum of 3 pixels in the third line; then calculate the difference 
value between the first line and the third line, the top digit is 
the sign bit according to the comparison of data. In the imple-
mentation of gradient value ∇x , at first, we calculate the sum 
of 3 pixels in the first column and the sum of 3 pixels in the 
third column; then calculate the difference value between the 
first column and the third column, the top digit is the sign bit 
according to the comparison of data. The implementation of 
gradient value ∇y and ∇x is showed in Fig. 11a. The average 
gray Ixy of 8-neighbourhood is got by calculating the convolu-
tion between the pixel matrix and convolution kernel, as seen 
in Fig. 10e. In the implementation of average gray Ixy , at first, 
we calculate the sum of 3 pixels in the line direction, and 3 

(a) (b)

Fig. 9  The transmitting timing diagram of 3-D Word header TLP in PCI-E Avalon-ST interface

(a)
(e)

(b)

(d)

(c)

(f)

Fig. 10  Depict of image pre-calculation on FPGA. a 11 Shift-Registers; b the pixel matrix; c the convolution kernel of Y direction gradient; d 
the convolution kernel of X direction gradient; e the convolution kernel of average gray; f the result of pre-calculation
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lines are parallelly calculated; then the final sum value is got 
by calculating the sum of 3 sums in each line; the end, the 
calculation of divide 8 is replaced by drop lowest 3 bits (LSB). 
The implementation of average gray Ixy is showed in Fig. 11b. 
The implementation of image pre-calculation will consume 22 
Kbit SRAM of FPGA.

4.2.2  Corner detecting

The core problem of corner detection implementation on 
FPGA is how to obtain the pixel gradient ∇(x, y) and locate 
16 pixels in the neighbourhood of candidate corner. The 
implementation of absolute value ||∇x

|| and |||∇y
||| in sub-detec-

tor C1 can be got when calculation gradient value, as shown 
in Fig. 11a. When gradient values are calculated, the posi-
tion distribution of neighboring pixels of the corrent pixel is 
shown in Fig. 11d. The implementation of locating 16 pixels 
in the neighbourhood of corner candidate by three sub-detec-
tor C2 , C3 , C4 is shown in Fig. 11c, in which the gradient ∇x 
and ∇y are mapped to get their integer step Dx/Dy, and the 
comparer and selectors are used to replace division computa-
tion involved in the mapping. Because the possible value of 
integer step Dx /Dy is 0, − 1, 1, − 2, 2 and the sum of ||Dx

|| 
and |||Dy

||| is 2, we set that the rule of mapping is shown in the 
formula (5). The sign bit of  Dx and  Dy is same as the sign bit 
of gradient ∇x and ∇y . We can easily get 16 pixels in the 
neighbourhood of corner candidate.

⎧⎪⎨⎪⎩

��Dx
�� = 0,

���Dy
��� = 2 if ��∇x

�� < ���∇y
���∕2��Dx

�� = 1,
���Dy

��� = 1 if 3 ∗
���∇y

���∕2 > ��∇x
�� ≥ ���∇y

���∕2��Dx
�� = 2,

���Dy
��� = 0 if ��∇x

�� ≥ 3 ∗
���∇y

���∕2

4.2.3  HD computation

The implementation of HD computation on FPGA is pre-
sented in Fig. 12. At first, all feature vectors of the reference 
image are transferred from CPU to FPGA board and stored 
in external DDR3 SDRAM. During the matching, feature 
vectors of the reference image are imported from the DDR3 
SDRAM to FPGA SRAM using data block mode. The data 
block’s size is 65536 bits (the depth is 16 bits; the width 
is 4096 bits). DDR3 SDRAM is composed of 8 chips and 
the data bus is 128 bits. Data are transferred from DDR3 
SDRAM to FPGA SRAM using 400 MHz two-channel 
internal storage strategy. 2048 feature vectors can be pre-
stored in the FPGA SRAM. When FPGA is receiving a new 
feature vector to be matched, FPGA timely computer its HD 
to all feature vectors pre-stored in the SRAM. With PCIE × 8 
data bus, the transfer of a feature vector with 512 bits from 
CPU to FPGA can be done in 16 clock cycles of FPGA in 
this paper. As seen in Fig. 12, 128 HD calculators, each one 
is composed of 512 bits XOR operation and bits accumula-
tor, are used to parallelly calculate the HD of two feature 
vectors. Hence, within a clock cycle of FPGA, the HD of 
one feature vector can be computed with 128 feature vectors 
pre-stored in SRAM. Finally, the matching points associated 
with the best and second-best HD will be got with two-level 
comparer.

5  Experiments and discussion

We implement the proposed algorithm and architecture on 
a normal PC and FPGA board. The PC is configured with a 
2.0 GHz Intel E5-2650 CPU, 32G RAM, Win10 operating 
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Fig. 11  The implementation of corner detection on FPGA. a The gradient calculation. b The average calculation. c The 16 detection pixels loca-
tion. d The position distribution of pixels  P11,  P12, ...
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system and VS2010 Code compiler. The selected FPGA 
board is the Altera 5CGXFC5C6F27C7N FPGA, which has 
77 K Logic Cells, 4884 Kb SRAM, and runs on 100 MHz 
clock frequency. The FPGA board also contains 3 GB DDR3 
SDRAM with 128 bits bus-width. The test items include the 
performance of corner detection and the performance of the 
CPU-FPGA cooperation processing.

5.1  Performance of corner detection

Proposed corner detector with serial-structure is imple-
mented on the PC and we compare its results to that of 
FAST, HARRIS algorithm. The performance test includes 
the accuracy and repeatability of the algorithm.

5.1.1  Accuracy test

We use Scott Krig’s synthetic corner image [37] to test the 
robustness of the corner detection algorithm. The synthetic 
corner image, in the size of 2048*2048 pixels, includes 
16*24 image units of 54 unique patterns. Each pattern is 
arranged on a grid of 14*14 pixel rectangles. Gray values are 
0 × 40 and 0 × C0.  The original noise-free image (Fig. 13), 
Salt and Pepper noise image (the noise density is D = 0.05, 

Fig. 14) and Gaussian noise image (the mean is M = 0; the 
variance is V = 0.01, Fig. 15) are used to test the accuracy 
and robustness of corner detector. If the Grid Distance 
between the detected corner and true corner is more than 1 
pixel, the detected corner is set as an imprecise corner. The 
accuracy of tested corner detectors is illustrated in Table 1. 
Results show that the proposed detector in the paper has the 
highest accuracy at 98.7% for the original noise-free image. 
In a test of noise image, FAST almost is a failure to detect 
corner. The performances of HARRIS and proposed detec-
tor all have declined for noise images, but the accuracy of 
the proposed detector is better than HARRIS. The accuracy 
of the proposed detector is about 21% higher than HARRIS 
for Salt & Pepper noise image, and about 10% higher than 
HARRIS for Gaussian noise image.   

5.1.2  Repeatability test

Corner repeatability test is implemented on Edward Ros-
ten’s Maze image set and Bas-relief repeatability test image 
set [38]. As seen in Fig. 16, Maze dataset is got by taking 
a prop with abundant textural features and geometric fea-
tures, but it has serious projective warps. Bas-relief dataset 
is got by taking a flat plane with significant relief, but it has 

Fig. 12  Depict of feature vector 
matching on FPGA
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feature changes from different viewpoints. The resolution 
of the test image in the dataset is 768*576. The repeating 
distance is set to 3 pixels and we compare our results to 

that of FAST, HARRIS, SIFT algorithm, respectively, as 
shown in Fig. 17a, b. It can be found that repeatability of the 
proposed detector in the paper is best for a given number of 

Fig. 13  The test results from noise-free synthetic images

Fig. 14  The test results from synthetic images with Salt and Pepper noise

Fig. 15  The test results from synthetic images with Gaussian noise
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feature point, especially; the new algorithm has a significant 
advantage to Maze dataset because there are abundant clear 
corner points in image.

5.2  Performance of feature‑point matching

We use the publicly available datasets of [5] to test our 
detector against the state-of-the-art on CPU. In the dataset, 
scale/rotation images (boat) is used to test of our algorithm 
when the scale has changed of image. Figure 18 shows 
repeatability and matching score plots for all the detectors 
included in the classical feature matching algorithm. The 
result shows that the new algorithm is quite invariant to 
scale. In the test, the parameters of the classical algorithms 
are set with default parameters. Figure 18b shows that the 
number of feature-point pairs is basically constant when the 

image matches with different scale images. Figure 18a shows 
that the accuracy rate of the new algorithm is slightly lower 
than SIFT, but it is better than other classical algorithms.

5.3  CPU‑FPGA cooperation processing test 
of the new algorithm

Two kinds of aerial image, medium resolution (5616*3744) 
images and high resolution (11320*17310) images, as shown 
in Figs. 19 and 20, are used in the CPU-FPGA cooperation 
processing test of the new algorithm. At first, we comparison 
test the new algorithm of CPU-FPGA cooperation imple-
mentation and its CPU implementation. Then, we compari-
son test the new algorithm and SIFT algorithm. SIFT algo-
rithm is the most widely used to do feature-point matching 
in the field of photogrammetric and remote sensing. But 

Table 1  The data report of detected corners on synthetic image

Algorithm Noise-free image Salt and Pepper noise image Gaussian noise image

FAST HARRIS The paper FAST HARRIS The paper FAST HARRIS The paper

Total corner 8064 119040 119002 139236 155916 42624 376064 109700 29568
Real corner 3840 102912 117455 13440 111756 39556 54528 84356 25222
Accuracy- rate 47.62% 86.45% 98.7% 9.7% 71.7% 92.8% 14.5% 76.9% 85.3%

Fig. 16  Depict of image dataset for repeatability test

Fig. 17  Depict of the repeatability test results from two image dataset
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the hardware implementations of SIFT is limited on high-
resolution aerial images because the SIFT algorithm has a 
high computational cost and memory requirement. So SIFT 
is implemented by two types in the comparison test: the one 
is by CPU, another one is by CPU + GPU cooperation. In 
the CPU-FPGA implementation of new algorithm, because 
the preset width of the image is 2048 in FPGA, the aerial 
image has to be divided into small images with constant 
width 2048 pixels before it is transferred to FPGA, as seen 
the red line in Figs. 19 and 20. If the image width is less than 
2048 pixels, “0” is added to the end.

The speed data of a new algorithm by CPU-FPGA coop-
eration implementation and its CPU implementation can be 
found in Table 2. When the high-resolution aerial images 
are used to test new algorithm, the feature-point detection of 
CPU-FPGA cooperation is about 16 times faster than alone 
CPU; the matching of CPU-FPGA cooperation is about 451 
times faster than alone CPU. When the medium resolution 
aerial images are used to test new algorithm, the feature-
point detection of CPU-FPGA cooperation is about 32 

times faster than alone CPU; the matching of CPU-FPGA 
cooperation is about 443 times faster than alone CPU. The 
result shows that the new algorithm by FPGA paralleled has 
a great acceleration.

The speed data of the new algorithm and SIFT algo-
rithm can be found in Table 2, too. The new algorithm is 
implemented by CPU-FPGA cooperation. SIFT algorithm 
is tested on the CPU and CPU + GPU. When the high-reso-
lution aerial images are used to test algorithm, the number 
of feature-point pairs by new algorithm is about two times 
SIFT; the feature-point detection of new algorithm is about 
300 times faster than SIFT algorithm which is on a CPU; 
the matching of new algorithm is about 340 times faster 
than SIFT algorithm which is on a CPU; the feature-point 
detection of new algorithm is about 15 times faster than 
SIFT algorithm which is on CPU + GPU; the matching of 
new algorithm is about 13 times faster than SIFT algorithm 
which is on CPU + GPU; The speed of scale estimation and 
feature coding in the new algorithm is about more 40–30% 
than SIFT. When the medium resolution aerial images are 

Fig. 18  The performance of feature-point matching for different scale images

Fig. 19  The medium resolution 
aerial image pair
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used to test algorithm, the number of feature-point pairs by 
new algorithm is very close SIFT; the feature detection of 
new algorithm is about 576 times faster than SIFT algo-
rithm which is on a CPU; the matching of new algorithm 
is about 799 times faster than SIFT algorithm which is on 
a CPU; the feature detection of new algorithm is about 28 
times faster than SIFT algorithm which is on CPU + GPU; 
the matching of new algorithm is about 32 times faster than 
SIFT algorithm which is on CPU + GPU; The speed of scale 
estimation and feature coding in the new algorithm is about 
2 times SIFT.

As seen in Fig. 8, the feature-point detection and fea-
ture coding are synchronously processed in the CPU-FPGA 

cooperative processing framework of the new algorithm. The 
speed of feature coding by CPU is slower than feature-point 
detection by FPGA, so the total time of the new algorithm 
is the sum of feature coding and matching. According to 
Table 2, the total time of new algorithm by CPU-FPGA 
cooperative processing is 143998 ms for the high-resolution 
aerial image pair, and it is 2807 ms for the medium resolu-
tion aerial image pair. Because the time of feature coding 
and matching is related to the amount of feature-points, we 
calculate the consumed average time of each feature-point 
pair. According to Table 2, the average time of per feature-
point pair of the new algorithm in CPU-FPGA cooperative 
processing is about 0.8 ms for the high-resolution aerial 

Fig. 20  The high-resolution 
aerial image pair

Table 2  The results of corner detecting and matching on two kind of aerial image stereo

Method Aerial images The number of point Feature-point pair Time (ms) Processor

Left image Right image feature-point 
detection

Feature coding Matching

The paper High
resolution

1,217,688 1,169,177 187,768 143,348 32,606 50,314,518 CPU
8555 32,571 111,427 CPU + FPGA

Medium
resolution

80,038 85,498 4588 15,382 2267 243,080 CPU
462 2259 548 CPU + FPGA

SIFT High
resolution

820,632 867,658 61430 2,528,471 52,745 38,067,826 CPU
128,364 45,947 1,487,940 CPU + GPU

Medium
resolution

92,024 89,038 4636 266,370 5586 438,064 CPU
13,160 4927 17516 CPU + GPU
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images, and it is about 0.6 ms for the medium resolution 
aerial images. Based on the average time of per feature-
point pair, we compare the new algorithm with the SIFT 
algorithm, and get the result, as shown in Fig. 21. From 
Fig. 21, it can be found that the speed of the new algorithm 
is hundred times SIFT which is on a CPU, and dozens times 
SIFT which is on CPU + GPU. Hence, very high-speed cor-
ner detecting and matching performance is achieved with 
the proposed algorithm on CPU-FPGA cooperative process.  

Figures 22, 23 and 24 shows the matched feature-point 
pairs of the new algorithm and SIFT on test images. For 
the high-resolution aerial images with large pixel array, 
part matching result on local small areas are denoted by 
a rectangle with different colour, corresponding to three 
kinds of different scenes: building, vegetation and road, as 
seen in Fig. 22 and Fig. 23. It can be found from the result 
that the proposed algorithm can get more feature-point 
pairs than SIFT, especially in vegetation and road area. 
For medium resolution aerial images, our matching results 
are close to SIFT, and both of them have no obvious error 
feature-point pairs, as seen from Fig. 24.

Fig. 21  Comparison of average time cost on per feature-point pair

Fig. 22  Matched local feature-point pairs by proposed algorithm on the high-resolution aerial images
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Fig. 23  Matched local feature-point pairs by SIFT on the high-resolution aerial images

Fig. 24  Matched feature-point 
pairs on the medium resolution 
aerial images
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6  Conclusions

This paper presents a novel corner detection and scale estima-
tion algorithm. The new corner detector has a higher accuracy 
rate and robustness than FAST and HARRIS. The accuracy 
of the new corner detector is 98.7% for noise-free simulation 
image, about 21% higher than HARRIS for Salt and Pepper 
noise image, and 10% higher than HARRIS for Gaussian noise 
image. The repeatability of new corner detector is best than 
several famous local feature detection algorithm including 
FAST, HARRIS and SIFT. The new scale estimation method 
can get the feature scale value in the original image without 
building Gaussian pyramid and searching max response value 
in each level, which greatly increase computational efficiency 
and reduces memory cost.

A CPU-FPGA cooperative processing architecture is estab-
lished along with the proposed algorithm. In the architecture, 
the corner detection and the HD computation are parallelly 
implemented in FPGA; the scale estimation, feature coding 
and storage of corner location are implemented in CPU. The 
architecture has very high computation efficiency: the aver-
age time cost of per feature-point pairs is about 0.8 ms for the 
11320*17310 high-resolution aerial images and 0.6 ms for 
the 5616*3744 medium resolution aerial images. The speed 
of new algorithm in the CPU-FPGA cooperative process is 
hundred times SIFT which is on a CPU, and dozens times 
SIFT which is on CPU + GPU. Furthermore, the comput-
ing efficiency of the CPU-FPGA architecture can be further 
increased, and it is proportional to the number of configured 
FPGA circuit board which depend on the capacity of PCIE 
slots on the computer motherboard. The architecture also 
works effectively on the aerial images with huge pixel arrays, 
since the image can be divided into some small images with 
constant width 2048. If the FPGA board with 3 GB DDR3 
SDRAM and the number of detected corner in an image is less 
than one thousandth of the number of pixels, proposed archi-
tecture can handle the aerial image up to 600 million pixels. 
The new algorithm and CPU-FPGA cooperative architecture 
are valuable for the application of massive aerial images.
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