
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2021) 18:705–722
https://doi.org/10.1007/s11554-020-01012-8

ORIGINAL RESEARCH PAPER

A high‑speed feature matching method of high‑resolution aerial
images

Zhiyong Peng1,2 · Jun Wu1 · Yongjun Zhang3 · Xianhua Lin1

Received: 22 July 2019 / Accepted: 21 August 2020 / Published online: 2 September 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
This paper presents a novel corner detection and scale estimation algorithm for image feature description and matching.
Inspired by Adaboost’s weak classifier, a series of sub-detectors is elaborately designed to obtain reliable corner pixels. The
new corner detection algorithm is more robust than the FAST and HARRIS algorithm, and it is especially suitable for the
implementation in FPGA. The new scale estimation method can be directly implemented in the original image without build-
ing Gaussian pyramid and searching max response value in each level, which not only increase computational efficiency but
also greatly reduces memory requirement. Based on the proposed algorithm, a CPU-FPGA cooperative parallel processing
architecture is presented. The architecture overcomes the memory space limitation of FPGA and achieves high-speed feature
matching for massive high-resolution aerial images. The speed of the CPU-FPGA cooperative process is hundred times faster
than SIFT algorithm running on CPU, and dozens of times faster than SIFT running in CPU + GPU system.

Keywords Image matching · Corner detection · Scale estimation · Parallel computing · CPU-FPGA cooperative processing

1 Introduction

Nowadays, it is a big challenge to effectively and efficiently
handle massive high-resolution images in the field of pho-
togrammetric and remote sensing. Massive aerial images
can be captured from ongoing satellite platforms or various
Unmanned Aerial Vehicles (UAVs). The traditional ways
of feature matching undoubtedly are not suitable to process
massive aerial images, because they cannot meet the require-
ments of the image data throughput, time cost and power
consumption. Image matching is the fundamental step of
aerial images processing, such as pose estimation, image
geo-registration, object detection and tracking, geometrical
calibration, 3D reconstruction and so on. So high-speed
(near) real-time image matching of massive high-resolution

images is the key in emergency remote sensing applications
[1].

The existing image matching methods can be roughly
classified into two categories [2]: Local Matching and
Global Matching. So far, the local matching methods are
represented by SIFT [3], ASIFT [4], Hessain affine [5], etc.,
and they have been able to obtain robust and reliable match-
ing results under obvious illumination, geometric transfor-
mation (rotation, scaling, affine [6]. The global matching
methods are represented by SGM [7], Graph Cut [8], Belief
Propagation [9], etc., and they can output high-quality dense
disparity images even in difficult image areas, e.g. texture
deficiency, repetition and gray discontinuity boundaries.
However, along with the improvement of matching robust-
ness and disparity quality, the computational complexity
and time cost of matching algorithms increase dramatically
[10]. Because of high complexity, these algorithms cannot
meet the demand for high-speed processing on CPU. For
this reason, parallel processing is an effective strategy to
improve computational efficiency for meeting the real-time
processing requirements of massive image data.

Basically, the classical CPU processors based on the Von
Neumann architecture are not suitable for large amounts of
duplicated data calculation, but the acceleration devices
GPU and FPGA are suitable because of powerful parallel

 * Jun Wu
 wujun93161@163.com

1 School of Electrical Engineering and Automation, Guilin
University of Electronic Technology, Guilin, China

2 Guangxi College’s Emphasis Laboratory Foster Base
for Optoelectronics Information, Guilin, China

3 School of Remote Sensing and Information Engineering,
Wuhan University, Wuhan, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-020-01012-8&domain=pdf

706 Journal of Real-Time Image Processing (2021) 18:705–722

1 3

computing capacity [11]. Due to the limit of the Single
Instruction Multiple Data calculation model and correspond-
ing Pipeline Stage division, the algorithm parallelization
requires all calculation units to have the same pace in GPU
when different data is processed; so many time-delays are
inevitable in the calculation. The algorithm parallelization
in FPGA is with extremely low latency [30], and there is a
lower power consumption and competitive market price than
GPU. Because it is quite different between Von Neumann
architecture processor and Harvard architecture proces-
sor, the complex of FPGA development is closely related
to the parallelism, computational complexity and storage
requirements of implemented models [31]. At present, the
implementations of high-performance algorithm in FPGA,
e.g., SIFT and SURF, are limited, which is just suitable for
low-resolution images, decreased accuracy and the number
of feature points. It can be implemented that using corner
to do feature-point matching in the FPGA. But if the image
has an obvious change of luminance or shooting angle,
detected corners usually cannot be tracked repeatedly [32].
A reliable corner detection and scale estimation algorithm
is proposed in this paper and further implemented in a way
of “CPU + FPGA” cooperative process, which can meet the
requirement of the high-speed feature detection and match-
ing for aerial images with large pixel arrays.

To summarize, we make the following contributions.
First, we proposed a robust parallel corner detection algo-
rithm which is suitable for FPGA implementation. Second,
a direct scale estimation algorithm is proposed in the origi-
nal image, which avoids to build Gaussian pyramid. Third,
we implement the proposed algorithm in the CPU + FPGA
cooperative processing architecture for high- resolution
aerial images.

2 Related work

Feature matching can be roughly divided into two types
of algorithm: matching and feature point-based matching.
Classical region-based feature matching algorithms have
Medial features (MFD), edge-based region detector (EBR)
and maximally stable extremal regions (MSER). Medial
features (MFD) [12] are detected based on shape. In MFD,
although more information is used, gradient strength is sen-
sitive to lighting and scale variations. The EBR starts from
corner points and exploits nearby edges by measuring pho-
tometric quantities across them. EBR is suitable for man-
made structures like buildings, but not for generic matching,
as shown in [5]. The MSER of [13] is a similar watershed
segmentation and matching algorithm, it can detect regions
of stable intensity and, therefore, avoids common prob-
lems of gradient-based methods like localization accuracy
and noise. MSER can only detect bright or dark extremal

regions, and it cannot detect gray regions that are adjacent
to both brighter and darker ones. Classical feature matching
algorithms based on feature-point have high-performance
local matching methods SIFT, SURF, and corner detection
algorithm Hessain-affine, Harris-affine, etc. The proposed
algorithm belongs to the feature matching algorithm based
on feature-point. In the practice, for the parallel implemen-
tation of high-speed feature matching, there are two paral-
lel methods which can be used to accelerate algorithm, by
GPU and FPGA. Some researchers have got many valuable
research achievements in the past.

Acharya et al. [14] presented a parallel implementation
of SIFT on a GPU by combined a kernel optimization, and
obtained a speed of around 55 fps for 640 × 480 images. At
the same time, there are some researchers have also imple-
mented SIFT and SURF algorithm on GPU, e.g., [15–17],
but compared to CPU implementation, they all are no more
than 20 times the acceleration. Because of necessary many
time-delays in the calculation and the limit of the pipeline
number, the acceleration performance is limited using GPU.

The implementation of feature-point matching on FPGA
has two types of algorithm: classical high-performance fea-
ture-point matching algorithms (SIFT, SURF) and corner
pixel matching algorithm (Harris, FAST, and so on). The
implementation of classical high-performance feature-point
matching algorithms on FPGA: Huang et al. [18] and Zhong
et al. [19] partly implement the SIFT algorithm in FPGA
board, and feature detection and matching can be finished
in about 80 ms for a frame video image. For the purpose of
real-time traffic sign detection, Zhao et al. [20] implement
SURF in FPGA board and handle with 800*600 resolution
video streams with the speed of 60 fps. [21] detected and
matched the feature points by combined SURF detector and
Binary Robust Independent Elementary Features (BRIEF)
descriptor by FPGA, and the speed is about 27 times of
CPU-based implementation. [22] has present multiple hard-
ware implementations of the semi-global matching (SGM)
algorithm on the FPGA by simplified SGM, and achieved
the real-time performance of 30 frames/s with 128 matching
pairs per frame for the image resolution of 640_480. When
the high-performance feature-point matching algorithm is
implemented on FPGA, because of high computational com-
plexity, the algorithm usually need to be simplified, the num-
ber of feature-point is limited for several hundreds and the
resolution of image usually is less than one million pixels.

The corner detector, e.g., FAST [27] and Harris [23] are
widely used for image matching for the high detection
efficiency. [24] implemented the Harris corner detection
algorithm on the FPGA using a sliding window, which can
avoid the demand of large buffer memory. [25] proposed
an efficient hardware approach that offloads the repetitive
feature extraction procedures into logic gates, and the result
shown that the speed and accuracy of the feature detector

707Journal of Real-Time Image Processing (2021) 18:705–722

1 3

are good enough for many real-world applications. [26]
implemented FAST algorithm on the FPGA, which can real-
timely detects corner. FAST has been incorporated into ORB
[28] and further implemented with FPGA [29], which offer
higher frame rates than CPU. At now, corner algorithm can
be implemented on the FPGA, and finish high-speed feature
matching. But the corner detection algorithm is not robust,
if the image has an obvious change of luminance or shoot-
ing angle, detected corners usually can’t be track repeatedly.

3 Corner detection and matching algorithm

The aim of this paper is to develop one high-speed corner
detection and matching algorithm, which can handle with
massive aerial images with large pixel arrays using FPGA
hardware acceleration. To this end, proposed corner detec-
tion and matching algorithm in this paper is not only robust
but also suitable for FPGA implementation. Commonly,
there are two big challenges for handling image in FPGA
board: At first, because the on-board Static Random-Access
Memory (SRAM) of FPGA is limited, usually 3 ~ 4 M Byte,
image pixels have to be loaded into the FPGA locally and
dynamically so as to occupy less buffer space, meanwhile,
the image operation in the big size window or variable-size
window should be avoided. The second, the implementation
of floating-point arithmetic, e.g., division, square root, loga-
rithm and complex arithmetic operation, is very difficult and
inefficiency on FPGA. In this paper, corner detection and
matching algorithm are proposed with a concise arithmetic
operation, as well as the structure of algorithm is suitable
for timing convergence and clock optimization management
on FPGA.

3.1 Corner detection

Due to high information entropy in image, corner points are
widely used in the field of computer vision. Several defini-
tions of the corner are proposed as [33]: the pixel with the
biggest gradient of gray in the local area; the cross-point of
two or more edge lines; the pixel whose value and direction
of gradient all change rapidly, etc. Based on those definitions
and inspired by the Adaboost weak classifier [34], a series
of sub-detector is elaborately designed to get reliable corner
pixels in the paper.

3.1.1 Sub‑detector C
1

The purpose of sub-detector C1 is to remove background
pixels in the image, according to the gradient function
∇(x, y) = ||∇x

|| + |||∇y
||| . If a pixel’s gradient value is smaller

than given threshold D1, this pixel will be discarded as a

background pixel. The D1 is defined as: D1 = K1 ∗ Ixy, where
Ixy is the average gray in the local area and k1 is an empirical
constant ranged between 1.0 and 1.5.

3.1.2 Sub‑detector C
2

The aim of this sub-detector is to obtain candidate corners
by means of the symmetry of gray distribution and non-
maximum suppression of gray change on both sides of cor-
ners. As seen in Fig. 1, a polar coordinate system is set up
for each candidate corner, of which pixel P is the origin point
and the direction of the gradient � is set as the direction of
polar coordinate. Two points [p4(xa, ya) and p�

4
(xb, yb)] are

got on the perpendicular line (� = 0 and �) of gradient direc-
tion. The ruler of symmetry is set to require that the local
gray value of p4(xa, ya) and p�

4
(xb, yb) is close to each other |||Iw(xa, ya) − Iw(xb, yb)

||| < D2 . The D2 is a given threshold and
defined as D2 = K2 ∗ Ixy , where Ixy is the average gray in the
local area, and k2 is an empirical constant ranged between
0.05 and 0.2. Finally, the candidate corner is got by means
of non-maximum suppression on the gray change of the
pixel under the symmetry of gray distribution in the local
area (5*5 window). The gray value change function ∇m(x, y)
is expressed as formula (1)

3.1.3 Sub‑detector C
3

The purpose of sub-detector C3 is to remove non-corner edge
pixels using the ruler of gradient direction change. The ruler

(1)
∇m(x, y) =

|||Iw(x, y) − Iw(xa, ya)
||| +

|||Iw(x, y) − Iw(xb, yb)
|||

2

Fig. 1 The polar coordinate of the candidate corner and distribution
of detection pixels

708 Journal of Real-Time Image Processing (2021) 18:705–722

1 3

of gradient direction change is that the corner is asked to
have a different gradient direction between center pixel and
adjacent pixels on the vertical line of gradient direction. As
shown in Fig. 1, two points P4 and P′

4
 are got in the direction

of � = 0 and � . The gradient direction ∇�4 and ∇��
4
 of P4 and

P′
4
 are calculated, respectively. If ∇�4 and ∇��

4
 meet the con-

dition C3 ∶
||∇𝜃4|| > D3 ∩

|||∇𝜃�4
||| > D3 , the center pixel (x0, y0)

is a candidate corner, or it is discarded. Usually, the angle
range of a corner ranges from 0o to 160o , and the value of
threshold D3 set to 20 which is a good choice in practice.
Because the sub-detector C3 excludes the non-corner pixels
by gradient direction change instead of gradient value, it can
effectively avoid the influence of different angle light
changes on the detection results.

3.1.4 Sub‑detector C
4

The purpose of sub-detector C4 is to remove random non-
corner noise pixels based on the shape of corner. The pixels
in the neighborhood of corner candidate are divided into two
connected sets. As shown in Fig. 1, the 16 pixels are deter-
mined by computing its distance to the center point (x0, y0).
The shape ruler of corner is that there is a connected set of
“1” around of P0 and a connected set of “0” around of P′

0
.

Real corners can be got by synthesizing the output of
4 sub-detectors as C = C1 ∩ C2 ∩ C3 ∩ C4. Because the cal-
culation of pixel gradient and average gray level in C1 and
non-maximum suppression in C2 only involve small neigh-
bourhood (5*5 or 3*3 windows), the division calculation in
C2 can be implemented by shift operation, the calculation
and comparison of the angle between gradient direction in
C3 can be accomplished directly by coordinate vector sub-
traction, proposed corner detector is easy to be implemented
by FPGA. Considering the pixel gradient and neighbour-
hood average gray calculation (pre-processing), the corner
detection process in this paper can be roughly designed as

two ways: serial and parallel, as seen in Fig. 2. The former
has the advantage of avoiding repeated processing of non-
corner pixels. The latter has the advantage of large parallel
granularity and is adopted for the realization of the functions
on FPGA.

3.2 Corner scale estimation

In the classical feature-point matching algorithm, the DoG
convolution function is commonly used to get feature scale.
There are two problems which are often involved: large
RAM requirement when building Gaussian pyramid; and
massive calculation when doing convolution on each level
of pyramid. In this paper, we propose to directly estimate
corner scale in original image without building Gaussian
pyramid and searching max response value in each level of
pyramid. This is achieved by replacing the DoG convolution
function with the square wave function, as seen in Fig. 3.
Figure 3a shows the DoG convolution functions (1D) at 5
continuous scales (k = 1.26, σ = 1.6) in SIFT Gaussian pyra-
mid Octave 1; and Fig. 3b is the approximation of Fig. 3a
using square wave function.

It can be seen from Fig. 3 that the DoG convolution func-
tions of different scale is corresponding to the square wave
functions with different “width” and “height”. The differ-
ence of “width” means that the size of convolution template
is different; and the difference of “height” means that the
convolution coefficient is different. Considering two square
wave functions on continuous scales, we can observe their
convolution difference on the image will be caused by two
kinds of pixel: (1) Non-overlapped pixels belonging to the
large-scale convolution template and not covered by small-
scale convolution template; (2) Overlapped pixels covered
both by the small-scale and large-scale convolution template
but have different template coefficient. The observed image
convolution difference can be expressed as formula (2):

C1 C2 C3 C4

F F FF

T T T
Candidate

pixel

Rejected false corner

True
corner

T

synthe
sizing

Candi-
date
pixel True

corner

C1

C2

C3

C4

Rejected false corner

pre-calculation
Corner

judgment

F

T

 (a) The serial-structure. (b) The parallel-structure.

Fig. 2 The structure of the corner detection procedure

709Journal of Real-Time Image Processing (2021) 18:705–722

1 3

where, ∇DoG� is the observed image convolution difference
for a certain feature pixel at different scale spaces estimated
with square wave function; ‘0′ and ‘1′ represent adjacent two
scale spaces and the lager number corresponds to the large
scale space; ‘inner’ and ‘outer’ represent the overlapped and
non-overlapped pixels, respectively; DOG�

(1,outer)
 is the result

of image convolution contributed by the non-overlapped
pixels; DOG�

(1,inner)
− DOG�

(0,inner)
 is the result of image con-

volution contributed by the overlapped pixels.
We impose a constraint on the adjacent two scale spaces

in formula (2) that, the size of large-scale convolution tem-
plate is expanded a circle than that of small-scale convolu-
tion template. It is easily to understand that the non-over-
lapped pixels in formula (2) will belong to the boundary of
large-scale convolution template (called outer circle). In
addition, though the overlapping pixels in formula (2) have
two coefficients of large-scale convolution template and
small-scale convolution template at the same time, but most
coefficients are the same or very close except at the bound-
ary of small-scale convolution template. So the result of
DOG�

(1,inner)
− DOG�

(0,inner)
 in formula (2) will be mainly con-

tributed by the overlapped pixels belonging to the boundary

∇DoG� = DoG�
(1,outer)

+ DoG�
(1,inner)

− DoG�
(0,inner)

of small-scale convolution template (called outer circle).
When using square wave functions as convolution template
with imposed constraint, we can make a comparison of adja-
cent scale spaces for a feature pixel by directly inspecting
pixels belonging to the inner and outer circle aforemen-
tioned, thus eliminating the need to construct a differential
Gauss pyramid.

With the change of image scale, it is not difficult to under-
stand that significant difference will happened between a
given feature point and its neighbourhood pixels at the spe-
cific direction. So we confine the comparison of adjacent
scale spaces to the pixels in a particular direction (equivalent
to introducing direction constraint) on the two circles afore-
mentioned. rij, r′ij be the radius of inner circle and outer circle
around a detected corner pixel, where ‘i’ indicates the
Octave in predefined scale space, similar to SIFT algorithm,
and ‘j’ indicates the level in each Octave. Figure 4 shows the
method, which we code the pixels belonging to the inner and
outer circle to estimate the scale for a certain feature point.

As seen in Fig. 4a, the pixels on the inner circle and
outer circle are compared with each other based on prede-
fined specific directions. Here the “specific directions” are
determined by the overlapped pixels with local maximum
template coefficient difference and belonging to the inner

Fig. 3 Depict the square wave
function and DoG convolu-
tion function in SIFT Gaussian
pyramid

Fig. 4 The areas are selected
and coded on the inner circle
and outer circle when i equal 0,
j equal 2

710 Journal of Real-Time Image Processing (2021) 18:705–722

1 3

circle. In addition, for the better anti-noise performance,
the gray level of pixels to be replaced with the average
gray of the sampling window Sij where the size of sam-
pling window is connected with the radius of circle at spe-
cific scale space to be estimated. Figures 5 and 6 show the
size of sampling window, Sij 02, respectively, correspond-
ing to the radius of outer/ inner circle at different scale
space (Octave). Finally, as seen in Fig. 4b, we quantize
the image convolution difference at adjacent scale spaces
for a given corner pixel by coding its specific neighbour
pixels as formula (3):

where xn,i,j is the average gray in the sampling window,
which the centre is at the n-th neighbour pixel belong to
outer circle; and x′

n,i,j
 is the average gray in the sampling

window, which the centre is at the n-th neighbour pixel
belong to the inner circle. The number of encoded “1” will
be the quantized result Mi, j Since the number of sampling
pixels in formula (3) is varied with the radius of the inner
circle, we normalize Mi, j using formula (4).

where Ni,j is the number of pixels to be inspected on the
inner circle.

bn,i,j =

{
1 xn,i,j > x�

n,i,j

0 xn,i,j ≤ x�
n,i,j

M
�

i,j
=

M
i,j

Ni,j

, i = 0, 1, 2, 3 j = 1, 2, 3, 4, 5

As shown in Fig. 7, the optimal feature scale of the corner
is obtained by searching for the minimum value M′

i,j
 in con-

tinuous scale space. For any one corner pixel, if its reliable
scale cannot be found, this corner will be discarded, other-
wise, the scale will be used to get feature descriptor for the
corner. Usually, the precise scale value is got using two order
polynomial fit method.

3.3 Corner description and matching

In the paper, BRISK feature description algorithm [35] is
used to get the corner feature, and the result is 512-bits
binary feature vector for each corner. The range of neighbor-
hood is delimited using the method in the corner scale esti-
mation section to estimate scale. Consequently, the matching
of any two corner feature vector is a simple computation of
Hamming Distance (HD) [36].

8765

19161310

36312621

0

1

2

4

7

16

7564534231 3

1*11*11*11*1

3*33*33*33*3

5*55*55*55*5

0

1

2

1*1

3*3

5*5

11*1111*1111*1111*1111*11 3

(a) The radius value of outer circle. (b) The size of sampling window ijS around outer circle.

Fig. 5 The radius value of the outer circle and the size of the sampling window Sij with a different scale

3322

7654

1412108

0

1

2

1

3

6

2824201612 3

1*11*11*11*1

1*11*11*11*1

3*33*33*33*3

0

1

2

1*1

1*1

3*3

5*55*55*55*55*5 3

(a) The radius value of inner circle. (b) The size of sampling window ijS around inner circle.

Fig. 6 The radius value of the inner circle and the size of the sampling window Sij with a different scale

Fig. 7 Depicts the search of optimal feature scale and its precision
position

711Journal of Real-Time Image Processing (2021) 18:705–722

1 3

From the aforementioned algorithm of corner detection
and matching, we can find the HD computation for mas-
sive corner feature vectors will be very efficient in FPGA
through a bitwise XOR operation. Meanwhile, proposed cor-
ner detector is quite concise in numerical (symbol) operation
due to low computational complexity, e.g., simple division
operation in C2 can be accomplished by one shift, the calcu-
lation and comparison of gradient orientation angles in C3
can be accomplished directly by coordinate vector subtrac-
tion, the calculation of pixel gradient, average gray level and
non-maximum suppression in C1 only involve small neigh-
bourhood operations (5*5 or 3*3 windows), and thus, it is
very suitable for FPGA implementation. However, for the
corner scale estimation and feature description in this paper,
either large neighbourhood (the size of the window is up to
hundreds pixel) or complex division/trigonometric function
are required, and thus, it is difficult for FPGA implemen-
tation. To this end, a CPU-FPGA cooperative processing
framework is proposed in the next section for high-speed
image corner detection and matching.

4 CPU‑FPGA cooperative processing

4.1 Computing framework

Proposed algorithm is implemented in a CPU-FPGA coop-
erative processing way. The assignment is assigned by (1)
feature detection and HD calculation of feature vectors in
the proposed algorithm are implemented on FPGA board
because they have intensive computation and are easy to
be processed in parallel. (2) Feature scale estimation and
description in proposed algorithm involve complex func-
tion operations (e.g., division, triangular function) in larger
neighborhoods, as well as huge memory space is required to
store a large number of feature descriptors, so we implement

them on CPU. CPU is also responsible for overall task
scheduling, data transmission and matching distance com-
parison. Figure 8 shows the CPU-FPGA collaborative com-
puting framework. The processes as following:

(1) Image data is transmitted from CPU to FPGA through
PCIE interface and stored in FPGA’s static random access
memory (SRAM). FPGA detects corners and return them
to CPU in real time. Synchronously, CPU completes the
corner scale estimation and feature description, and save
all the feature descriptors (vectors). Once feature descrip-
tors are available for the image matching, their HD dis-
tance computation will be triggered in FPGA.
(2) Feature vectors of the reference image are at first
transferred from CPU to FPGA board and stored in Dou-
ble-Data-Rate Three Synchronous Dynamic Random
Access Memory (DDR3 SDRAM). Then, the feature
vectors of the image are transferred to FPGA one by one,
and their HD to all the feature vectors of the reference
image are computed parallelly. Finally, the optimal and
sub-optimal HD of the matching points are returned to
the CPU, and CPU outputs the tie points by judging their
ratio of optimal HD to sub-optimal one according to a
given threshold value.

Usually, a computer CPU can cooperate with several
FPGA boards using PCIE as a transmission interface. Thus,
it’s easily understood that the processing capacity of the
CPU-FPGA collaborative computing framework in this
paper is proportional to the number of FPGA boards config-
ured on the computer motherboard. Because the frequency
of CPU is higher than FPGA, we transfer data using Direct
Memory Access (DMA) technology based on the PCI-E
hardcore. In the paper, 64 bits PCIE × 8 data bus is used and
4 pixels are transferred each time. The max speed at 4 GB/S
can be achieved. Using FPGA to realize PCI-E function

Fig. 8 The CPU-FPGA coop-
erative processing framework
for high-speed corner detection
and matching Reading pixel, temporary storing size

11*2048
Pre-calculation(gradient, average gray)

Corner detection C1 C2 C3 C4 ,
Non-maximum suppression

Reading feature vector DDR3 3Gb ,
Vector distance calculation(SRAM: 1Mb)

FPGACPU

Synchronous Matching
judgment and output

matching result

synchronous Scale
estimation and Feature

description

Output pixels by block

Pixel
stream

Pixel location

Feature vector

Vector distance

PCIE

712 Journal of Real-Time Image Processing (2021) 18:705–722

1 3

is simply to complete the processing of TLP (Transaction
Layer Packet). Avalon-ST (Avalon Streaming Interface) is
defined by Altera Company, which is used to transmit TLP.
Avalon-ST includes receiving signals and sending signals,
and the time sequence between receiving and sending is
similar. Figure 9 depicts the transmitting timing diagram of
Avalon-ST interface in PCI-E.

4.2 Algorithm Implementation on FPGA

As seen in Fig. 8, implemented an algorithm module on
FPGA including image pre-processing, corner detecting and
HD computation in feature matching.

4.2.1 Image pre‑processing

The implementation of image pre-calculation in FPGA is
showed in Fig. 10. The width of image is inputted to FPGA
and set as 2048. At first, we need to implement a paral-
lel sliding window function. We use a Shift_RAM with 11
lines, 2048 data in each line and 8bits for each data, which

is a shift register chain, to get the pixel matrix of 11*11 in
FPGA, as seen in Fig. 10a. At the same time, the output of
each Shift-Register is saved in cache and gets the pixel matrix
of 11*11 size, as seen in Fig. 10b. Then we synchronously get
the gradient value ∇y and ∇x with the convolution between
the pixel matrix and convolution kernel, as seen in Fig. 10c
and Fig. 10d. In the implementation of gradient value ∇y , at
first, we calculate the sum of 3 pixels in the first line and the
sum of 3 pixels in the third line; then calculate the difference
value between the first line and the third line, the top digit is
the sign bit according to the comparison of data. In the imple-
mentation of gradient value ∇x , at first, we calculate the sum
of 3 pixels in the first column and the sum of 3 pixels in the
third column; then calculate the difference value between the
first column and the third column, the top digit is the sign bit
according to the comparison of data. The implementation of
gradient value ∇y and ∇x is showed in Fig. 11a. The average
gray Ixy of 8-neighbourhood is got by calculating the convolu-
tion between the pixel matrix and convolution kernel, as seen
in Fig. 10e. In the implementation of average gray Ixy , at first,
we calculate the sum of 3 pixels in the line direction, and 3

(a) (b)

Fig. 9 The transmitting timing diagram of 3-D Word header TLP in PCI-E Avalon-ST interface

(a)
(e)

(b)

(d)

(c)

(f)

Fig. 10 Depict of image pre-calculation on FPGA. a 11 Shift-Registers; b the pixel matrix; c the convolution kernel of Y direction gradient; d
the convolution kernel of X direction gradient; e the convolution kernel of average gray; f the result of pre-calculation

713Journal of Real-Time Image Processing (2021) 18:705–722

1 3

lines are parallelly calculated; then the final sum value is got
by calculating the sum of 3 sums in each line; the end, the
calculation of divide 8 is replaced by drop lowest 3 bits (LSB).
The implementation of average gray Ixy is showed in Fig. 11b.
The implementation of image pre-calculation will consume 22
Kbit SRAM of FPGA.

4.2.2 Corner detecting

The core problem of corner detection implementation on
FPGA is how to obtain the pixel gradient ∇(x, y) and locate
16 pixels in the neighbourhood of candidate corner. The
implementation of absolute value ||∇x

|| and |||∇y
||| in sub-detec-

tor C1 can be got when calculation gradient value, as shown
in Fig. 11a. When gradient values are calculated, the posi-
tion distribution of neighboring pixels of the corrent pixel is
shown in Fig. 11d. The implementation of locating 16 pixels
in the neighbourhood of corner candidate by three sub-detec-
tor C2 , C3 , C4 is shown in Fig. 11c, in which the gradient ∇x
and ∇y are mapped to get their integer step Dx/Dy, and the
comparer and selectors are used to replace division computa-
tion involved in the mapping. Because the possible value of
integer step Dx /Dy is 0, − 1, 1, − 2, 2 and the sum of ||Dx

||
and |||Dy

||| is 2, we set that the rule of mapping is shown in the
formula (5). The sign bit of Dx and Dy is same as the sign bit
of gradient ∇x and ∇y . We can easily get 16 pixels in the
neighbourhood of corner candidate.

⎧⎪⎨⎪⎩

��Dx
�� = 0,

���Dy
��� = 2 if ��∇x

�� < ���∇y
���∕2��Dx

�� = 1,
���Dy

��� = 1 if 3 ∗
���∇y

���∕2 > ��∇x
�� ≥ ���∇y

���∕2��Dx
�� = 2,

���Dy
��� = 0 if ��∇x

�� ≥ 3 ∗
���∇y

���∕2

4.2.3 HD computation

The implementation of HD computation on FPGA is pre-
sented in Fig. 12. At first, all feature vectors of the reference
image are transferred from CPU to FPGA board and stored
in external DDR3 SDRAM. During the matching, feature
vectors of the reference image are imported from the DDR3
SDRAM to FPGA SRAM using data block mode. The data
block’s size is 65536 bits (the depth is 16 bits; the width
is 4096 bits). DDR3 SDRAM is composed of 8 chips and
the data bus is 128 bits. Data are transferred from DDR3
SDRAM to FPGA SRAM using 400 MHz two-channel
internal storage strategy. 2048 feature vectors can be pre-
stored in the FPGA SRAM. When FPGA is receiving a new
feature vector to be matched, FPGA timely computer its HD
to all feature vectors pre-stored in the SRAM. With PCIE × 8
data bus, the transfer of a feature vector with 512 bits from
CPU to FPGA can be done in 16 clock cycles of FPGA in
this paper. As seen in Fig. 12, 128 HD calculators, each one
is composed of 512 bits XOR operation and bits accumula-
tor, are used to parallelly calculate the HD of two feature
vectors. Hence, within a clock cycle of FPGA, the HD of
one feature vector can be computed with 128 feature vectors
pre-stored in SRAM. Finally, the matching points associated
with the best and second-best HD will be got with two-level
comparer.

5 Experiments and discussion

We implement the proposed algorithm and architecture on
a normal PC and FPGA board. The PC is configured with a
2.0 GHz Intel E5-2650 CPU, 32G RAM, Win10 operating

Dy

DxADD

>=

>=
>>1

-2

2

-1

1

0

ADD

P11

P12
P13

temp1

ADD

P31

P32
P33

temp2

SUB

SUB

>?

Gy_data[9:0]

Gy_data[10]

ADD

P11

P21
P31

temp3

ADD

P13

P23
P33

temp4

SUB

SUB

>?

Gx_data[9:0]

Gx_data[10] Gy_data[10]

Gx_data[10]

ADD

P21

0
P23

ADD

P31

P32
P33

ADD

ADD

P11

P12
P13 Ad1[10:0]

Ad2[10:0]

Ad3[10:0]

Mean_value
[10:3]

(a)

(b)

(c)

P11 P12 P13

P21 * P23

P31 P32 P33

(d)

Fig. 11 The implementation of corner detection on FPGA. a The gradient calculation. b The average calculation. c The 16 detection pixels loca-
tion. d The position distribution of pixels P11, P12, ...

714 Journal of Real-Time Image Processing (2021) 18:705–722

1 3

system and VS2010 Code compiler. The selected FPGA
board is the Altera 5CGXFC5C6F27C7N FPGA, which has
77 K Logic Cells, 4884 Kb SRAM, and runs on 100 MHz
clock frequency. The FPGA board also contains 3 GB DDR3
SDRAM with 128 bits bus-width. The test items include the
performance of corner detection and the performance of the
CPU-FPGA cooperation processing.

5.1 Performance of corner detection

Proposed corner detector with serial-structure is imple-
mented on the PC and we compare its results to that of
FAST, HARRIS algorithm. The performance test includes
the accuracy and repeatability of the algorithm.

5.1.1 Accuracy test

We use Scott Krig’s synthetic corner image [37] to test the
robustness of the corner detection algorithm. The synthetic
corner image, in the size of 2048*2048 pixels, includes
16*24 image units of 54 unique patterns. Each pattern is
arranged on a grid of 14*14 pixel rectangles. Gray values are
0 × 40 and 0 × C0. The original noise-free image (Fig. 13),
Salt and Pepper noise image (the noise density is D = 0.05,

Fig. 14) and Gaussian noise image (the mean is M = 0; the
variance is V = 0.01, Fig. 15) are used to test the accuracy
and robustness of corner detector. If the Grid Distance
between the detected corner and true corner is more than 1
pixel, the detected corner is set as an imprecise corner. The
accuracy of tested corner detectors is illustrated in Table 1.
Results show that the proposed detector in the paper has the
highest accuracy at 98.7% for the original noise-free image.
In a test of noise image, FAST almost is a failure to detect
corner. The performances of HARRIS and proposed detec-
tor all have declined for noise images, but the accuracy of
the proposed detector is better than HARRIS. The accuracy
of the proposed detector is about 21% higher than HARRIS
for Salt & Pepper noise image, and about 10% higher than
HARRIS for Gaussian noise image.

5.1.2 Repeatability test

Corner repeatability test is implemented on Edward Ros-
ten’s Maze image set and Bas-relief repeatability test image
set [38]. As seen in Fig. 16, Maze dataset is got by taking
a prop with abundant textural features and geometric fea-
tures, but it has serious projective warps. Bas-relief dataset
is got by taking a flat plane with significant relief, but it has

Fig. 12 Depict of feature vector
matching on FPGA

4096

16

4096

16

4096

16

16

Storage

5
1
2

X
O
R

Comparer 1

5
1
2

X
O
R

5
1
2

X
O
R

5
1
2

X
O
R

8

512

5
1
2

X
O
R

5
1
2

X
O
R

5
1
2

X
O
R

5
1
2

X
O
R

8

5
1
2

X
O
R

5
1
2

X
O
R

5
1
2

X
O
R

5
1
2

X
O
R

8

A
D
D

A
D
D

A
D
D

A
D
D

A
D
D

A
D
D

A
D
D

A
D
D

A
D
D

A
D
D

A
D
D

A
D
D

8 8 16 8

16

Comparer 2 Comparer 16
16

Comparer 0

minimum

DDR3
PCIE input

PCIE output

sec-minimum

minimum

sec-minimum

Minimum Sec-minimum

715Journal of Real-Time Image Processing (2021) 18:705–722

1 3

feature changes from different viewpoints. The resolution
of the test image in the dataset is 768*576. The repeating
distance is set to 3 pixels and we compare our results to

that of FAST, HARRIS, SIFT algorithm, respectively, as
shown in Fig. 17a, b. It can be found that repeatability of the
proposed detector in the paper is best for a given number of

Fig. 13 The test results from noise-free synthetic images

Fig. 14 The test results from synthetic images with Salt and Pepper noise

Fig. 15 The test results from synthetic images with Gaussian noise

716 Journal of Real-Time Image Processing (2021) 18:705–722

1 3

feature point, especially; the new algorithm has a significant
advantage to Maze dataset because there are abundant clear
corner points in image.

5.2 Performance of feature‑point matching

We use the publicly available datasets of [5] to test our
detector against the state-of-the-art on CPU. In the dataset,
scale/rotation images (boat) is used to test of our algorithm
when the scale has changed of image. Figure 18 shows
repeatability and matching score plots for all the detectors
included in the classical feature matching algorithm. The
result shows that the new algorithm is quite invariant to
scale. In the test, the parameters of the classical algorithms
are set with default parameters. Figure 18b shows that the
number of feature-point pairs is basically constant when the

image matches with different scale images. Figure 18a shows
that the accuracy rate of the new algorithm is slightly lower
than SIFT, but it is better than other classical algorithms.

5.3 CPU‑FPGA cooperation processing test
of the new algorithm

Two kinds of aerial image, medium resolution (5616*3744)
images and high resolution (11320*17310) images, as shown
in Figs. 19 and 20, are used in the CPU-FPGA cooperation
processing test of the new algorithm. At first, we comparison
test the new algorithm of CPU-FPGA cooperation imple-
mentation and its CPU implementation. Then, we compari-
son test the new algorithm and SIFT algorithm. SIFT algo-
rithm is the most widely used to do feature-point matching
in the field of photogrammetric and remote sensing. But

Table 1 The data report of detected corners on synthetic image

Algorithm Noise-free image Salt and Pepper noise image Gaussian noise image

FAST HARRIS The paper FAST HARRIS The paper FAST HARRIS The paper

Total corner 8064 119040 119002 139236 155916 42624 376064 109700 29568
Real corner 3840 102912 117455 13440 111756 39556 54528 84356 25222
Accuracy- rate 47.62% 86.45% 98.7% 9.7% 71.7% 92.8% 14.5% 76.9% 85.3%

Fig. 16 Depict of image dataset for repeatability test

Fig. 17 Depict of the repeatability test results from two image dataset

717Journal of Real-Time Image Processing (2021) 18:705–722

1 3

the hardware implementations of SIFT is limited on high-
resolution aerial images because the SIFT algorithm has a
high computational cost and memory requirement. So SIFT
is implemented by two types in the comparison test: the one
is by CPU, another one is by CPU + GPU cooperation. In
the CPU-FPGA implementation of new algorithm, because
the preset width of the image is 2048 in FPGA, the aerial
image has to be divided into small images with constant
width 2048 pixels before it is transferred to FPGA, as seen
the red line in Figs. 19 and 20. If the image width is less than
2048 pixels, “0” is added to the end.

The speed data of a new algorithm by CPU-FPGA coop-
eration implementation and its CPU implementation can be
found in Table 2. When the high-resolution aerial images
are used to test new algorithm, the feature-point detection of
CPU-FPGA cooperation is about 16 times faster than alone
CPU; the matching of CPU-FPGA cooperation is about 451
times faster than alone CPU. When the medium resolution
aerial images are used to test new algorithm, the feature-
point detection of CPU-FPGA cooperation is about 32

times faster than alone CPU; the matching of CPU-FPGA
cooperation is about 443 times faster than alone CPU. The
result shows that the new algorithm by FPGA paralleled has
a great acceleration.

The speed data of the new algorithm and SIFT algo-
rithm can be found in Table 2, too. The new algorithm is
implemented by CPU-FPGA cooperation. SIFT algorithm
is tested on the CPU and CPU + GPU. When the high-reso-
lution aerial images are used to test algorithm, the number
of feature-point pairs by new algorithm is about two times
SIFT; the feature-point detection of new algorithm is about
300 times faster than SIFT algorithm which is on a CPU;
the matching of new algorithm is about 340 times faster
than SIFT algorithm which is on a CPU; the feature-point
detection of new algorithm is about 15 times faster than
SIFT algorithm which is on CPU + GPU; the matching of
new algorithm is about 13 times faster than SIFT algorithm
which is on CPU + GPU; The speed of scale estimation and
feature coding in the new algorithm is about more 40–30%
than SIFT. When the medium resolution aerial images are

Fig. 18 The performance of feature-point matching for different scale images

Fig. 19 The medium resolution
aerial image pair

718 Journal of Real-Time Image Processing (2021) 18:705–722

1 3

used to test algorithm, the number of feature-point pairs by
new algorithm is very close SIFT; the feature detection of
new algorithm is about 576 times faster than SIFT algo-
rithm which is on a CPU; the matching of new algorithm
is about 799 times faster than SIFT algorithm which is on
a CPU; the feature detection of new algorithm is about 28
times faster than SIFT algorithm which is on CPU + GPU;
the matching of new algorithm is about 32 times faster than
SIFT algorithm which is on CPU + GPU; The speed of scale
estimation and feature coding in the new algorithm is about
2 times SIFT.

As seen in Fig. 8, the feature-point detection and fea-
ture coding are synchronously processed in the CPU-FPGA

cooperative processing framework of the new algorithm. The
speed of feature coding by CPU is slower than feature-point
detection by FPGA, so the total time of the new algorithm
is the sum of feature coding and matching. According to
Table 2, the total time of new algorithm by CPU-FPGA
cooperative processing is 143998 ms for the high-resolution
aerial image pair, and it is 2807 ms for the medium resolu-
tion aerial image pair. Because the time of feature coding
and matching is related to the amount of feature-points, we
calculate the consumed average time of each feature-point
pair. According to Table 2, the average time of per feature-
point pair of the new algorithm in CPU-FPGA cooperative
processing is about 0.8 ms for the high-resolution aerial

Fig. 20 The high-resolution
aerial image pair

Table 2 The results of corner detecting and matching on two kind of aerial image stereo

Method Aerial images The number of point Feature-point pair Time (ms) Processor

Left image Right image feature-point
detection

Feature coding Matching

The paper High
resolution

1,217,688 1,169,177 187,768 143,348 32,606 50,314,518 CPU
8555 32,571 111,427 CPU + FPGA

Medium
resolution

80,038 85,498 4588 15,382 2267 243,080 CPU
462 2259 548 CPU + FPGA

SIFT High
resolution

820,632 867,658 61430 2,528,471 52,745 38,067,826 CPU
128,364 45,947 1,487,940 CPU + GPU

Medium
resolution

92,024 89,038 4636 266,370 5586 438,064 CPU
13,160 4927 17516 CPU + GPU

719Journal of Real-Time Image Processing (2021) 18:705–722

1 3

images, and it is about 0.6 ms for the medium resolution
aerial images. Based on the average time of per feature-
point pair, we compare the new algorithm with the SIFT
algorithm, and get the result, as shown in Fig. 21. From
Fig. 21, it can be found that the speed of the new algorithm
is hundred times SIFT which is on a CPU, and dozens times
SIFT which is on CPU + GPU. Hence, very high-speed cor-
ner detecting and matching performance is achieved with
the proposed algorithm on CPU-FPGA cooperative process.

Figures 22, 23 and 24 shows the matched feature-point
pairs of the new algorithm and SIFT on test images. For
the high-resolution aerial images with large pixel array,
part matching result on local small areas are denoted by
a rectangle with different colour, corresponding to three
kinds of different scenes: building, vegetation and road, as
seen in Fig. 22 and Fig. 23. It can be found from the result
that the proposed algorithm can get more feature-point
pairs than SIFT, especially in vegetation and road area.
For medium resolution aerial images, our matching results
are close to SIFT, and both of them have no obvious error
feature-point pairs, as seen from Fig. 24.

Fig. 21 Comparison of average time cost on per feature-point pair

Fig. 22 Matched local feature-point pairs by proposed algorithm on the high-resolution aerial images

720 Journal of Real-Time Image Processing (2021) 18:705–722

1 3

Fig. 23 Matched local feature-point pairs by SIFT on the high-resolution aerial images

Fig. 24 Matched feature-point
pairs on the medium resolution
aerial images

721Journal of Real-Time Image Processing (2021) 18:705–722

1 3

6 Conclusions

This paper presents a novel corner detection and scale estima-
tion algorithm. The new corner detector has a higher accuracy
rate and robustness than FAST and HARRIS. The accuracy
of the new corner detector is 98.7% for noise-free simulation
image, about 21% higher than HARRIS for Salt and Pepper
noise image, and 10% higher than HARRIS for Gaussian noise
image. The repeatability of new corner detector is best than
several famous local feature detection algorithm including
FAST, HARRIS and SIFT. The new scale estimation method
can get the feature scale value in the original image without
building Gaussian pyramid and searching max response value
in each level, which greatly increase computational efficiency
and reduces memory cost.

A CPU-FPGA cooperative processing architecture is estab-
lished along with the proposed algorithm. In the architecture,
the corner detection and the HD computation are parallelly
implemented in FPGA; the scale estimation, feature coding
and storage of corner location are implemented in CPU. The
architecture has very high computation efficiency: the aver-
age time cost of per feature-point pairs is about 0.8 ms for the
11320*17310 high-resolution aerial images and 0.6 ms for
the 5616*3744 medium resolution aerial images. The speed
of new algorithm in the CPU-FPGA cooperative process is
hundred times SIFT which is on a CPU, and dozens times
SIFT which is on CPU + GPU. Furthermore, the comput-
ing efficiency of the CPU-FPGA architecture can be further
increased, and it is proportional to the number of configured
FPGA circuit board which depend on the capacity of PCIE
slots on the computer motherboard. The architecture also
works effectively on the aerial images with huge pixel arrays,
since the image can be divided into some small images with
constant width 2048. If the FPGA board with 3 GB DDR3
SDRAM and the number of detected corner in an image is less
than one thousandth of the number of pixels, proposed archi-
tecture can handle the aerial image up to 600 million pixels.
The new algorithm and CPU-FPGA cooperative architecture
are valuable for the application of massive aerial images.

Acknowledgements This work was partly supported by National Natu-
ral Science Foundation of China (41761087), Natural Science Foun-
dation of Guangxi Province (2017GXNSFAA198162, 2020GXNS-
FAA159091), Guangxi emphasis laboratory for optoelectronics
information Project (GD18108), and Innovation Project of Guangxi
Graduate Education (YCBZ2017051, 2018YJCX64), at the same time,
thank for the study abroad program for graduate student of Guilin Uni-
versity of Electronic Technology.

References

 1. Zhang, B.: Intelligent remote sensing satellite system. Remote.
Sens. 15(3), 415–431 (2011)

 2. Zitová, B., Flusser, J.: Image registration methods: a survey.
Image. Vis. Comput. 21(11), 977–1000 (2003)

 3. Lowe, D.G.: Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vision 60(2), 91–110 (2004)

 4. Morel, J.M., Yu, G.: ASIFT: a new framework for fully affine
invariant image comparison. SIAM. J. Imag. Sci. 2(2), 438–469
(2009)

 5. Mikolajczyk, K., Tuyt Elaars, T., Schm Id, C.: A comparison of
affine region detectors. Int. J. Comput. Vis. 65(1–2), 163–186
(2005)

 6. Kehl, C., Buckley, S.J., Viseur, S., et al.: Automatic illumination-
invariant image-to-geometry registration in outdoor environments.
Photogramm. Rec. 32(158), 93–118 (2017)

 7. Hirschmüller, H.: Stereo processing by semiglobal matching and
mutual information. IEEE. Trans. Pattern. Anal. Mach. Intell.
30(2), 328–341 (2008)

 8. Boykov, Y., Veksler, O., Zabin, R.: Fast approximate energy mini-
mization via graph cuts. IEEE. Trans. Pattern. Anal. Mach. Intell.
23(11), 1222–1239 (2001)

 9. Sun, J., Shun, H.Y., Zheng, N.N.: Stereo matching using belief
propagation. IEEE. Trans. Pattern. Anal. Mach. Intell. 25(7),
787–800 (2003)

 10. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. Int. J. Comput. Vis.
47(1–3), 7–42 (2002)

 11. Lee, C.A., Gasster, S.D., Plaza, A.: Recent developments in high
performance computing for remote sensing: a review. IEEE. J.
Selec. Top. Appl. Earth. Observ. Remote. Sens. 4(3), 508–527
(2011)

 12. Avrithis, Y., Rapantzikos, K.: “The medial feature detector: Stable
regions from image boundaries.” In: international conference on
computer vision (ICCV) (2011)

 13. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline
stereo from maximally stable extremal regions. Image. Vis. Com-
put. 22(10), 761–767 (2004)

 14. Acharya, K.A., Venkatesh, B.R., Vadhiyar, S.S.: A real-time
implementation of SIFT using GPU. J. Real. Time. Image. Proc.
14(2), 267–277 (2018)

 15. Li, Z., Jia, H., Zhang, Y.: HartSift: A high-accuracy and real-time
SIFT based on GPU. 2017 IEEE 23rd international conference
on parallel and distributed systems (ICPADS). IEEE computer
society (2017)

 16. Jiang, C., Geng, Z.X., Wei, X.F., et al.: SIFT implementation
based on GPU. ISPDI 2013-fifth international symposium on
photoelectronic detection and imaging. International society for
optics and photonics (2013)

 17. Patel, V., Patel, B.: Indexing SURF features by SVD based basis
on GPU with multi-query support[C]// international conference
on intelligent computing. Springer, Cham (2014)

 18. Huang, F.C., Huang, S.Y., Ker, J.W.: High-performance SIFT
hardware accelerator for real-time image feature extraction. IEEE.
Trans. Circuits. Syst. Video. Technol. 22(3), 340–351 (2012)

 19. Zhong, S., Wang, J., Yan, L.: A real-time embedded architecture
for SIFT. J. Syst. Architect. 59(1), 16–29 (2013)

 20. Zhao J., Zhu S., Huang X.: Real-time traffic sign detection using
SURF features on FPGA. In proceedings of the 2013 IEEE high
performance extreme computing conference (HPEC), Waltham,
MA, USA, 10–12 September: 1–6 (2013)

 21. Huang, J.J., Guoqing, Z.: On-Board Detection and Matching of
Feature Points. J. Remote Sens 9(6), 1–17 (2017)

 22. Qamar, A., Muslim, F., Gregoretti, F., et al.: High-level synthesis
for semi-global matching: is the juice worth the squeeze? IEEE.
Access. 99, 1–1 (2016)

 23. Harris, C., Stephens, M.: A combined corner and edge detector.
Proc. Alvey. Vis. Conf. Citeseer. 3, 147–151 (1988)

722 Journal of Real-Time Image Processing (2021) 18:705–722

1 3

 24. Amaricai, A., Gavriliu, C.E., Boncalo, O.: An fpga sliding win-
dow-based architecture harris corner detector. 2014 24th Interna-
tional conference on field programmable logic and applications
(FPL), IEEE: 1–4 (2014)

 25. Chao, T.L., Wong, K.H.: An efficient FPGA implementation of
the harris corner feature detector. 2015 14th IAPR International
Conference on Machine Vision Applications (MVA), IEEE: 89–93
(2015)

 26. Brenot, F., Fillatreau P., Piat, J.: FPGA based accelerator for visual
features detection. In: 2015 IEEE International Workshop of Elec-
tronics Control Measurement, Signals and their Application to
Mechatronics (ECMSM) IEEE: 1–6 (2015)

 27. Rosten, E., Drummond, T.: FAST machine learning for high-speed
corner detection. Eur. Conf. Comput. Vis. 2006, 1–14 (2006)

 28. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an effi-
cient alternative to SIFT or SURF. IEEE 2012 international con-
ference on computer vision, 58 (11), 2564–2571 (2012)

 29. Weberruss, J., Kleeman, L., Drummond, T.: ORB feature extrac-
tion and matching in hardware. In proceedings of the Australasian
conference on robotics and automation, the Australian National
University, Canberra, Australia, 2–4 December; 1–10. (2015)

 30. Nurvitadhi, E., Sheffield. D., Sim. J.: Accelerating binarized neu-
ral networks: comparison of FPGA, CPU, GPU, and ASIC. Inter-
national conference on field-programmable technology (2017)

 31. Puglia, L., Vigliar, M., Raiconi, G.: Real-time low-power FPGA
architecture for stereo vision. IEEE. Trans. Circuits Syst. II Exp.
Briefs. 64(1), 1307–1311 (2017)

 32. Gil, A., Mozos, O.M., Ballesta, M., Reinoso, O.: A comparative
evaluation of interest point detectors and local descriptors for
visual SLAM. Mach. Vis. Appl. 21(6), 905–920 (2010)

 33. Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine
learning approach to corner detection. IEEE. Trans. Pattern. Anal.
Mach. Intell. 32(1), 105–119 (2008)

 34. Zhu, J., Arbor, A., Hastie, T.: Multi-class AdaBoost. Stat. Inter.
2, 349–360 (2006)

 35. Leutenegger, S., Chli, M., Siegwart, R. Y.: BRISK: binary robust
invariant scalable keypoints. IEEE 2011 international conference
on computer vision, 58 (11), 2548–2555 (2011)

 36. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary
robust independent elementary features. In proceedings of the
European conference on computer vision (ECCV). (2010)

 37. Krig, S.: Computer Vision Metrics: Survey, Taxonomy, and Anal-
ysis. Apress, Berkely, CA (2014)

 38. Rosten, E., Drummond, T.: Machine learning for high-speed cor-
ner detection. 9th European conference on computer vision, Graz:
430–443 (2006)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Zhiyong Peng is a senior experimentalist in the College of Electronic
Engineering and Automation at Guilin University of Electronic Tech-
nology (GUET),Guilin, China. And worked in Oklahoma State Uni-
versity as a visiting scholar in 2017-2018. He received his M.S. in
Signal and Information Processing from GUET in 2006. He is currently
pursuing the Ph.D. His research interests include computer vision, pho-
togrammetry and high-performance parallel image processing.

Jun Wu is a Professor and Ph.D. supervisor in the College of Electronic
Engineering and Automation at Guilin University of Electronic Tech-
nology, Guilin, China. He holds B.S. degrees and M.S. in Engineering
both from Wuhan University, a Ph.D. in Photogrammetry and Remote
Sensing from Wuhan University, and Postdoctoral research in Old
Dominion University, USA. His research interests include robot vision,
photogrammetry, in which areas he has published over 60 papers in
both qualified journals and conferences.

Yongjun Zhang was born in 1975. He received the B.S. degree in
geodesy, the M.S. in geodesy, and the Ph.D. degree in geomatics from
Wuhan University, Wuhan, China, in 1997, 2000, and 2002, respec-
tively. He is currently a Professor of photogrammetry and remote
sensing with the School of Remote Sensing and Information Engi-
neering, Wuhan University. His research interests include computer
vision, space, aerial, and low-attitude photogrammetry, image match-
ing, combined bundle adjustment with multi-source data sets, 3-D city
reconstruction, and industrial inspection.

Xianhua Lin is a graduate student. He is studying in Guilin University
of Electronic Technology at now, and currently pursuing about embed-
ded system and image processing.

	A high-speed feature matching method of high-resolution aerial images
	Abstract
	1 Introduction
	2 Related work
	3 Corner detection and matching algorithm
	3.1 Corner detection
	3.1.1 Sub-detector
	3.1.2 Sub-detector
	3.1.3 Sub-detector
	3.1.4 Sub-detector

	3.2 Corner scale estimation
	3.3 Corner description and matching

	4 CPU-FPGA cooperative processing
	4.1 Computing framework
	4.2 Algorithm Implementation on FPGA
	4.2.1 Image pre-processing
	4.2.2 Corner detecting
	4.2.3 HD computation

	5 Experiments and discussion
	5.1 Performance of corner detection
	5.1.1 Accuracy test
	5.1.2 Repeatability test

	5.2 Performance of feature-point matching
	5.3 CPU-FPGA cooperation processing test of the new algorithm

	6 Conclusions
	Acknowledgements
	References

