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a b s t r a c t 

Line segment detectors based on local image domain passively fit a line segment from a set of pixels, but 

no constraint on line geometry is set in the grouping process. Therefore, unstable pixels, such as the pix- 

els in grass, clouds, or weak gradient edges, may cause false positives and fractures. This paper proposes 

the detector named AG3line, which employs an efficient active grouping strategy. In AG3line, the pixel 

for the next grouping is calculated actively with the line geometry and it can even be accurate to one 

pixel. To reduce the fracture caused by unstable pixels, when the adjacent pixel cannot satisfy the group- 

ing rules, the candidate pixels for the next grouping are expanded with the line geometry constraint. 

To furtherly control false positives, AG3line then validates and refines the line segments by exploiting 

both the line geometry and the alignment of gradient magnitude. When AG3line was evaluated utilizing 

the image dataset with the ground truth, it outperformed both the classical and the latest detectors.The 

implementation of AG3line is available at https://github.com/weidong-whu/AG3line . 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Line segments are essential for a wide range of algorithms in 

omputer vision, such as image registration [1] , vanish point de- 

ection [2] , 3D reconstruction [3] , and object detection [4] . The 

hosen line segments are expected to be complete with no false 

ositives; thus, in some applications, the short line segments are 

erged [4] or discarded [5] . The primary concern in the line seg- 

ent extraction research field is finding a way to provide more 

omprehensive extraction of line segments with fewer false posi- 

ives. 

Hough Transform (HT) [6] extracts straight lines that are ap- 

ropriate in geometric image parsing by converting line detec- 

ion into a problem of peak detection in the parameter space [7] . 

any improved Hough detectors have been proposed, e.g., proba- 

ilistic HT [8] ; randomized HT [9] and its extension[10]; progres- 

ive probabilistic HT (PPHT) [11] , which reduced the voting of pix- 

ls in Hough space; the weight method [12] ; and Kernel-Based 

ough Transform (KHT) [13] , which improved peak detection. 

ince these Hough methods cannot extract accurate endpoints, Du 

t al. [14] exploited the first and last non-zero voting cells in the 

xtraction process, and Xu et al. [15] extracted the endpoints by 
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inimum entropy analysis in the Hough space. Xu et al. [16] also 

roposed a closed-form solution for complete line-segment ex- 

raction, which was unable to achieve satisfactory results in com- 

lex real images. Recently, Almazan et al. [17] proposed a dynamic 

rogramming approach (MCMLSD) based on PPHT, which unfor- 

unately produces many false positives in complex real images. 

herefore, Hough-based detectors are now considered more appro- 

riate for extracting straight lines than line segments with explicit 

ndpoints. 

To accurately obtain endpoints, some algorithms first group the 

ixels in a local image domain. The grouping is based on the align- 

ent of the gradient orientation or the connection of the gradient 

eaks. Then, the pixels in the same group are fitted into a line seg- 

ent. 

Burns et al. [18] proposed the first line segment detector based 

n the alignment of the gradient orientation. To control false pos- 

tives, Desolneux et al. [19] proposed the Helmholtz principle to 

alidate the line segment. Although the authors’ validation was in- 

ovative, it runs slowly and extracts line segments with poor ac- 

uracy. In a follow-up study, Grompone et al. [20] improved the 

peed of the Helmholtz principle method; and then several years 

ater, they proposed an algorithm named LSD [21,22] , which is a 

inear-time detector and is currently viewed as the state of the art 

ethod for line segment extraction. Recently, Cho et al. [23] pro- 

osed a new line segment detector named Linelet, which performs 

https://doi.org/10.1016/j.patcog.2021.107834
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.107834&domain=pdf
https://github.com/weidong-whu/AG3line
mailto:zhangyj@whu.edu.cn
https://doi.org/10.1016/j.patcog.2021.107834
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Fig. 1. Illustration of how unstable pixels in the weak gradient edge cause frac- 

tures. The red rectangle in (b) shows the gradient orientations of the line region 

in (a), and some of them do not align with each other. Thus, the pixels grouping 

methods based on gradient orientation cannot extract the complete line segment. 

The edges in the red rectangle of (c), which were detected by Edge Drawing, are 

discontinuous; thus, the edge based detector was used to extract fractures. (For in- 

terpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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etter than LSD in complete extractions. However, our evaluation 

ound that Linelet extracted more false positives than LSD and was 

nable to overcome the fracture problem in a line region with un- 

table gradients. 

For detectors based on gradient orientation, the orientation 

ligned-tolerance is set as π
8 , which is an empirical parameter and 

ay cause line segments to fracture because the gradient orienta- 

ions are unstable in weak gradient regions (see Fig.1(b)). In ad- 

ition, the pixels in grass and clouds may bring about false posi- 

ives when their orientations are aligned. Controlling the false pos- 

tive with Helmholtz Principle also uses the empirical parameter 

o calculate the probability, which numerous studies [23–25] have 

ointed out may reject true positives when the Helmholtz Princi- 

le is employed in LSD. 

Instead of grouping pixels based on gradient orientation, some 

etectors exploit the gradient magnitude, and the line segment is 

tted from the edge segment. In Etemadi’s method [26] , gradient 

eaks first are connected to the edge segment, and the segment is 

hen split into line segments based on the line fitting error. Akinlar 

t al. [25] proposed a line segment detector named EDLines, which 

s based on Edge Drawing [27] and a validation strategy similar 

o LSD. Recently, Lu et al. [24] improved the Canny detector [28] , 

aking it parameter-free and used a link method after the edge 

egments were split. 

Our analysis of the various detectors based on gradient magni- 

ude found that they also are easy to extract fractures in line re- 

ions with unstable gradients. Because they rely on the connection 

f gradient peaks, while unstable gradients can cause edge detec- 

ors, such as Canny and Edge Drawing, to make wrong connections 

see Fig. 1 (c)). Also, the dense edge pixels in grass, clouds, trees, 

tc., may bring about false positives. 

We found that all the pixels grouping-based detectors extract 

he line segment passively. In other words, although these detec- 

ors are aimed at extracting the line segment, no constraint on line 

eometry is set in the pixels grouping. Instead, the line segment is 

tted from a set of pixels constrained with gradient magnitude or 

radient orientation. As has discussed, the passive grouping pro- 

ess may cause both fractures and false positives, and many group- 

ngs are meaningless. Previous studies explored the gradient mag- 

itude or gradient orientation to validate the line segment, but the 

ine geometry has yet to be fully considered. To the best of our 

nowledge, only LSD uses a fixed density tolerance to validate the 

line support region”, and its refining method may cause fractures. 

herefore, both the complete extraction and false positive control- 

ing in line segment extraction still need improvement. 
2 
We propose in this paper a novel active grouping and 

eometry-gradient combined validation method named AG3line. 

hich proceeds as follows. First, the image is simplified by the an- 

hor map ( Section 3 ). Then, the anchors are actively grouped into 

ine segments ( Section 4 ) by taking the line geometry as the pri-

ary constraint. To control false positives, the line segments are 

nally validated and refined by exploiting the line geometry and 

he distribution of the gradient magnitude ( Section 5 ). 

Note that some other algorithms also extract the straight line 

ith the line geometry constraint. For example, RANSAC [29] is 

 well-known method; the random 3-point detector [30] and the 

andom Hough methods [9,10] select N points randomly to fit a 

traight line, then the straight line is validated in the image do- 

ain or the parameter space. But there are several differences be- 

ween AG3line and these algorithms. First, our grouping process 

equires no random selection, instead, it starts with the significant 

ixel and validates the edge pixel in the anchor map. Second, our 

rouping process is active, which means that the candidate of the 

ext anchor to be grouped is calculated directly based on the line 

eometry constraint and they can even be constrained to 1 pixel. 

his active process significantly reduces the computation. Thus, the 

xperiments showed that it even runs faster than EDLines [25] , the 

o called real-time detector. Third, AG3line detector is aimed at ex- 

racting the line segment but not the straight line. Though a jump 

trategy is employed in the active grouping, the jump distance is 

onstrained and the geometry-gradient combined validation is em- 

loyed to control the over connection ( Section 5 ). 

The remainder of this paper is organized as follows. 

ection 2 describes the overview of AG3line. Section 3 discusses 

he extraction and properties of the anchor map. Section 4 and 

ection 5 introduce the details of the anchor grouping and 

ine segment validation process to control false positives. 

ection 6 presents our quantitative and qualitative evaluation 

f AG3line by comparing it with the state of the art detection 

ethods. Section 7 concludes the paper. 

. Overview of the proposed method 

Fig. 2 shows the AG3line workflow. First, the gradient mag- 

itude and gradient orientation are calculated from an input 

rayscale image. Second, pixels having a high probability that line 

egments pass over are extracted as anchors. Third, the anchors are 

rouped into line segments based on the line geometry and the 

lignment of gradient orientation. Finally, line segments are vali- 

ated and refined according to the gradient magnitude distribution 

nd the line geometry. The computation of gradient magnitude and 

radient orientation for each pixel is the same as LSD and EDLines, 

nd thus they will not be discussed in the next sections. 

. The anchor map 

The anchor map simplifies the image via discarding most of the 

seless pixels while confirming the significant pixel in line seg- 

ent extraction. Active grouping and validation via line geometry 

re employed based on the anchor map. 

.1. Extraction of the anchor map 

A good choice to discard the useless pixel is the non-maxima 

uppression of the Canny algorithm[28], but it extracts many of the 

dge pixels in grass, trees, clouds, etc. A key difference between an 

dge pixel and a line segment pixel is that the gradient orientation 

f the latter should be aligned with its neighbours [18,21,23,25] . 

herefore, in AG3line, the anchors obtained via the non-maxima 

uppression are furtherly validated by the orientation to determine 
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Fig. 2. Workflow of the proposed method. 

Fig. 3. Illustration of the anchor map. The anchors in (b) were extracted by non-maxima suppression; the anchors in (c) were the significant edge pixels validated by 

Algorithm 1; (d) is the anchor map merged from (b) and (c). 

Algorithm 1 Test for an anchor with horizontal gradient orientation. 

Input a pixel P at ( x,y ) obtained from the non-maxima suppression; 

a gradient orientation matrix G ori ; 

a parameter p of the angle tolerance. 

Output a bool value marks whether P is a significant anchor. 

isSignificantAnchor ← true 

if G ori ( x,y ) is HORIZONTAL then 

foreach pixel P̄ in { ( x , y i ) y − 1 ≤ y i ≤ y + 1 , y i ∈ N ∗} 
if angdiff ( Gori ( x , y ) , Gori ( x , y i ) ) > p then 

isSignificantAnchor ← false 

return 

end 

end 

end 
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he significant pixels. Algorithm 1 shows the validation process for 

 horizontal pixel obtained from the non-maxima suppression. 

Anchors with two levels (see Fig. 3 ) are extracted with the non- 

axima suppression and Algorithm 1 : first, the significant pixel 

hat is aligned with its neighbor edge pixels; second, the general 

dge pixel obtained from the non-maxima suppression. The active 

rouping in Section 4 only starts with the significant edge pixel 

nd sets stricter rules for the general edge pixel. 

.2. Properties of anchors along a line segment 

Now we introduce the properties of anchors along a line seg- 

ent, which guide the active grouping and validation. 

1. The distance from the anchor to the line segment is smaller 

than d . This is an inherent law of the line segment, and sev-

eral studies [24,25] suggest that one pixel is appropriate as an 

average distance (line segment fitting error). 
3 
2. Most anchors are aligned in the gradient orientation, and the 

aligned tolerance is smaller than p . This property is commonly 

used in pixels grouping [18] and line segment validation [21,23] . 

3. Anchors may not be continuous in space. Unstable pixels may 

cause anchors to be discontinuous. Therefore, a distance toler- 

ance between anchors should be established. 

4. Based on property 3, the anchors density ( Section 5.1 ) of a line

segment may not be 1. Since a longer line segment may go 

through more noise, a short line segment should have a higher 

density threshold. 

5. Most pixels, including anchors, are aligned in the gradient mag- 

nitude. This property is exploited in Linelet [23] as an intrinsic 

feature to validate the line segment. 

Based on these properties, the anchors are grouped actively into 

 line segment (details will be discussed in Section 4 ), then, the 

ine segment is validated or refined for controlling false positives 

details will be discussed in Section 5 ). 

. Grouping anchors actively into the line segment 

In AG3line, a line segment is fitted by the anchors. As shown in 

ig. 4 , in the active grouping, the candidates of the next anchor to 

e grouped (NA) is directly calculated with the principal axis and 

he previous anchor that has been grouped (PA). The principal axis 

s updated after adding a new anchor. With the guidance of the 

rincipal axis, the candidate of NA can be expanded, thus unstable 

ixels can be skipped over (see Fig. 4 (b-c)). When a grouping pro- 

ess is finished, the line segment is fitted by the principal axis and 

he ends of the anchors. 
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Fig. 4. Anchor grouping in a line region. The arrow’s direction and length represent the orientation and magnitude of each pixel. The anchors are shown in the red diamond; 

anchors already grouped are shown in the green circle; the red line with an arrow is the principal axis estimated by the anchors having been grouped; the pixels inside 

the black ellipse are unstable and are skipped over with the guidance of the principal axis; and the green line segment is the result. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Illustration of how the active grouping confirm the candidates when the 

principal axis is horizontal. The dot symbols represent the anchors in the anchor 

map. 
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.1. Principal axis of a grouping 

The principal axis is formulated via the center c = ( x c , y c ) and

he angle θl of the group: 

 = { ( x, y ) | y = tan ( θl ) ( x − x c ) + y c } (1) 

The center of the group that contains n anchors are calculated 

s, 

 c = 

1 

n 

n ∑ 

i =1 

x i , y c = 

1 

n 

n ∑ 

i =1 

y i (2) 

here ( x i , y i ) is the coordinate of each anchor. 

For the initial anchor with the gradient orientation θ1 , θl is cal- 

ulated as π
2 − θ1 under the assumption that the gradient orien- 

ation along l is approximately orthogonal to l. After grouping at 

east two anchors, θl can be determined from the eigenvalue of the 

nertia matrix M ∈ R 

2 × 2 [31] , where M 11 = 

n ∑ 

i =1 

( x i − x c ) 
2 , M 22 = 

n ∑ 

 =1 

( y i − y c ) 2 and M 12 = M 21 = 

n ∑ 

i =1 

( x i − x c )( y i − y c ) . then, the small- 

st eigenvalue is calculated by, 

= 1 / 2 

(
M 11 + M 22 −

√ 

( M 11 − M 22 ) 
2 + 4 M 12 M 21 

)
(3) 

nd θl is calculated by, 

l = { arctan ( ( λ − M 11 ) / M 12 ) , M 11 > M 22 

arctan ( M 12 / ( λ − M 22 ) ) , M 11 ≤ M 22 
(4) 

Calculating M and c is time-consuming if the algorithm accesses 

ll of the anchors after one anchor is added to the group. Thus, 

 

(n ) and c (n ) , which represent the M and c with n anchors in the 

roup, respectively, are calculated via a recursive method. Giving 

he coordinate of NA x NA ∈ R 

2 × 1 , c and M are calculated as: 

 

( n ) = 

(
1 − 1 

n 

)
c ( n −1 ) + 

1 

n 

x NA , M 

( n ) = 

(
1 − 1 

n 

)
( M 

( n −1 ) 

+ 

1 

n 

(
c ( n ) − x NA 

)(
c ( n ) − x NA 

)T 
) (5) 

.2. Active grouping process 

When the principal axis is estimated, the candidates of NA are 

onstrained to a small range and their coordinates can be calcu- 

ated directly. The steps of the active grouping are as follows: 

1. Calculate the candidates of NA based on property 1 of the 

anchor. Giving the direction of the principal axis defined as 

di r PA = ( cos ( θl ) , sin ( θl ) ) and the coordinate of PA defined as 

x PA = ( x PA , y PA ) , the nearest candidate of NA is calculated as 

x NA = round ( x PA + di r PA ) (6) 
4 
Because di r PA only represents the last state of the grouping, an 

interval is set to x NA : if the principal axis is horizontal, i.e., d x > 

d y , the up and down anchors of x NA are added as the candidates 

(see Fig. 5 ), or the left and right anchors are added. 

2. Validate the candidates based on property 1 and 2 of the an- 

chor. First, the difference between the candidate’s orientation 

and the group’s average orientation should be smaller than p. 

Second, the orthogonal distance between the candidate and the 

principal axis should be within 1 pixel. If one candidate satis- 

fies the two constraints, the algorithm goes to step 4. 

3. Expand the candidate. To reduce the fracture caused by the un- 

stable pixels, when the nearest three candidates cannot sat- 

isfy the validation in step 2, the candidates are expanded via 

a jump under the line geometry constraint, which is achieved 

via adding a ratio to Eq. (6) : 

x NA = round ( x PA + j ∗di r PA ) , j ∈ N 

∗, j ≤ t (7) 

j is increased from 2 to t until one candidate satisfies the vali- 

dation in step 2 (see Fig. 5 ). 

4. Update the principal axis as introduced in Section 4.1 and set 

the anchor as PA, then, the algorithm goes to step 1. 

There are two thresholds in the active grouping: the angle tol- 

rance in step 2 and the jump distance t in step 3. We follow the

ast literature that use π
8 as the angle tolerance. t determines how 

ar the grouping jumps when meeting unstable pixels. In AG3line, 

 is the variable based on the level of NA. If NA is a general edge

ixel, t is set as 3, which means in AG3line, two collinear line seg- 

ents with only a two-pixel distance can be merged into one. If 

A is a significant edge pixel, t is set as 10, a loose threshold, 

hich can jump over most noise interference. However, this loose 

hreshold likely will cause many false positives. Thus, the line seg- 

ent validation and refining methods in the next section are em- 

loyed to control false positives. 
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Fig. 6. False positives that should be rejected or refined according to the anchors 

density. The anchors are indicated by red stars and the line segments in blue. (a) 

shows a false positive in a noise background, which should be discarded and (b) 

shows the refined process of an over-grouped line segment. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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from 0.95 to 0.7 based on the length of the line segment. 
. False positive control 

The fixed jumping threshold in the pixels grouping may cause 

alse positives, which arise from the noise background or when the 

istance of two collinear line segments is smaller than the jumping 

hreshold. Fig. 6 shows two types of false positives. In Fig. 6 (a), the

hole group should be discarded since there is no line segment in 

his area. In Fig. 6 (b), a part of the anchors should be discarded

ince they are wrongly connected. 

Our algorithm controls the false positive from a rough to fine 

rocess. The line geometry, which is represented as the anchors 

ensity along the line segment, is first exploited to control the ob- 

ious false positives, then the distribution of the gradient magni- 

udes along the line segment is utilized for further validation. 

.1. The anchors density 

The anchors density is the ratio between the number of the an- 

hors along the line segment (we denote it as k ) and the length of

he line segment, 

 = k/ length ( l ) (8) 

hen the anchors are well grouped into a line segment, the 

nchors density is high. On the other hand, when the jumping 

hreshold causes a false positive, the density is low. 

The anchors density should be no less than the threshold D , 

nd Grompone et al. [22] set 0.7 as the minimum density of the 

ligned points in a rectangle. Generally, long line segments have 

 higher probability of covering noise than short ones while short 

ine segments have a higher probability of being grouped in noise 

reas such as grasses, trees, or clouds. Therefore, in our method 

he density threshold is a variable based on the line segment, and 

 power function can be used to formulate this strategy: 

 = a · length ( l ) 
b + c (9) 

here a, b, and c are coefficients. With the increase in the line seg- 

ent length, D declines sharply and finally approaches to a fixed 

alue. 

We set 0.95 as the density threshold of the shortest line seg- 

ent. When the line segment is ten times longer than the short- 

st, we think it is long enough and set 0.7 as the density threshold,

nd any line segment longer than it has the same threshold. There- 

ore, we can list at least three equations to solve the coefficients in 

ormula (9). 

For a line segment, of which d is smaller than D , the anchors 

re first split into two groups by the anchor having the maximum 

istance with its neighbor; then, the smaller group is discarded. 

his process is iterative and is terminated when d ≥ D or the 

ength of the line segment is smaller than the minimum. 
5 
.2. Alignment of the gradient magnitude 

As shown in Fig. 7 (a), when the false positive is long enough 

nd the anchors density is large enough, the line geometry valida- 

ion introduced in Section 5.1 will fail. Therefore, a further valida- 

ion is employed by exploiting the alignment in gradient magni- 

ude. 

The validation via the gradient magnitude is based on the hy- 

othesis that the gradient magnitudes along the line segment are 

ligned with each other. Cho et al. [23] showed that these gradi- 

nt magnitudes can be modeled as a normal distribution given the 

istribution N ( μ, σ 2 ) , where μ is the mean gradient magnitude of 

 line segment and σ 2 is the variance. According to the empirical 

ule [32] , the gradient magnitude along a line segment has a great 

robability of about 0.997 to fall in the interval between μ − 3 σ
nd μ + 3 σ . In the gradient magnitude space of an image with the 

ange of R , this interval covers a proportion of 6 σ/R . A higher pro-

ortion implies a less stable distribution of gradient magnitudes. 

n other words, the stability of these gradient magnitudes in the 

radient magnitude space is compressed to 

 = 

R − 6 σ

R 

(10) 

 is the threshold that constrains the gradient magnitude given the 

tability of each gradient magnitude, which is presented by the co- 

fficient of the variance form: 

V = 

| μ − G mag | 
u 

(11) 

f CV < P , we say that the pixel is aligned with the whole in the

radient magnitude. 

Fig. 7 (b) shows the validation and refining process. First, the 

alue of CV for each pixel and the value of P for the whole group

re calculated. Then, for each pixel, if CV < P and the pixel is not

n anchor, then the group is divided into two parts at the pixel’s 

earest anchor and the smaller group is set free for regrouping. 

his process is iterative until all the pixels are aligned in gradient 

agnitude or the line segment length is smaller than the mini- 

um. 

. Experiments 

In this study, both quantitative and qualitative experiments 

ere employed for evaluation of the AG3line detector approach. 

he performance of AG3line also was compared to PPHT, LSD, ED- 

ines, MCMLSD, and Linelet. PPHT is a classical Hough transform- 

ased detector that can be employed in OpenCV; and we followed 

inelet to set the connection gap as 5 and set both the threshold 

inimum gain and the number of pixels contributed as 30. LSD 

nd EDLines are widely used detectors, and MCMLSD and Linelet 

re the newest detectors. Their implementations are available on 

he authors’ websites [33–36] . We made no changes on their code 

r internal parameters in the experiment. Our implementation is 

vailable on the website [37] , and the internal parameters were 

xed in the experiment. The parameters of AG3line are as follows. 

1. Suppressing image noise: following EDLines, the image was fil- 

tered by a 5 × 5 Gaussian kernel filter with σ = 1 . 

2. Minimum gradient magnitude: following LSD and EDLines, a 

gradient magnitude smaller than 5.2 was not used. 

3. Gradient orientation tolerance: in Sections 3.1 and 4.2 , two pix- 

els’ gradient orientations were aligned when the difference be- 

tween their angles is smaller than 

π
8 . 

4. Jumping distance: in Section 4.2 , the general anchor can jump 

two pixels and the anchor in Algorithm 1 can jump ten pixels. 

5. The anchors density: in Section 5.1 , the anchors density varied 
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Fig. 7. Line segment validation based on the gradient magnitude (GM). In (a), the anchors are red; the yellow line segment is a false positive; and the blue line segment 

is the refined result. In (b), the anchors are crossed by vertical lines; the gradient magnitudes along the false positive in (a) are plotted by circles; the circles in green are 

aligned with the whole; and the circles in red are discarded since they are not aligned. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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.1. Evaluation details 

Based on the ground truth, three indicators were used to quan- 

itatively evaluate the performance of the detectors on an im- 

ge: 1) Recall: the length ratio between the true positives and the 

round truth, 2) Precision: the length ratio between the true posi- 

ives and the extracted line segments, and 3) F-score: the combina- 

ion of precision and recall, which implies the overall performance 

nd is calculated by, 

 − score = 

2 × precision × recall 

precision + recall 
(12) 

n the evaluation of Linelet, the true positive L tp and its ground 

ruth L gt satisfied the following constraints: their angle difference 

as smaller than 

π
36 ; the midpoint of L tp was within 1 pixel to L gt ;

nd the intersection over L gt was larger than the threshold. 

L gt ∩ L t p 

L gt 
≥ λa rea (13) 

To avoid setting the over-connection as a true positive, we 

dded an additional constraint on the intersection ratio: 

L gt ∩ L t p 

L t p 
≥ λa rea (14) 

ote that the true positive’s length is the intersection of L tp and 

 gt , but not the length of L tp . 

.2. Dataset description 

The York Urban image dataset [38] containing 102 images (45 

ndoor and 57 outdoor) was used for the evaluation. These images 

re 640 × 480 in size and contain urban environments consisting 

ostly of scenes from the campus of York University and down- 

own Toronto. 

We used two sets of hand-labelled ground truth of this dataset 

o evaluate the performance. The first set was York Urban ground 

ruth (YUGT) [38] . Each image in the dataset was hand-labelled 

o identify the line segments satisfying the “Manhattan-world as- 

umption” [39] , but many short line segments were not labelled 

ecause they were mainly used to detect the vanish point. The 

econd set was the Linelet ground truth (LtGT) [17] , which was 

and-labelled by the author of Linelet to validate the performance 

f Linelet, thus more line segments were labelled in this set than 

or the first set. 

Since YUGT was known to miss many short line segments, we 

sed the short line segments in LtGT to complete YUGT. The line 

egment of LtGT, which did not find the intersection in YUGT, was 

dded to YUGT. Finding an intersection line segment is the same 

s finding a true positive in Section 6.1 . 
6 
.3. Quantitative evaluation results 

Fig. 8 shows the average evaluation results of YUGT with dif- 

erent λarea . For the F-score, AG3line performed the best under 

ll conditions; MCMLSD performed better than Linelet and both 

chieved performance comparable to AG3line; LSD had a certain 

ap with the three detectors in front; and EDLines and PPHT had 

n obvious gap with the other detectors. With an increase of λarea , 

he F-scores of all the detectors declined; and the F-scores of 

G3line, MCMLSD, and Linelet were similar because when λarea 

as larger than 0.5, many true positives were counted as false pos- 

tives. Note that these conditions were tight when true positives 

hould have a tiny center (one pixel) distance, a small angle differ- 

nce (five degrees), and at least a half overlapping. 

Fig. 8 (b) shows the average precisions and recalls of the six 

etectors, both of which decreased with an increase of λarea but 

he rankings were fixed. AG3line achieved first place in precision 

nd second place in recall, which means that AG3line achieved 

 good balance in controlling both false positives and false neg- 

tives. MCMLSD outperformed the others in recall because it im- 

roved PPHT and was able to extract more long line segments 

han the others but it cannot extract accurate endpoints in many 

ases, which will be illustrated in Section 6.4 . Also, the precision of 

CMLSD ranked third, which implied that it cannot control false 

ositives well. Linelet performed better than LSD in recall, but its 

recision was worse than LSD, which indicates that Linelet de- 

ected more ground truths as well as more false positives than LSD. 

DLines did not perform as well as LSD in both recall and precision 

nd PPHT obtained the lowest score. 

Fig. 9 shows the average evaluation results of LtGT with differ- 

nt λarea . For the F-score ( Fig. 9 (a)), AG3line outperformed the oth- 

rs with various λarea , but the rankings of MCMLSD, Linelet, and 

SD changed. Linelet rose from third to second place and LSD out- 

erformed MCMLSD when λarea was larger than 0.4. In addition, 

DLines performed better when evaluated by YUGT. This result was 

xpected because the long line segment annotated in LtGT was 

horter than YUGT. MCMLSD extracted many straight lines, and as 

 result, they failed to satisfy the formula (14). On the contrary, 

ore of the line segments extracted by AG3line, Linelet, LSD, and 

DLines satisfied the formula (13–14). Fig. 9 (b) shows that both 

he precisions and recalls of AG3line, Linelet, LSD, and EDLines in- 

reased. Table 1 shows the ranking statistics of the F-scores for all 

he images when λarea was 0.5. When evaluated by LtGT, 50% of 

G3line’s F-scores ranked first while Linelet and MCMLSD obtained 

 proportion of 25% and 17% that ranked first, respectively. When 

valuated by the YUGT, the proportions of ranking first of AG3line 

nd Linelet decreased to 44% and 19%, respectively, while MCMLSD 

ncreased to 34%. Note that compared with Linelet and MCMLSD, 
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Fig. 8. Quantitative evaluation results based on YUGT. 

Fig. 9. Quantitative evaluation results based on LtGT. 

Table 1 

Ranking statistics of F-scores in two sets of ground truth when the λarea is 0.5. 

method 

ranking 

AG3line PPHT LSD EDLines Linelet MCMLSD 

LtGT YUGT LtGT YUGT LtGT YUGT LtGT YUGT LtGT YUGT LtGT YUGT 

1st 51 44 0 0 8 5 0 0 26 19 17 34 

2st 37 37 0 0 15 16 3 1 37 28 10 20 

3st 11 19 0 0 33 18 8 2 29 43 21 20 

4st 3 2 0 0 41 59 8 7 8 10 42 24 

5st 0 0 6 6 5 4 77 86 2 2 12 4 

6st 0 0 96 96 0 0 6 6 0 0 0 0 
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G3line achieved robust performance in the two sets of ground 

ruth. Also, we concluded from Table 1 that AG3line performed 

ell in most images because 81% of AG3line’s F-scores ranked in 

he top two in the worst condition, which was higher than Linelet 

nd MCMLSD by 44% and 54%, respectively. 

.4. Computation time 

The computation time of AG3line was compared with LSD and 

DLines using the 102 images described in Section 6.2 . LSD and 

DLines were reported as the linear-time detector and real-time 

etector, respectively, and their experiments showed they were 

aster than the Hough based detectors. Since Linelet and MCMLSD 

re only available for the MATLAB vision, it is unfair to use the 

 ++ vision of AG3line to compare with them. All of the three al- 

orithms were compiled by the Visual C ++ Compiler, and the tests 
7 
ere employed on the same laptop with Intel Core i7–7700HQ CPU 

nd Windows 10 system. To reduce the bias, we employed 50 tests 

or each image and took the average computation time as the final 

esult. 

Fig. 10 shows the computation time of the three algorithms. All 

f them processed each image within about 120 milliseconds (ms). 

G3line achieved the first in most images, which took at most 

3 milliseconds to process each image. EDLines ran faster than 

G3line in some images, but its time distribution was not so stable 

s AG3line. LSD took more time than other two detectors and its 

ime distribution was the most unstable. The statistic of the com- 

utation time in table 2 is corresponding to Fig. 10 . AG3line took 

he least time to process all of the images and its standard de- 

iation was the smallest, which indicated that AG3line was more 

table in computation time than LSD and EDLines. 
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Fig. 10. The computation time of the 102 images. The horizontal axis represents the index of each image in the York Urban dataset. 

Fig. 11. Line segment detection result on the image #22 of the dataset. 

Table 2 

The statistic of the computation time (ms) for the York Urban image 

dataset. 

Mean Standard deviation Minimum Maximum 

AG3line 21.12 4.34 9.00 38.00 

EDLines 27.40 16.21 8.00 86.00 

LSD 61.11 22.14 20.00 192.00 
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AG3line achieved a good performance in computation time for 

wo reasons. First, the active grouping method only starts with the 

ignificant edge pixel, which reduces the validation of the false 

ositive. Second, the candidate anchor for the grouping is con- 

trained to a small range ( Section 4.2 ). Thus, less computation and 

alidation are employed than the passive grouping. 

.5. Qualitative comparison 

The image in Fig. 11 (a) is a challenging situation that contains 

any weak gradient line segments on the facade and contains 

rees that may cause false positives. LSD and EDLines performed 
Table 3 

Quantitative evaluation of the performance ( λarea = 0.5) on the i

Algorithm AG3line PPHT LSD 

Image #22 #92 #22 #92 #22 #

F-score 0.42 0.49 0.14 0.26 0.27 0

Recall 0.41 0.55 0.23 0.39 0.19 0

Precision 0.43 0.44 0.10 0.19 0.46 0

Time(ms) 27.25 21.95 63.00 54.13 60.95 4

8 
ell in false positive control but nearly failed to extract the line 

egments on the façade. Linelet was found to produce many frac- 

ures and more false positives than LSD, EDLines, and AG3line. 

CMLSD extracted more long line segments but failed to extract 

ccurate endpoints for many line segments. PPHT generated many 

alse positives and false negatives. Note that only AG3line extracted 

he complete vertical long line segment at the far left. The image 

n Fig. 12 (a) contains a scene where there are many clouds and 

ense line segments (the dense line segments are not labelled in 

he two sets of ground truth). For performance in rejecting false 

ositives, AG3line outperformed the others since it rejected many 

alse positives in the cloud regions; LSD performed better than the 

thers except AG3line; EDLines generated many false positives that 

ere generally longer than the others; MCMLSD and PPHT gener- 

ted many false positives in the area containing dense line seg- 

ents. For the performance of complete extraction, AG3line, LSD, 

nd Linelet detected the dense line segments while the others did 

ot detect them or generated false endpoints. 

The quantitative evaluation in Table 3 is corresponding to the 

ualitative results. All of the scores were lower than the aver- 
mage #22 and #92 of the dataset. 

EDLines Linelet MCMLSD 

92 #22 #92 #22 #92 #22 #92 

.35 0.24 0.31 0.22 0.40 0.39 0.40 

.36 0.19 0.31 0.20 0.47 0.33 0.49 

.33 0.34 0.31 0.24 0.35 0.47 0.35 

7.67 39.70 19.45 – – – –
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Fig. 12. Line segment detection result on the image #92 of the dataset. 

Fig. 13. The two image sequences and the 3D line segments constructed by the line segment matching algorithm [40] with the four line segment detectors. 
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ge scores presented in Section 6.2 for the challenging situations. 

G3line achieved the first score in recall on image #22, since many 

ine segment on the facade were extracted. For image #92, AG3line 

chieved the first score for both the recall and the precision. Note 

hat the computation time of AG3line was as fast as EDLines. 

.6. Practical application in 3D line reconstruction 

To evaluate the performance of AG3line, LSD, EDLines, and 

CMLSD in practical application, we employed the classical line 

egment matching algorithm [41] , which requires accurate and ro- 

ust line segments from multiple views to generate the 3D line 

egment. The codes, the image sequences and their camera matri- 
9 
es were available from the author’s website[40]. The parameters 

ere the same when employed with the four detectors. 

Fig. 13 shows the 3D line segments generated with the four de- 

ectors. The 3D line segments constructed with AG3line were more 

omplete than that constructed with the other three detectors: 

rst, the 3D line segments were with less fractures; second, more 

D line segments with weak gradient were constructed. Note that 

lthough the 3D line segments constructed with MCMLSD were 

ith few fractures, many of them were over-connected and not ac- 

urate. The results were respected. As shown in Fig. 14 , the 2D line

egments extracted by AG3line were with less fractures and false 

ositives than others. Also, more line segments with the weak gra- 

ient were detected by AG3line. 
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Fig. 14. The line segment extraction results for one of the image in the second image sequence. 
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.7. Discussion 

Our experimental results demonstrated that exploiting both the 

ine geometry and the gradient magnitude would be beneficial in 

ine segment extraction. The line extraction steps of the AG3line 

ethod resemble the human visual process. When a human is 

rawing the line segment of an object, the line geometry (prin- 

ipal axis) and sharp area (the anchor map) are primarily consid- 

red, and the line segment is drawn directly from one point to the 

nds (active grouping). 

AG3line detector achieved a good balance in extracting com- 

lete line segments and controlling false positives. Moreover, it 

erformed well in the computation time. However, other current 

etectors have their own advantages: 1) PPHT is a fast detector 

or extracting global lines; 2) EDLines can run in real-time for im- 

ges smaller than 10 0 0 × 10 0 0; 3) LSD can locate the endpoints

o the subpixels; 4) Linelet can extract more local line segments 

han the others although its false control strategy generates more 

alse positives than the Helmholtz principle and our method; and 

) MCMLSD is more robust than PPHT because it is an improved 

ersion of PPHT. 

In the two sets of ground truth, the detectors performed dif- 

erently, and even the rankings changed. These results show that 

here were different cognitive perceptions of line segments. In 

UGT, the ground truth was more global and the line segment 

as not separated if it was visually continuous. In LtGT, the line 

egment was split for the discontinuity in one or two pixels but 

as labelled as whole in some cases. This distinction is why the 

ankings of MCMLSD, LSD, and Linelet changed in the two sets of 

round truth. On the other hand, labeling the line segments by 

and for the 102 images was difficult and time consuming because 

llumination changes, texture noises, or blurry effects must be con- 

idered. Although it was time consuming work, it not only made 

he evaluation more objective but also helped to improve the line 

egment detector’s performance. 

. Conclusion 

In this paper we introduced a new detector called AG3line to 

olve the problem of line segments being extracted as fractures be- 

ause of unstable pixels, which also may cause false positives. 

The proposed detector takes advantage of the inherent geome- 

ry constraint and the alignment in the gradient magnitude of the 

ine segment. Our quantitative and qualitative evaluation showed 

hat both the false negative and the false positive were controlled 

fficiently, and AG3line ran faster than both LSD and EDLines. 

We suggest two extensions to the work presented in this paper: 

) improve AG3line’s speed for real-time application with GPU and 

) extend AG3line’s algorithm to detect curves and circles, which 

ccur frequently in artificial scenes. 
10 
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