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Registration of Multimodal Remote Sensing
Images Using Transfer Optimization
Xiaohu Yan , Yongjun Zhang , Dejun Zhang , Neng Hou, and Bin Zhang

Abstract— Multimodal image registration is critical yet chal-
lenging for remote sensing image processing. Due to the large
nonlinear intensity differences between the multimodal images,
conventional search algorithms tend to get trapped into local
optima when optimizing the transformation parameters by
maximizing mutual information (MI). To address this problem,
inspired by transfer learning, we propose a novel search algo-
rithm named transfer optimization (TO), which can be applied to
any optimizer. In TO, an optimizer transfers its better individuals
to the other optimizer in each iteration. Thus, TO can share
information between two optimizers and take advantage of their
search mechanisms, which is helpful to avoid the local optima.
Then, the registration of the multimodal remote sensing images
using TO is presented. We compare the proposed algorithm with
several state-of-the-art algorithms on real and simulated image
pairs. Experimental results demonstrate the superiority of our
algorithm in terms of registration accuracy.

Index Terms— Image registration, multimodal image, mutual
information (MI), transfer optimization (TO), transformation
parameters.

I. INTRODUCTION

IMAGE registration is a fundamental task in many remote
sensing applications, such as image fusion, image mosaic,

and change detection [1]. The aim of image registration is to
align the sensed image from different sensors, from different
viewpoints, or at different times with a reference image.
In recent years, considerable attention has been paid to the
registration of multimodal remote sensing images to obtain
the complementary and valuable information [2]. However,
due to the nonlinear intensity differences and geometric
deformations, the registration of multimodal images is still
a challenging task [3].
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Image registration methods are coarsely classified into
feature-based and area-based methods [4]. The scale-invariant
feature transform (SIFT) algorithm and its variants are the
most famous algorithms to detect the features, because they are
invariant to scale, rotation, and translation [5]. The speeded-
up robust features (SURF) algorithm employs a Hessian
matrix-based measure and improves the speed [6]. Affine-SIFT
(ASIFT) achieves invariance to affine transformation by simu-
lating all image views obtainable by varying two camera-axis-
orientation parameters [7]. Synthetic aperture radar (SAR)-
SIFT uses a new gradient definition, which yields an ori-
entation and a magnitude that are robust to speckle noise
[8]. Uniform robust SIFT (UR-SIFT) applies a selection
strategy to extract high-quality SIFT features in the uniform
distribution [9]. Adaptive binning SIFT (AB-SIFT) uses an
adaptive histogram quantization strategy for both the location
and gradient orientations [10]. The histogram of oriented self-
similarity (HOSS) algorithm that is robust to illumination vari-
ations computes the histogram of self-similarity measures in
multiple directions [11]. Ye et al. [12] presented a new feature
descriptor named histogram of orientated phase congruency
(HOPC) that can capture the geometric structural features
of multimodal images. Chang et al. [13] proposed a novel
registration algorithm for remote sensing images based on
modified SIFT and feature slope grouping.

Due to the large nonlinear intensity differences between the
multimodal images, it is difficult to detect highly repeatable
common features by using feature-based methods in complex
registration cases. Area-based methods that deal directly with
the image intensity values can avoid the step of feature detec-
tion, and hence are effectively applied to multimodal image
registration. Area-based methods can generally be classified
into three categories: correlation-like methods, Fourier meth-
ods, and mutual information (MI) methods [14]. MI methods
are the most popular in remote sensing image registration.
An et al. [15] introduced a modified particle swarm optimiza-
tion (PSO) method that reinitializes particle velocity to search
for the maximum MI. Fan et al. [16] proposed an improved
MI method that combines the spatial information through a
feature-based selection mechanism. Liang et al. [17] proposed
a novel similarity metric based on spatial and MI (SMI),
and adopted ant colony optimization (ACO) to optimize SMI.
Wu et al. [18] combined continuous ACO and local search
operation to maximize MI.

Despite the impressive performance of MI methods, the sim-
ilarity curve of MI has been shown to have many local optima
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in multimodal image registration [19]. Search algorithms tend
to get trapped into the local optima when searching for the
global optimum, which leads to poor registration performance.
To address this problem, inspired by transfer learning [20],
we propose a new approach for multimodal remote sensing
image registration using transfer optimization (TO). TO is used
to optimize the transformation parameters by maximizing MI.
In TO, an optimizer transfers its better individuals to the other
optimizer in each iteration, which is helpful to avoid local
optima.

This letter is organized as follows. In Section II, multimodal
image registration using TO is described. In Section III,
experimental results and analysis are presented. Conclusions
are summarized in Section IV.

II. MULTIMODAL IMAGE REGISTRATION USING TO

In this section, we present a novel approach for multimodal
image registration that uses MI as the similarity measure and
TO as the search algorithm.

A. Transformation Model

Current technologies can remove obvious geometric distor-
tions and produce remote sensing images that have an offset of
only dozen or so pixels [21]. Moreover, remote sensing images
can be resampled to the same ground sample distance (GSD)
to eliminate the scale differences [12]. Thus, we adopt the
rigid transformation model in the registration of multimodal
remote sensing images. The translations of the x-axis and the
y-axis are denoted as tx and ty , respectively. The rotation is
denoted as θ . Then, the rigid transformation model can be
formulated as[

x ′
y ′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
+

[
tx

ty

]
. (1)

B. MI

According to the information theoretic notion of entropy,
MI of images A and B can be computed by

I (A, B) = H (A) + H (B) − H (A, B) (2)

where H (A) and H (B) are the marginal entropies of images
A and B , respectively, and H (A, B) is their joint entropy. The
entropies and joint entropy can be computed by

H (A) = −
∑

a

PA(a)log2 PA(a) (3)

H (B) = −
∑

b

PB(b)log2 PB(b) (4)

H (A, B) = −
∑
a,b

PAB (a, b)log2 PAB (a, b) (5)

where PA(a) and PB(b) are the marginal probability distribu-
tions of images A and B , respectively, and PAB (a, b) is their
joint probability distribution [22].

C. TO

To solve the complex optimization problems, many optimiz-
ers with different search mechanisms have been proposed

over the last few decades. In an iteration, individuals from
an optimizer may have unexploited and unexplored positions
that can help the other optimizer find better solutions. Inspired
by transfer learning, we propose TO that transfers individuals
between two optimizers. Specifically, in each iteration, an opti-
mizer transfers its better individuals to the other optimizer. The
pseudocode of TO is presented in Algorithm 1.

Algorithm 1 Search Algorithm TO

Input: M , the maximum number of iterations;
N , the population size;
Tc, the threshold number of iterations;
opt1, the first optimizer;
opt2, the second optimizer.

Output: gx , the global best position.
Randomly generate N individuals to initialize the
population of opt1 named pop1;
Randomly generate N individuals to initialize the
population of opt2 named pop2;
for t = 1 : M do

Compute the fitness of each individual in pop1 and
pop2;
Update pop1 according to the search mechanism of
opt1;
Update pop2 according to the search mechanism of
opt2;
for i = 1 : N do

if the fitness of pop1(i) is better than that of
pop2(i) then

pop2(i)=pop1(i);
end
else

pop1(i)=pop2(i);
end

end
Update the global best position and its fitness;
if the global best fitness has not been improved in Tc

iterations then
break;

end
end

In TO, two optimizers run independently according to their
search mechanisms. Then, the convergence of TO can be
ensured by the search mechanisms of two optimizers that
are not disturbed by TO. After the population is updated,
two optimizers transfer their better individuals to each other.
Thus, TO can share information or knowledge between the
two optimizers and take advantage of their search mechanisms,
which is helpful to avoid local optima. Due to its convergence,
TO is stopped when the global best fitness has not been
improved in Tc iterations, which can reduce the runtime.

It is worthwhile to mention that TO can be applied to any
optimizer. In this letter, we select PSO and the whale opti-
mization algorithm (WOA). PSO is inspired by the intelligent
behavior of birds or fish, and WOA simulates the hunting
behavior of humpback whales. Thus, the search mechanisms

Authorized licensed use limited to: Wuhan University. Downloaded on March 08,2024 at 07:43:35 UTC from IEEE Xplore.  Restrictions apply. 



2062 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 17, NO. 12, DECEMBER 2020

Fig. 1. Flowchart of multimodal image registration using TO.

of PSO and WOA are distinct and complementary, which can
increase the population diversity and enhance the global search
ability.

D. Multimodal Image Registration Using TO

TO is used to optimize the transformation parameters of
multimodal images. In each iteration, the fitness is the value
of MI, and the position of each individual consists of the
transformation parameters tx , ty , and θ . The registration of
multimodal remote sensing images using TO is presented
in Fig. 1.

As shown in Fig. 1, we first rectify the reference and
sensed images coarsely by using the direct georeferencing
techniques. Hence, the obvious geometric distortions of mul-
timodal remote sensing images are removed. Second, TO
optimizes the transformation parameters by maximizing MI.
We compute the MI of each individual in all iterations. Two
optimizers transfer their individuals according to the value of
MI. The global best position is the optimal transformation
parameters obtained by TO. Finally, we register the sensed
image by rigid transformation according to (1).

III. EXPERIMENTS

To verify the effectiveness of the proposed algorithm,
we compare TO with several state-of-the-art algorithms such
as SIFT [5] and HOPC [12]. To investigate its performance
further, TO is compared with PSO, WOA, and Powell [23].
In the feature-based methods, we use the fast sample con-
sensus (FSC) algorithm [24] to estimate the transformation
parameters.

A. Experimental Setup

In TO, the population size is 30. To compare fairly, the pop-
ulation size is set to 60 in PSO and WOA, because there are
two optimizers in TO. In PSO, the learning factors are 2, and
the inertial weight is decreased linearly from 0.9 to 0.2 over
iterations. In PSO, WOA, Powell, and TO, the maximum

number of iterations is 500, and Tc is 20. The parameters
of SIFT, HOPC, Powell, WOA, and FSC are set according to
their original literature.

The search ranges of tx , ty , and θ are set to [−20, −20, −20;
20, 20, 20]. The algorithms are written in MATLAB R2018a.
All experiments are executed on an Intel Core i7-8700 at
3.2 GHz CPU with 8-GB memory.

B. Evaluation Criterion

The root-mean-square error (RMSE) and mean absolution
error (MAE) of the check points are used to evaluate reg-
istration accuracy quantitatively. L check points {(xi , yi ),
(xi

′, yi
′)} are selected from the reference and sensed images.

Let (xi
′′, yi

′′) denote the transformed coordinates of (xi
′, yi

′).
Then, RMSE and MAE are computed by

RMSE =
√√√√ 1

L

L∑
i=1

((
xi − x ′′

i

)2 + (
yi − y ′′

i

)2) (6)

MAE = 1

L

L∑
i=1

√((
xi − x ′′

i

)2 + (
yi − y ′′

i

)2)
. (7)

In general, the check points are determined manually.
Specifically, for each image pair, we select 40–60 evenly
distributed check points with a subpixel accuracy between
the reference and sensed images. The runtime is employed to
evaluate computational efficiency. Moreover, we use the value
of MI to analyze the search ability of TO.

C. Description of Data Sets

We test the proposed algorithm on six pairs of real multi-
modal images, which are shown in Fig. 2. In Fig. 2, the ref-
erence images are presented in the first row, and the sensed
images are presented in the second row.

As shown in Fig. 2, image pair 1 is from Daedalus vis-
ible and infrared data on April 2000. The two images are
512 × 512 with a spatial resolution of 0.5 m [12]. Image
pair 2 is from Landsat 5 Thematic Mapper (TM) infrared
and visible data with a spatial resolution of 30 m. The two
images with 588 × 606 are captured over Jiangsu Province,
China. Image pair 3 is airborne light detection and ranging
(LiDAR) and visible images. The two images are 480 × 550
with a spatial resolution of 0.8 m. Image pair 4 is captured over
Tibet Province, China. The two images with 531 × 455 are
downloaded from Google Maps. Image pair 5 is from Google
Earth on November 2009 and TerraSAR-X on December 2008
[3]. The two images are 618 × 628 with a spatial resolution
of 3 m. Image pair 6 is from Landsat 5 TM and Sentinel-1A.
The two images with 688 × 500 are captured over Kyushu,
Japan.

To increase the difficulty of image registration, we test
the proposed algorithm on six pairs of synthetic multimodal
images. The synthetic image pairs are simulated by real image
pairs. Specifically, the sensed images of image pairs 1–6
suffer 8◦ rotations to produce the sensed images of image
pairs 7–12. The sensed images of synthetic image pairs are
shown in Fig. 3.
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Fig. 2. Multimodal image pairs. (a) Image pair 1. (b) Image pair 2. (c) Image pair 3. (d) Image pair 4. (e) Image pair 5. (f) Image pair 6.

Fig. 3. Sensed images of synthetic image pairs. (a) Image pair 7. (b) Image pair 8. (c) Image pair 9. (d) Image pair 10. (e) Image pair 11. (f) Image pair 12.

TABLE I

RMSE, MAE, AND RUNTIME COMPARISONS OF SIFT, HOPC, PSO, WOA, POWELL, AND TO

D. Performance Evaluation
To analyze the performance of TO, we compare the algo-

rithm with SIFT, HOPC, PSO, WOA, and Powell. RMSE,
MAE, and runtime comparisons are presented in Table I.
In Table I, the best result is marked in bold.

As can be seen in Table I, RMSE and MAE of TO are
smaller than those of the other algorithms on most image pairs.
Moreover, TO achieves satisfactory and accurate registration
results in all types of multimodal image pairs, which confirms
the effectiveness and robustness of TO. RMSE and MAE of
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Fig. 4. MI comparison.

TO are significantly smaller than those of PSO and WOA,
which demonstrates that the proposed transfer strategy is
helpful to enhance registration accuracy. RMSE and MAE
of SIFT are very large on most image pairs, because SIFT
cannot detect highly repeatable shared features between the
multimodal images.

It can be seen from Table I that the runtime of TO is larger
than that of PSO and WOA on some image pairs, such as
image pairs 1, 2, and 8. This result could be attributed to the
fact that these algorithms are stopped when the global best
fitness has not been improved in 20 iterations. To evaluate the
search ability of TO, the value of MI is compared in Fig. 4.

As shown in Fig. 4, MI of TO is larger than that of the other
algorithms on all image pairs. MI of SIFT is very small on
most image pairs, which leads to failed registration. Compared
with PSO and WOA, the improvement of MI in TO is obvious,
which confirms that the proposed transfer strategy can increase
the population diversity and enhance the global search ability.
Therefore, TO is efficient for the registration of multimodal
remote sensing images.

IV. CONCLUSION

In this letter, we propose a new approach for multimodal
remote sensing image registration using TO. To avoid
local optima, TO is used to optimize the transformation
parameters. In each iteration, an optimizer transfers its better
individuals to the other optimizer, which can help enhance
the global search ability of TO. It is worth mentioning that
TO can be applied to any optimizer. Experimental results
on various multimodal remote sensing images demonstrate
that the proposed algorithm outperforms the state-of-the-art
algorithms in terms of registration accuracy. In the future,
we will accelerate the calculation process of TO by using the
graphics processing unit (GPU).
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