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a b s t r a c t 

Motion blur has a significant impact on image recognition. Segmentation of motion-blurred regions contributes 

to further identification or classification. Most existed segmentation algorithms are always universal for par- 

tially blur images, but not especially for motion-blurred ones. This paper proposes a particular algorithm aiming 

at motion-blurred region segmentation. Firstly, motion regions are segmented by a patch-based preprocessing. 

Then, the blurriness of motion regions is measured by a defined function to detect local blurred areas. Empiri- 

cal thresholds are recommended according to the experimental results. The experimental results show that the 

motion-blurred regions can be segmented more accurately, and the speed almost doubles other algorithms. Thus 

we propose a more accurate and efficient segmentation method, especially for partial motion-blurred images. 
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. Introduction 

In digital photography, motion blur is a common but undesirable

henomenon because it will have an impact on image recognition. It

s mostly caused by the relative motion between the camera and ob-

ects ( Ben-Ezra & Nayar S, 2003 ; Javaran et al., 2017 ; Li et al., 2015 ;

hao et al., 2015 ). Segmentation of blurred regions from a clear back-

round plays an important role in subsequent image recognition or clas-

ification. This paper proposes an algorithm for detecting blurred re-

ions and segmenting moving objects out of the non-blurred regions in

mages. 

Many scholars have researched on blur segmentation from differ-

nt perspectives. Spatial derivative ( Levin, 2007 ; Liang et al., 2009 ,

010 ; Marziliano et al., 2002 ; Ryu & Sohn, 2014 ; Zhang et al., 2012 ),

he average gray level ( Bar et al., 2007 ), the thickness of object con-

ours ( Capizzi et al., 2018 ; Freeman W & Adelson E, 1991 ; Jacob &

nser, 2004 ; Liu & Klette, 2017 ; Pi et al., 2013 ; Soleimani et al., 2010 ;

tanciu et al., 2019 ; Zhang & Bergholm, 1997 ), the color spectrum

 Huang et al., 2018 ; Liu et al., 2008 ; Xu et al., 2013 ; Yang & Qin, 2016 )

re used as measurements to reflect the intensity of the blur. Besides,

n the research of low-DOF (depth-of-field) images, blur segmentation

s also involved ( Graf et al., 2011 ; Kim, 2005 ; Li & Ngan K, 2007 ; Tai

 Brown, 2009 ; Zhang K et al., 2007 ). Recently, more and more schol-

rs aim at partial blur segmentation ( Storath et al., 2017 ; Tang et al.,

016 ; X. Zhao & Wu, 2019 , 2019 ). Chakrabarti et al. (2010) proposed

 local blur cue to measure the likelihood of a small neighborhood

eing blurred by a candidate blur kernel. Combining with color in-

ormation under the Markov Random Field segmentation framework,
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easonable segmentation of the blurred objects were obtained. Levin

evin et al., (2008) introduced the spectral matting technique to de-

ompose a color image into the foreground/ background. Zhao et al.

 Zhao et al., 2013 ) combined some blur features such as gradient his-

ogram span, local mean square error map, and maximum saturation

t al. to detect the blur and appeal to image matting technology for seg-

entation. By overcoming the drawbacks in Zhao et al., (2013) of the

eeded manual intervention and unstable features, Su et al. ( Su et al.,

011 ) used a threshold method to segment the sharp area from the blur

rea. Wang ( Wang et al., 2014 ) applied morphological technologies to

egment the partial blur from a single image, considering different types

f blur. They also defined a criterion for ranking the blur degree of a

artial blur image. Kovacs and Szirnyi ( Kovacs & Sziranyi, 2007 ) differ-

ntiate the blurred areas by deconvolution-based focus extraction with

he angle deviation error measure in blind image deconvolution. Besides

aiebeh et al. ( Javaran T et al., 2016 ) proposed the noise-immune blur

etric for blur estimation, by which the blurriness values of divided

locks were calculated. Taiebeh et al. ( Javaran T et al., 2017 ) also en-

oded the amount of blurriness for individual pixels in a given image to

etect blurred regions. 

Summing up all the above-mentioned work, we find that most seg-

entation algorithms are fit for universal partial blur images but not

specially for motion-blur. The way of estimating the blur kernel to deal

ith motion blur always results in discontinuities, while measuring lo-

al blurred region pixel to pixel is accurate but time-consuming. This

aper proposed a local segmentation algorithm, especially for motion

lur. The main contributions of this paper are: (1) to pre-segment the

mage in a patch-based way to detect the motion regions; (2) to mea-
ctober 2020 
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Fig. 1. The operation of assimilation. 
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ure the blurriness of patches to segment blurred regions; (3) to provide

mpirical values of the thresholds. 

The rest of this paper is organized as follows. Section 2 and 3 describe

he two stages of the proposed motion blur segmentation algorithm. The

xperimental results and discussions are presented in Section 4 . Finally,

e summarize and discuss directions for future research in Section 5 . 

. Patch-based pre-segmentation 

Image segmentation is a technique to divide an image into several

egions with specific meanings, according to different features, such as

rayscale, texture. Each region has the same or similar feature, different

rom other regions. Thus the image segmentation can be seen as a pro-

ess of classifying pixels according to certain criteria is essential. Under

he concept of the set, image segmentation can be defined as: 

efinition 1. Let the set of all the pixels in a digital image I be R, P be

he logical predicate (Classification criteria), then image segmentation

s to divide R into N subsets { 𝑆 1 , 𝑆 2 , ⋯ , 𝑆 𝑁 

} , which meet: 

(1) 
⋃𝑁 

𝑖 =1 𝑆 𝑖 = 𝑅 ; 

(2) 𝑆 𝑖 ∩ 𝑆 𝑗 = Φ, 𝑖 ≠ 𝑗; 

(3) 𝑃 ( 𝑆 𝑗 ) = TRUE ; 
(4) ∀𝑖 ≠ 𝑗, 𝑃 ( 𝑆 𝑖 ∪ 𝑆 𝑗 ) = FALSE ; 
(5) Each 𝑆 𝑖 is a connected region. 

The condition(2) denotes that each sub-region in the segmentation

esult does not overlap with others. (3) means that similar features exist

n the same sub-region and (4) means that different subdomains de-

cribe different features. From the above definition, the key to image

egmentation is to find specified features as criteria for the classifica-

ion of pixels. As far as the partial motion blur images are concerned,

he most significant features are motion and blur for the relative motion

uring the moment of exposure. A targeted algorithm is then proposed

or this kind of segmentation. 

.1. Orientation of the patch 

At the moment of exposure, large quantities of straight lines in almost

he same direction are generated in local regions of moving objects. The

assive lines have a great impact on the orientation of the whole image.

ntuitively, the gradient can be taken as a measure for the orientation of

he pixel and the pixels with almost the same orientation compose the

otion regions. However, it is too time-consuming. In fact, pixels in the

otion regions are almost in the same direction as the patch. Thus it

s more practical to determine the rough orientation of the patch or the

mage, instead of calculating the orientations of each pixel. Therefore we

ivide the image into patches and make a definition of the orientation

f each patch. 

efinition 2. Let I be a patch of an image, ∇ 𝐼 = [∇ 𝐼 𝑥 , ∇ 𝐼 𝑦 ] be the gra-

ient of the patch I , 𝑆 𝐺 𝑥 and 𝑆 𝐺 𝑦 are the components of the squared

radient vector of the patch in x -direction and y -direction respectively.

hen the orientation of the patch OI is defined as follows: 

𝐼 = 𝑆 𝐺 𝑥 ∕ 𝑆 𝐺 𝑦 (1)

here 𝑆 𝐺 𝑥 = ∇ 𝐼 2 
𝑥 
and 𝑆 𝐺 𝑦 = ∇ 𝐼 2 

𝑦 
. 

From the formula(1), the orientation of each patch with that of the

mage can both be found. Compared with the orientation of the whole

mage, the patches in nearly the same orientation are considered to be

otion regions. By setting a proper threshold 𝛼0 , the patches with direc-

ions fluctuating around the orientation of the whole image in a range

f the threshold are seemed as motion-blurred. Thus the rough segmen-

ation can be done to trace the motion regions caused by the moving
46 
f the objects. In practical, for the convenience of setting threshold, the

rientation can be represented as an angle: 

= 𝑎𝑟𝑐𝑡𝑎𝑛 ( 𝑂𝐼) (2)

here 𝛼 is the corresponding angle of 𝑂𝐼and 𝑎𝑟𝑐𝑡𝑎𝑛 ( ⋅) is the arctangent

unction. 

After the segmentation, the motion regions in almost the same direc-

ion can be roughly located. However, lines in the background, such as

ebra crossings or driving lines will be mis-contained in the segmented

egions, because these kinds of lines also have directions. Further seg-

entation on the rough results is needed to eliminate the backgrounds

ot belonging to motion-blurred regions. 

.2. Assimilation 

Based on the above method, motion regions can be separated but

ith some isolated points with different directions from the surround-

ng pixels, which leads to the undesired discontinuous segmented re-

ions. In order to solve the problem of discontinuity of image patches,

his paper proposes a method based on the blurriness map to remove

he isolated points by comparing the relationship between outliers and

djacent regions according to some assimilating rules. Firstly, we con-

truct the blurriness map based on the results of the previous results.

hat is to binarize the segmented image by marking the areas with 1

hat are in almost the same direction as the moving objects while mark-

ng the other areas with 0. Assimilation is to consider the effect of the

urrounding pixels around a certain pixel in the blurriness map. Taking

 range with the size of 3 × 3 as considering, as shown in Fig. 1 , nine

lements of 0 or 1 in the range are summed up. If the sum is greater than

 and the element is 0, we change the value of the element and remark

t with 1. In this way, the whole blurriness map matrix is traversed to

ealize the operation of assimilation. After the traversal on the whole

ap, the isolated points in different directions from most of the pixels

n the regions can be removed. Consequently, continuous regions are

btained to facilitate further segmentation. 

. Segmentation based on blurriness measurement 

The above-segmented results contain not only motion regions but

lso backgrounds in the same direction as the moving objects, such as

ebra crossings or fences on the road. So the next step is to segment these

on-ambiguous but directional regions. The key of this step is to define

nd evaluate the blurriness according to a certain principle and then

et suitable thresholds for distinguishing the blur and non-blur. Motion

lurring is aroused by the superposition of pixels because of the rela-

ive motion at the moment of exposure. Therefore, we need to evaluate

he blurring degree and give an objective evaluation criterion. Further

egmentation can be continued according to the criterion to obtain the

arget blurred areas. 

However, most existed methods can only evaluate the fuzzy degree

f the global but not local regions. To segment motion-blurred regions

nder a clear background, a unified standard should be designed to mea-

ure the blurriness of different regions in the whole image. Therefore,

n evaluating function is proposed in this paper to measure the severity

f blurring. 
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Fig. 2. Flow of the motion blur segmentation algorithm. 
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As one kind of subjective feeling, blurring is the most intuitive re-

ection of the change of gray values to human eyes. Generally, to digital

mages, slow changes of the gray values present blurriness to some ex-

ent. Nevertheless, it does not mean that the more slowly gray values

hange, the region is more blurry. Some areas are not blurred although

he gray values in these areas change slowly, such as the sky, road, and

ther gentle areas. Theoretically, gray values of blurred regions should

hange more gently than marginal areas, but more sharply than regions

n which gray values hardly change. Based on the above analysis, we

efine a function to measure the blurriness of regions by which the func-

ion values of the blurred regions can be maximized. 

efinition 3. Let I be a patch of an image, ∇ 

2 be the squared gradient

f the patch I , then the blurriness function is defined as 𝜆: 

= 𝛾1 𝑒𝑥𝑝 ( − ( ∇ 

2 − 𝜇) 2 ∕ 𝜎2 ) + 𝛾2 (3)

here 𝛾1 and 𝛾2 are constants in [0,1]. By setting the values of 𝛾1 and 𝛾2 ,

he range of the above blurriness function is refined in 0 to 1. 𝜇is the

ean of squared gradients, and 𝜎is the standard deviation of the patch.

= 

1 
𝑛 

𝑛 ∑
𝑖 =1 

∇ 

2 , 𝜎 = 

√ √ √ √ 

1 
𝑛 − 1 

𝑛 ∑
𝑖 =1 

(
∇ 

2 − 𝜇
)2 

(4)

n is the number of pixels in the patch. By the defined function, when

he gradient of the squares of the patch ∇ 

2 is too large or too small, the

orresponding function value approaches to zero. Instead in the middle

egion, the corresponding function value is maximized. 

The squared gradient can measure the variation of the pixel val-

es around a point in the image. So, the sum of the squared gradi-

nt ∇ 

2 reflects the change of the pixels in the patch. ∇ 

2 is much bigger in

argin area because gray values change so sharp but smaller in regions

ike grounds and walls with little changes. In fact, ∇ 

2 blurred regions

hould be between the large and the small, near to the mean. According

o the definition, while ∇ 

2 is in the middle region, the maximum of the

unction is reached to represent the most blurry regions in the image,

hich just meet our expectation. By setting a proper threshold 𝜆0 , the

ub-blocks whose blurriness function values exceed 𝜆0 can be considered

o be blurred regions. Thus combined with the pre-segmented results in

he previous stage, the partial motion-blurred regions can be split out

y now. Fig. 2 shows the whole segmentation flow. 
Fig. 3. The origin image and the segment

47 
. Experiments and results 

In this section, a series of experiments are run on the public data

et Blur Detection Dataset ( Liu et al., 2008 ) (BDD) to verify the effec-

iveness of the proposed algorithm in this paper. This dataset contains

050 blurred and sharp images (350 triplets), each image triplet is a

et of three photos of the same scene: sharp, defocused-blurred, and

otion-blurred images. In addition, we also collect 1000 images con-

aining partial motion-blurred objects in different scenarios, including

treets, parking lots, inter-mountains, and wilds. The hardware config-

rations of the computer used in the experiments are Intel(R) Core(TM)

5–4210 M CPU @ 2.60 GHz, 8GB RAM. 

.1. Experiment I 

In the two stages of the segmentation algorithm, there are 3 key

hresholds: the size of the patch l , the orientation angle 𝛼0 , and the

hreshold of blurriness 𝜆0 . By fixing one threshold and adjusting the

thers, we choose appropriate threshold parameters by testing experi-

ents. 

In the first series of experiments, we test the effects of different

hresholds of patch size l on the pre-segmented results.Under a fixed

hreshold 𝛼0 = 25 . , the patch sizes are set to five different values:

 = 10,30,50,70,90. Fig. 3 shows the segmented results of a sample image

n the BDD set in different patch sizes. It is easy to see that the result is

he best when l is 50. With the same fixed thresholds 𝛼 and l , the other
0 

ed images with different patch size. 
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Fig. 4. The origin image and the segmented images with different patch size. 

Fig. 5. The origin image and the segmented images with different patch size. 
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wo images are tested, as shown in Figs. 4 and 5 . It can be seen that

hen the patch size is set to 30 and 90 for the two images respectively,

he corresponding results achieve the best. 

Similar tests on the data set show that it is hard to achieve ideal

esults whatever the patch size is too large or too small. Actually, the

atch size determines the accuracy of the segmentation. While the patch

s larger, the segmentation is too rough to obtain the detailed features

f the patch. In extreme cases, none regions exist after segmentation,

uch as in Figs. 3 ( f ), 4 ( e ), and 4 ( f ) by setting too large size compared to

he size of the original image. On the contrary, the segmentation with a

maller size of patches will generate more precise results. However, it is

eanwhile time-consuming and causing some irrelevant regions in the

ackgrounds, as shown in Figs. 3 ( b ) - 5 ( b ) with the size value of l = 10.

hrough multiple experiments, we find that 10% of the original image

ize is the best proper threshold of the patch size l . 

In the same way, different orientation angles are tested by setting

0 = 5°,15°,25°,35°,45° with the fixed threshold l of 10% the original im-

ge size. Figs. 6–8 shows the pre-segmented results of the portion of sam-

les in the image dataset under the different thresholds 𝛼0 . 𝛼0 represents

he deviation from the overall direction of the image. While 𝛼0 is too

mall, only minor deviations are allowed and few regions can be re-

ained. Taking 5° to be concerned, hardly regions are left behind after

re-segmentation as shown in Figs. 6 ( b )–8 ( b ). Theoretically, the bigger

0 is, the more regions can be contained. However too big deviation will

esult in the inclusion of too many irrelevant areas as shown in Fig. 8 ( f ).
48 
y comparison, 𝛼0 = 25° is a relatively proper value for good results. l

nd 𝛼0 are the crucial thresholds during the process of pre-segmentation,

hich will greatly affect the successive segmentation. 

After setting proper thresholds of l and 𝛼0 , the pre-segmentation can

e realized by which rough regions contain massive straight lines that

an be split out first. Then we test the effects of the threshold 𝜆0 for fur-

her segmentation. With proper values of l = 40 and 𝛼0 = 25°, a series

f values 𝜆0 are set for testing ranging from 0.1 to 0.9 with a step of

.2. 𝜆0 is used to measure the blurriness of the patch. According to the

roperties of the defined blurriness function, the function values corre-

ponding to near the mean of the arguments ∇ 

2 are larger, while smaller

hen ∇ 

2 is too large or too small. Patches with larger blurriness function

alues than 𝜆0 are taken as the blurred regions. Figs. 9–11 shows the seg-

entation results of partial sample images in the image set according to

ifferent values 𝜆0 . It can be seen that too small or too large 𝜆0 results in

ndesirable results. Theoretically, it is suitable to set 𝜆0 as the value near

he function value corresponding to the mean value of squared gradients

f all patches in the image. Empirically, 0.7 is a recommended value for

he blurriness threshold 𝜆0 . 

Furthermore, we verify the effectiveness of the algorithm in the var-

ous cases with different backgrounds and speeds of motions, especially

or slowly moving objects. Fig. 12 shows the segmented result by our

ethod on Image 4 to Image 8. Image 4 and Image 5 show the case of

oving objects at high speed for which many lines are caused. It can

e seen that the results are satisfactory with almost complete segmenta-
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Fig. 6. The origin image and the segmented images with different 𝛼0 . 

Fig. 7. The origin image and the segmented images with different 𝛼0 . 

Fig. 8. The origin image and the segmented images with different 𝛼0 . 

49 
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Fig. 9. The segmented result after stage 1 and further results with different 𝜆0 . 

Fig. 10. The segmented result after stage 1 and further results with different 𝜆0 . 

Fig. 11. The segmented result after stage 1 and further results with different 𝜆0 . 

50 
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Fig. 12. Results with different backgrounds and speeds. 
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ion of moving cars. By contrast, Image 6–8 are the cases of motion blur

ith low speed and complex backgrounds. Taking Image 8 for exam-

le, a moving taxi with very low speed generates hardly straight lines

hich have little effect on the overall direction. Meanwhile, some clean-

ut buildings exist in the backgrounds. It is not conducive to both the

wo aspects of the implementation of the proposed segmentation algo-

ithm. Rough results show the pre-segmentation based on the orienta-

ion. It can be seen that some edges of buildings in the backgrounds

re included in the result. However, those undesired backgrounds are

liminated by the blurriness function in the successive segmentation as

hown in the final results. Similarly acceptable results are shown in other

ample images(Image 6 and Image 7). Therefore, it is also feasible of

ur proposed algorithm for the segmentation of motion-blurred objects
51 
t low speed, even in the extreme case that directional edges exist in

he backgrounds simultaneously. In summary, our algorithm is valid for

he partial motion-blurred segmentation. Comparatively, objects at the

igh speed are apt to be split because of its clear moving traces during

he motion. 

.2. Experiment II 

To verify the feasibility of the proposed algorithm, we compare the

esults with the algorithms in Su et al., (2011) and Jin-ming et al.,

2014) . ( Su et al., 2011 ) classifies the types of blurred images into a

efocus blur and motion blur by analyzing the information of channel

. They developed a criterion for measuring the blurriness and used
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Fig. 13. Compared results of our algorithm with the other algorithm ( Su et al., 2011 ). 
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ingular value to segment the blurred regions. Fig. 13 shows the seg-

ented results of various images by the proposed algorithm in this

aper with the one in Su et al., (2011) . The middle of the four ar-

ays of images correspond to the results of our proposed algorithm,

hile the right are the results of the algorithm in Su et al., (2011) .

t can be seen that the algorithm in Su et al., (2011) is almost in-

alid for this kind of blurriness. Comparatively, the proposed algo-

ithm in this paper is designed according to the two typical charac-

eristics of this kind of blur: (1) massive straight lines in almost the

ame direction exist for the motion of objects during the exposure;

2) partial overlapping blur is contained for the relative motion of the

oving objects with the camera. Aiming at the two aspects, we first

oughly split the image into patches to segment motion regions accord-

ng to orientation angles, which is caused by massive straight lines. And

hen the intensity of blur is measured by the defined function for fur-

her segmentation of blurred regions. The experimental results show

hat this targeted design mechanism achieves a better segmentation

ffect. 

In addition, we compare our method with ( Jin-ming et al., 2014 ).

 Jin-ming et al., 2014 ) adds Gaussian noise into image patches to re-

lur the original image and then consider the change of singular val-

es before and after the noise addition to determine the patch is blur

r not. Fig. 14 shows the segmented result by our algorithm and ( Jin-

ing et al., 2014 ). It is not hard to see that the segmented results by
52 
ur method are better than the other algorithm. The partial motion-

lurred regions are almost split out of the background. In most cases,

otion blur occurs on the cars in the street, so we choose four arrays

f images with moving cars as samples. Racing lines on the road or

ines on the grounds of the parking always greatly affect the segmen-

ation. By the proposed algorithm, lines on the grounds in the same

irection as the moving car are almost removed, especially in the bot-

om three arrays of images. Thus as far as the segmentation results are

oncerned, our algorithm is more suitable for the blur regions segmen-

ation which is caused by objects’ moving. To be further, the singular

alue based algorithm is realized in the mode of pixel to pixel, which is a

it time-consuming. In comparison, the proposed patch-based algorithm

n this paper is more efficient in dealing with these tasks, which is run

n the unit of the patch but not the pixel. It is found that the segment-

ng speed by our algorithm is almost double the algorithm of the other

ne. Thus we offer a feasible and efficient method for motion blurred

egmentation. 

. Conclusion 

Motion blur is very common in life such as in traffic surveillance

ideo, and the targeted solution is of great help to further recogni-

ion or retrieval. This paper focuses on the blurred image segmenta-

ion which is caused by object motions. Considering the typical char-
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Fig. 14. Compared results of our algorithm with the other algorithm ( Jin-ming et al., 2014 ). 
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cteristics of this kind of blur, a patch-based algorithm is proposed

nd realized in two stages: pre-segmentation by orientations and fur-

her segmentation by measuring the blurriness. Proper threshold val-

es are recommended empirically. Experimental results verify the fea-

ibility of the proposed method and it outperforms other existing ap-

roaches both on the effects and the speed. Moreover, the algorithm

lso works even under adverse conditions. Thus we put forward a

easible and efficient method especially toward the issue of the par-

ially motion-blurred segmentation. In the future, we will research

n the automatic setting of parameters and other partially blurred

egmentation. 
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