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Abstract: Bundle adjustment of multi-view satellite images is a powerful tool to align the orientations
of all the images in a unified framework. However, the traditional bundle adjustment process faces a
problem in detecting mismatches and evaluating low/medium/high-accuracy matches, which limits
the final bundle adjustment accuracy, especially when the mismatches are several times more than
the correct matches. To achieve more accurate bundle adjustment results, this paper formulates the
prior knowledge of matching accuracy as matching confidences and proposes a matching confidence
based bundle adjustment method. The core algorithm firstly selects several highest-confidence
matches to initially correct orientations of all images, then detects and eliminates the mismatches
under the initial orientation guesses and finally formulates both the matching confidences and the
forward-backward projection errors as weights in an iterative bundle adjustment process for more
accurate orientation results. We compared our proposed method with the famous RANSAC strategy
as well as a state-of-the-art bundle adjustment method on the high-resolution multi-view satellite
images. The experimental comparisons are evaluated by image checking points and ground control
points, which shows that our proposed method is able to obtain more robust and more accurate
mismatch detection results than the RANSAC strategy, even though the mismatches are four times
more than the correct matches and it can also achieve more accurate orientation results than the
state-of-the-art bundle adjustment method.

Keywords: satellite sensor orientation; image matching; mismatch elimination; least squares;
weighting strategy

1. Introduction

Given multi-view matches, the bundle adjustment (BA) of multi-view satellite images is to
align the positions and attitudes of their cameras so that the optical rays from the corresponding
pixels intersect at the same ground point in the object space. Its characteristics of high positioning
accuracy have fueled many applications in photogrammetry and remote sensing, for example, digital
surface model (DSM) generation [1], image registration [2], survey mapping [3] and so forth. The BA
accuracy actually depend on the matching accuracy. Higher-accuracy matches normally result in
higher-accuracy BA results and vice versa. An intuitive idea is to increase the contributions/weights
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of high-accuracy matches and decrease the contributions/weights of low-accuracy matches in the BA
process for more accurate BA results. Therefore, the prior knowledge about the accuracy of each match
is essential before BA.

The prior knowledge of the matching accuracy is normally assessed by measuring the geometric
fitness between the matches and the orientation parameters (camera positions and attitudes) of satellite
images. Most works [4–7] define the geometric fitness as the forward-backward projection errors (also
called re-projection errors) in the image space. Smaller re-projection errors normally reflect higher
matching accuracy and vice versa. However, the original orientation parameters of satellite images are
of low positioning accuracy, for example, WorldView-3 with 5 m positioning errors [8], Gaofen-2 with
30 m positioning errors [9], thus bringing significant errors in the assessment of the matching accuracy.
Therefore, some good matches are needed to correct the orientation parameters, while the assessment
of good matches depends on the correct orientation parameters. Therefore, the assessments of good
matches and the corrections of orientation parameters seem to be a chicken-or-egg issue.

To solve the aforementioned issue, an initial clue (either the good matches or the good guess of
the orientation parameters) should be firstly given. Therefore, the BA methods can be categorized
into—(1) the good match first methods, (2) the good orientation first methods and (3) the combined
BA methods.

The good match first methods focus on firstly selecting good matches and then computing
the accurate orientation parameters through the BA techniques [10–13]. The good matches are
normally detected by using a random sample consensus (RANSAC) strategy with three steps—(1)
randomly select minimum matches for the BA solutions; (2) compute orientation parameters using
the selected matches and count the number of good matches/inliers whose re-projection errors under
the orientation parameters are small (e.g., <1 pixel); (3) the process is iterated on until the maximum
number of inliers is found and the corresponding inliers are used as the final good matches for
BA. To give more robust good match predictions, some works improved RANSAC by integrating
Graph-Cut [14] or “Random Grids” range-search technique [15] into the framework. The efficiency
of RANSAC actually depends on the size of the minimum random samples. Large sample set size
will significantly reduce the RANSAC efficiency. Therefore, the RANSAC strategy is often used in the
pairwise corresponding pixels instead of the multi-view matches so that the minimum sample set size
can be reduced to at least one. However, the RANSAC for pairwise correspondences cannot detect the
mismatches along the epipolar lines, which will bring uncertainties in the good match selection results.

The good orientation first methods [6,7,16–19] normally obtain good orientation parameters using
all matches in an iterative manner—(1) it firstly assumes equal/different contributions of all matches
depending on prior knowledge and corrects the orientation parameters in the initial iteration; (2) then
adjusts the weights of each match according to a certain mathematical model (e.g., inverse proportional
model [6], t-distribution model [16] and exponential model [19]) under the orientation parameters of
the previous iterations; (3) the process is iterated on until the iteration stopping criterion is satisfied.
Such methods often formulate the re-projection errors as the geometric weights in BA so that they are
able to decrease the contributions of mismatches and increase the contributions of good matches in
multi-view scenarios. However, the orientation results in the previous iteration may be not reliable for
adjusting the weights of the matches in the next iteration, when the mismatches are much more than
the good matches (e.g., two times).

To achieve more robust BA results, especially when the mismatches are several times more than
the good matches, several works combined the good match first methods and the good orientation
first methods in a sequential workflow [4,5,20–22]—they firstly use the good match first methods
to eliminate the majority of mismatches and then use the good orientation first methods to reduce
the weights of the remaining mismatches for robust BA results. However, such methods often have
troubles in exactly adjusting the weights of the good matches. For example, if half matches have 0 pixel
matching errors and the remaining matches have 1 pixel matching errors, the theoretical orientation
accuracy is about 0.5 pixels, which will assign equal weights to the 0 pixel accuracy matches and the
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1 pixel accuracy matches during the BA process. To achieve more accurate BA results, it is essential to
assign higher weights to higher-accuracy matches and vice versa.

In addition to the geometric fitness between the matches and the orientation parameters,
an alternative way to predict the matching accuracy is the matching confidence [23–27], which normally
reflects the significance of the matches when compared with the matching results of their surrounding
pixels. Higher matching confidence often means higher possibilities of accurate matches and vice versa.
However, all matching confidence studies only utilized the matching confidences in stereo dense
matching with epipolar pairs instead of multi-view feature matching with unrectified images.

To achieve more accurate BA results, this paper improves the matching confidence metrics so that
they can be applied in multi-view feature matching scenarios and formulates both the re-projection
errors and the matching confidences as weights in the BA process. The core algorithm follows a
sequential workflow of (1) good match selection and (2) iterative BA with the combined weights.
For the first step, this paper firstly selects the highest-confidence matches for computing a good initial
guess of the orientation parameters and then selects good matches whose re-projections errors under
the good orientation parameters are small (<1 pixel). On the other hand, the matching confidences
and the re-projection errors are respectively formulated as image weights and inverse proportional
model based geometric weights in BA. We combine the both weights in BA process for more accurate
BA results. The main contributions of our works include:

1. We improve the matching confidence metrics so that they can be applied in multi-view feature
matching scenarios, which can give helpful prior knowledge of the matching accuracy;

2. A new matching confidence based mismatch detection algorithm is proposed, which can give
a robust match selection result, even though the mismatches are several times more than the
correct matches.

3. A new weighting strategy by combining the geometric weight and the image weight in BA is
proposed. It is the first time to formulate the matching confidences as weights in the BA of
multi-view satellite images, which can improve the accuracy of BA results when compared with
the state-of-the-art BA process.

The rest of the paper is organized as follows—Section 2 describes the methodology of the proposed
method in detail; Section 3 shows the experimental results; and Section 4 concludes the manuscript.

2. Methodology

2.1. Workflow

To achieve accurate BA results, especially in the case of large amounts of mismatches, this paper
formulates the prior knowledge of matching accuracy as different matching confidence metrics
and proposes a matching confidence based BA method, which is able to remove large amounts
of mismatches and adaptively adjust the weights of good matches in BA. The inputs of our work are
multi-view satellite images with corresponding original orientation parameters (normally rational
polynomial coefficients, RPC) and multi-view matches. In general, our work follows a sequential
workflow with two steps—(1) matching confidence based mismatch elimination and (2) iterative BA
with the combined weights. For the first step, we firstly compute the matching confidences for each
match, then select highest-confidence matches for initial orientation parameter correction, and finally
detect and eliminate mismatches using the corrected orientation parameters. Since it may run into the
case that a few mismatches also have high matching confidences, we adopt inverse proportional model
based geometric weights in the initial orientation corrections, which is able to reduce the weights of
mismatches. For the second step, we formulate the matching confidences and the re-projection errors
as image weights and inverse proportional model based geometric weights in BA and combine both
weights to achieve more accurate BA results in an iterative manner. The workflow of our work is
shown in Figure 1. In this paper, we firstly introduce several matching confidence metrics in Section 2.2,
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then describe a new matching confidence based mismatch elimination method in Section 2.3 and
finally derive a new BA weighting strategy in Section 2.4.

Figure 1. The overall workflow of the proposed method. Red points in 1©b are matching points;
1©c shows the distributions of the elevation variances of all matches, which are computed by the

original orientation parameters. Smaller elevation variances represent higher BA accuracy and
vice versa. 2©a shows the matching confidences of all matches; 2©b shows the mismatch detection
results with red points being mismatches and green points being correct matches; 3©a shows the
matching cost (e.g., zero-mean normalized cross-correlation (ZNCC)) distributions of a certain match
and its surrounding pixels, which is the visual expression of the matching confidence. The green
dashed line means the ZNCC value of the match itself. 3©c shows the re-projection errors between the
original point (the green) and the projected point (the red), which can be formulated as the geometric
weight in BA; 4© shows the new elevation variances from our proposed method.

2.2. Improved Matching Confidences for Feature Matching

Matching confidences measure the significance of each match among the matching results of
its surrounding pixels. Higher matching confidence often means less uncertainties in the matching
results, thus representing higher matching accuracy. Most works [23–27] only focused on applying
the matching confidence in stereo dense image matching, where a pair of the original images is
firstly rectified into the epipolar images and the confidence score of each two-view correspondence is
measured along the 1D epipolar lines. To assess the prior accuracy of multi-view feature matching, this
paper develops the matching confidence metrics in the multi-view matches from the unrectified original
images, where the significance of each match is compared with its surrounding pixels in 2D image
space. In general, we break the matching confidence of multi-view matches into the sub-confidences of
pairwise two-view correspondences. For each two-view correspondence {p, p′}, we fix any one of the
points (e.g., p), then compute ZNCC values between p and the pixels in the searching window centered
at p′ and finally compute the matching confidence of {p, p′} by comparing the ZNCC of {p, p′} with
all other ZNCCs in the searching window, as shown in Figure 2. Figure 2 shows the ZNCC values of
all pixels in the searching window, which forms a curved surface. However, the matching of {p, p′}
may suffer from some geometric distortions (e.g., scale, rotation), which reduces the accuracy of the
matching confidence evaluation. To reduce these geometric distortions, we resample all satellite images
by projecting them on a common height plane before the matching confidence computation [28].
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(a) (b)

Figure 2. Comparisons of Matching confidences in textured/untextured regions. The first row shows
correspondences in image pairs, where the red crosses represent the corresponding pixels and the red
rectangles represents the corresponding searching window; the second row in (a,b) respectively shows
their corresponding ZNCC curved surfaces in textured and untextured regions.

Matching results in textured regions are often reliable and the corresponding ZNCC curved surface
in Figure 2a has an obvious peak (the maximum ZNCC value). On the other hand, matching results in
untextured/weak-textured regions often contain high matching uncertainties and the corresponding
ZNCC curved surface in (b) tends to be flat. Therefore, the shapes of the ZNCC curved surfaces can
be used to predict matching accuracy. In this paper, we formulate the shape of the ZNCC curved
surface as matching confidences. There are various matching confidence metrics to describe the shape,
for example, the number of peaks, the highest peak values, the slope of the highest peaks, and so forth.
According to Park and Yoon [23,24], Hu and Mordohai [25], and Egnal and Wildes [26,27]’s works of
matching confidences in stereo epipolar image space, we totally select seven outstanding matching
confidences which rank top among all matching confidence metrics and then we improve these metrics
so that they can be applied for feature matching in unrectified original image space. It is possible that
some matching confidences, which perform well in epipolar image space, may not obtain satisfying
performances in the unrectified original image space. Therefore, we will analyze the performances of
these matching confidence metrics in Section 3.1.

To simplify the formula of the matching confidence metrics in this paper, some basic notations
are defined. m = {p, p′}means a two-view correspondence between a image pair with p = (x, y) in
the left image and p′ = (x′, y′) in the right image. d = (dx, dy) means an offset from the center pixel.
C(p, q) is the ZNCC value between any two pixels p in the left and q in the right. cm means the ZNCC
value of the correspondence itself. {C(p, p′ + d)|d ∈ D} is the set of the ZNCC values, where D is
the set of discrete offset vector from the center pixel in the searching window. We use dk to describe
the offset vector of the kth maximum ZNCC value. For example, the offset vector of the maximum
ZNCC value d1 are computed as d1 = argmax

d∈D
(C(p, p′ + d)). Basically, the ZNCC values and offset

vectors are computed with respect to the left image. We use the superscriptR, when the ZNCC value
or offset vector is computed with respect to the right image, for example, dR

1 = argmax
d∈D

(C(p′, p + d)).

W(p) = {p + d|d ∈ D}means the searching window centered at p.
In general, we use the peak height and the surface sharpness to describe the shape of the ZNCC

curved surface and formulate these shape descriptors as matching confidence metrics. We also measure
matching result consistencies between the correspondence and its surrounding pixels and formulate
these consistencies as matching confidence metrics.
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(a) the peak height

The ZNCC value of the correspondence itself is used to measure the peak height in the ZNCC
curved surface. In textured regions, higher peaks/ZNCC values often represent higher matching
accuracy. Therefore, the ZNCC metric can be used as a matching confidence metric:

fZNCC(m) = cm = C(p, p′). (1)

The ZNCC metric defines the matching of p, p′ as the intensity correlations of their matching
windows. In addition to ZNCC, our proposed method is also general to other matching cost
metrics, for example, intensity differences, census [29] and the histogram of gradients (HOG) [30].
Some matching cost metrics prefer the maximum values (also called the-maximum-the-best metric),
for example, ZNCC and some matching cost metrics prefer the minimum values (also called
the-minimum-the-best metric), for example, census. Since our proposed method used ZNCC as
an example metric in the matching confidence computation, it can be directly applied for all
the-maximum-the-best metrics. For the-minimum-the-best metrics, the matching confidence equations
in the paper can be simply changed by only subtracting all cost values c with the maximum of these
cost values, in which case the matching confidence is used to describe the troughs of the curved surface.

(b) the surface sharpness

Sharper surfaces normally represent less matching uncertainties, thus leading to higher matching
accuracy. Inspired by Park and Yoon’ works [23,24], we formulate the sharpness of the surface as (1)
the differences of ZNCC values between the correspondence and its neighbor pixels, also termed as
the local curvature (LC), (2) the maximum likelihood of the correspondence (ML) and (3) the attainable
maximum likelihood of the correspondence (AML).

LC:
The local curvature (LC) metric computes the significance of the correspondence by comparing

the ZNCC values of the correspondence with its neighborhoods on the ZNCC curved surface:

fLC(m) = 8cm − ∑
k∈N(p′)

C(p, k), (2)

where N(p′) is the eight neighborhood pixels of the pixel p′.
ML:
The ZNCC values can be further considered as a probability density function and the

correspondence should have the maximum likelihood:

fML(m) =
exp(− (1−cm)2

2σ2 )

∑k∈W(p′) exp(− (1−ck)
2

2σ2 )
, (3)

where ck = C(p, k) and σ is a control parameter, which is formulated as the standard deviation of the
ZNCC value. Too small σ will decrease the probability of the high ZNCC values and the too large σ

will increase the probability of the low ZNCC values. In this paper, we empirically define σ as 0.43.
AML:
Similar to ML, the ZNCC values can be defined as the attainable maximum likelihood (AML),

as follows. When cm is dominant among all other ZNCC values, the denominator in Equation (4) is
small, thus achieving high AML. Otherwise, the large denominator will lead to low AML.

fAML(m) =
1

∑k∈W(p′) exp(− (cm−ck)2

2σ2 )
. (4)
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(c) the consistency of the matching results

The above four matching confidence metrics rely on the shape of the ZNCC curved surface.
An alternative way of measuring the matching confidence is to check the consistency between the
matching results with respect to the left and the right images, also termed as left-right consistency
(LRC) or the consistency between the matching results of the correspondence and its surrounding
pixels, for example, the matching results of the correspondence should be similar to the median
deviation (MDD) or mean deviation (MND) of the matching results of the surrounding pixels.

LRC:

fLRC(m) = −||d1||+ ||dR
1 ||

2
, (5)

where || · || is the normal of a vector. Smaller norms of the offset vectors mean more consistencies
between the matching results with respect to the left images and the right images, thus bringing higher
matching confidences.

MND:
MND is to compare the matching result of {p, p′} with the average matching results of the

surrounding pixels in the searching window. In this paper, we take the pixels W(p) = {p + dl |dl ∈ D}
in the searching window of the left image as the basis and find their corresponding pixels in the right
images. We firstly predict the initial positions of the corresponding pixels by setting the same offset as
the basis pixels in the left image, as p′ + dl , then find the more accurate corresponding pixels in the
searching window centered at p′ + dl and finally compute the offset between the initial positions and
the more accurate positions, as shown in Equation (6).

fMND(m) = − 1
|D| ∑

dl∈D
||argmax

dr∈D
(C(p + dl , (p′ + dl) + dr)||, (6)

where |D| is the number of offset vectors in the set D. dl is the offset from the center pixel p and dr is
the offset from the center pixel p′ + dl . High MND means the matching results of {p, p′} is similar to
the average matching results of the surrounding pixel and vice versa.

MDD:
In addition to MND, the median deviation (MDD) of the matching results of the surrounding

pixels can also be used to measure matching confidences:

fMDD(m) = −MED
dl∈D

(
||argmax

dr∈D
(C(p + dl , (p′ + dl) + dr)||

)
. (7)

These seven matching confidence metrics construct a seven-dimensional feature vector for the
two-view correspondence m,

f (m) = [ fZNCC, fLC, fML, fAML, fLRC, fMND, fMDD], (8)

where the subscript of each element indicates the names of matching confidence metrics and m is
omitted in each element since it is the same for all elements and is already noted in the left side of
Equation (8). In Section 3.1, we will analyse the performance of these matching confidence metrics in
multi-view feature matching cases and select the top N important confidence measures to construct a
more reliable feature vector:

f̂ (m) = [ f1, f2, . . . , fN ], (9)

where the subscript of each element indicates its importance in predicting matching accuracy, for
example, f1 is the most important matching confidence metric. fi is the normalized matching
confidence metric. Since the scales of each matching confidence metric may be different (e.g., LC and
ZNCC), all matching confidence metrics in Equation (9) need to be respectively normalized so that
these normalized confidences can make equal contributions to the final matching confidence score
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of m. Then, we compute the first-order norm of the N-dimensional feature vector f̂ (m) as the final
matching confidence score for m.

After computing the final matching confidence score for each two-view correspondence, we need
to merge these correspondences as well as their two-view matching confidence scores across the
multi-view images to generate the matching confidences of the multi-view matches, as shown in
Equation (10).

F(Mj) = ∑
mi,i′∈Mj

S(mi,i′)/C2
|Mj |, (10)

where Mj is the jth multi-view matches; mi,i′ is the two-view correspondence of Mj on the image i and
i′; S(mi,i′) is the final confidence score of the two-view correspondence mi,i′ , which is computed by
averaging the absolute elements in Equation (9); |Mj| is the number of the multi-view connectivity of
Mj; F(Mj) is the matching confidence score of the match Mj.

2.3. Matching Confidence Based Mismatch Elimination

Given a multi-view satellite image set I = {I1, I2, . . . , In} with n being the image number,
the original orientation parameters (e.g., RPCs in this paper), the multi-view matches M =

{M1, M2, . . . , Mt} with t being the matches number and their corresponding matching confidence
scores F = {F(M1), F(M2), . . . , F(Mt)}, we develop a confidence based mismatch elimination method
with three steps—(1) highest-confidence matches selection, which selects a certain percentage of the
highest-confidence matches; (2) initial orientation correction, which uses these highest-confidence
matches to correct the RPCs of all satellite images through an iterated BA technique with inverse
proportional model based geometric weights [6,7]; (3) mismatch elimination, which computes the
re-projection errors of all matches using the corrected orientations and finally eliminates the mismatches
whose re-projection errors are larger than a given threshold (e.g., 1 pixel in this paper) so that the BA
result is guaranteed to be better than 1 pixel, which will meet the requirement of the remote sensing
applications.

2.3.1. Highest-Confidence Matches Selection

The matches with the highest matching confidences often have the highest possibilities of
being correct. Therefore, we select a certain percentage a% (e.g., a = 1) of the highest-confidence
matches in our proposed method. To guarantee that each image has enough matches in the later
initial orientation corrections, we break the selection from all multi-view matches into the ones from
pairwise correspondences and then merge these pairwise highest-confidence correspondences into the
multi-view matches, as shown in Equation (11).

MH =
⋃

i,j∈I

{mv|mv ∈ Mi,j · a%∧ nv ∈ (M −Mi,j · a%) ∧ F(mv) > F(nv)}, (11)

where MH is the highest-confidence match set of M; Mi,j is the match set that has corresponding pixels
on the image pair {i, j}; mv is a multi-view match within the top a% highest-confidence matches;
Mi,j · a% is a sub-set of Mi,j with element number being |Mi,j| · a%; M −Mi,j · a% is a complementary
set of Mi,j · a%; nv is a match in M −Mi,j · a%.

Our goal is to select the matches with the highest possibilities of being correct in the mismatch
elimination process. Therefore, we only consider matching confidences in the matches selection,
except for the distributions and the multi-view connectivity of the matches, both of which will
decrease the contributions of the matching confidences in the matches selection. These highest-
confidence matches can be used to initially correct orientation parameters of satellite images for the
mismatch elimination.
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2.3.2. Initial Orientation Correction

The highest-confidence matches are used to initially correct orientation parameters of multi-view
satellite images, while it is still possible that a few mismatches with high matching confidences are
selected. Therefore, we adopt a geometric weighting strategy in the initial orientation correction,
which is able to decrease the weights of mismatches in BA. In this paper, we implicitly define the
orientation parameters as an RPC model [31], which determines the geometric relationships between
the image points and the object space points, as shown in Equation (12).

r =
∑20

i=1 LINE_NUM_COEFi · pi(P, L, H)

∑20
i=1 LINE_DEN_COEFi · pi(P, L, H)

c =
∑20

i=1 SAMP_NUM_COEFi · pi(P, L, H)

∑20
i=1 SAMP_DEN_COEFi · pi(P, L, H)

r = (row− LINE_OFF)/LINE_SCALE c = (col − SAMP_OFF)/SAMP_SCALE

P = (lat− LAT_OFF)/LAT_SCALE

L = (long− LONG_OFF)/LONG_SCALE

H = (hei− HEI_OFF)/HEI_SCALE,

(12)

where row and col are image coordinates in row and column directions; LINE_OFF, SAMP_OFF
are offset values for image coordinates; LINE_SCALE, SAMP_SCALE are scale values for image
coordinates; lat, long, hei are ground coordinates of latitude, longitude and height; LAT_OFF,
LONG_OFF and HEI_OFF are offset values for ground coordinates; LAT_SCALE, LONG_SCALE
and HEI_SCALE are scale values for ground coordinates; r, c are normalized image coordinates in row
and column directions; P, L, H are normalized ground coordinates of latitude, longitude and height;
LINE_NUM_COEFi (i = 1, . . . , 20), LINE_DEN_COEFi (i = 1, . . . , 20), SAMP_NUM_COEFi
(i = 1, . . . , 20) and SAMP_DEN_COEFi (i = 1, . . . , 20) are 80 parameters of RPC models; pi(P, L, H)

is a three-order function with variables P, L, H. The detailed description of pi(P, L, H) can be referred
to Quickbird product guide [32].

Since the flying height of the satellites is typically around 500 km, making the optical rays of each
pixel almost parallel to each other, the geo-referencing errors of satellite images can be formulated as
small translations in the image space, also termed as image biases, as shown in Equation (13).

row′ = −∆row + r · LINE_SCALE + LINE_OFF

col′ = −∆col + c · SAMP_SCALE + SAMP_OFF,
(13)

where ∆row and ∆col are biases in row and column directions; row′ and col′ are two bias corrected
coordinates in row and column directions. According to Grodecki [31] and Ozcanli [11]’s work,
the simple constant bias (∆row, ∆col) is already sufficient in correcting major geo-referencing errors
of satellites.

Multi-view BA is to globally correct biases among all involved satellite images through minimizing
the following energy function, with respect to re-projection errors in this paper.

min E(∆row, ∆col, lat, lon, hei) =
1
2
ETPE

E = [εi,j]
T , εi,j =

∥∥RPC(∆rowi, ∆coli, latj, lonj, heij)− pi,j
∥∥ ,

(14)

where ∆row = {∆rowi}, ∆col = {∆coli} are set of image biases with i being the image index;
lat = {latj}, lon = {lonj} and hei = {heij} are the set of the object space coordinates of the matches
with j being the index of the matches; RPC means biased RPC model in Equation (13); pi,j is the
image pixel of the jth match in ith image; εi,j is the re-projection error of pi,j; E is a re-projection error
vector which is consisted of re-projection errors of all matches; P is a diagonal matrix which controls
the contributions of each match, also termed as the weight matrix. In initial orientation corrections,
the observations of Equation (14) is the highest-confidence matches. In the accurate BA procedure
(Section 2.4), the observations are all correct matches.
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The energy function in Equation (14) can be solved iteratively through a least square technique,
where the initial bias values of ∆row and ∆col are set as zeros and the initial values of object space
coordinates lat, lon and hei are obtained by multi-view space intersection with the assistance of the
Shuttle Radar Topography Mission (SRTM) data, which is able to guarantee the BA robustness in case
of weak intersection angles [6].

During each iteration of BA, larger re-projection errors often indicate the lower matching accuracy
and vice versa. Therefore, the weight of the image pixel pi,j is adjusted according to its re-projection
error εi,j in the BA process, also termed as the geometric weight. Most works [4,6,7,18] followed an
intuitive idea that the geometric weight of each match is inversely proportional to the re-projection
errors and formulated the geometric weights as an inverse proportional model with respect to the
re-projection errors, as shown in Equation (15). Therefore, the match with large re-projection errors
will be assigned a low weight and vice versa. In this paper, we also adopt Equation (15) to adjust the
weights of each match during the initial orientation corrections.

wi,j =
β

εi,j + γ
, (15)

where wi,j is the weight of pi,j; γ is a small positive variable (e.g., 0.01 in this paper), which is used to
avoid zero value in the denominator; β is a factor that controls the contributions of each match.

2.3.3. Mismatch Elimination

After the initial orientation correction in Section 2.3.2, we detect mismatches by checking whether
their optical rays intersect at the same object space point, under the given orientation parameters.
The intersections in the object space can be formulated as the re-projection errors in the image space.
Therefore, we compute the ground coordinates of each match through the space intersection, then
back-project these ground points onto all visible images and compute the re-projection errors of each
feature point by measuring the distance between the original feature point and the projected points,
as shown in Figure 3, where the blue circle is the ground object space point, the red circles on images
are the multi-view matching points and the green circles are the re-projected points. Re-projection
errors are formulated as the distance between the matching points and the re-projected points and the
matching points with re-projection errors larger than a predefined threshold will be detected as
mismatches. Since several satellite applications (e.g., digital surface model (DSM) generation) need
at least 1-pixel level or even higher-accuracy bundle adjustment results and most feature matching
algorithms are able to achieve 1-pixel level or even higher-accuracy matching points. Therefore, we set
the threshold as 1 pixel, in order to guarantee the sub-pixel accuracy BA results. These mismatches
are eliminated for a more accurate BA in Section 2.4.

Figure 3. The re-projection error computation.
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2.4. Accurate Bundle Adjustment with Combined Weights

After the mismatch detection in Section 2.3, the remaining matches are used in the minimization
of Equation (14) for more accurate orientation corrections. Most works [4,6,7,18] only used the
re-projection error based weights (geometric weights) in the minimization. When the smaller-error
matches are much more than the larger-error matches, the geometric weighting strategy is able to assign
higher weights to the smaller-error matches and lower weights to the higher-error matches. However,
when the numbers of smaller-error matches and the larger-error matches are similar, it will assign
equal weights to all matches. To achieve more accurate orientation corrections, this paper additionally
imposes the matching confidence constraints in the BA process and derives a new weighting strategy
by minimizing the constrained global energy function in each iteration:

min E′k(Pk) = E k−1
TPkEk−1 +

β

2
‖Pk − Diag(F)‖2 , (16)

where E′k is the constrained energy function in the kth iteration of BA; Ek−1 is the re-projection error
vector using orientation correction results in the previous iterations. In the first iteration, Ek−1 is
computed from the original orientation parameters. Pk is the weight matrix in the kth iteration; F is the
set of matching confidences of all matches; Diag(F) is a diagonal matrix with matching confidences
being its diagonal elements; β is a factor to control the contribution of the second term.

The first term of Equation (16) is similar to Equation (14). However, given Ek−1, the minimization
of the first term has no optimal solutions, since the weights in Pk tend to be infinitesimal. Therefore,
we take the matching confidences as the prior knowledge of the weights and formulate this constraint
as the second term in Equation (16). The final solution of Pk is the comprised result of the two terms in
Equation (16), which is computed from the minimization:

∂E′k
∂ρk

j
= ∑

i∈I(Mj)

(
(εk−1

i,j )2 + (β(ρk
j − F(Mj))

)
= 0

ρk
j = F(Mj)−

1
β|I(Mj)| ∑

i∈I(Mj)

(εk−1
i,j )2) = F(Mj)−

1
β
(εk−1

j )2,
(17)

where ρk
j is the weight of the match Mj in the kth iteration; I(Mj) is the visible image set of Mj; |I(Mj)|

is the image number of I(Mj); εk−1
i,j is the re-projection error of the jth match on the ith image under

the orientation results of the previous iteration; εk−1
j is the average re-projection error of the jth match;

β is a factor that control the weights of each match.
However, it is possible that pk

j is negative when εk−1
j is too large. To avoid negative weights,

we further improve Equation (17) by substituting the subtraction with the division:

ρk
j = F(Mj)

β

(εk−1
j )2 + γ

. (18)

The first term in Equation (18) is the matching confidence and the second term is the inverse
proportional model based geometric weight. The Equation (18) means that only matches with high
matching confidences and small re-projection errors can be assigned high weights in BA. The weights
of all matches are adaptively adjusted using Equation (18) and the final orientations of all satellite
images are iteratively corrected through a least square technique.

3. Experiments

Our proposed method was tested on six WorldView-3 panchromatic images near San Fernando,
Argentina from the intelligence advanced research projects activity (IARPA) Multi-View Stereo
benchmark dataset [33]. The ground sampling distance (GSD) of these images was about 0.5 m
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and the imaging time of them was from April 2nd to May 5th, as shown in Figure 4. We evenly selected
six 2000 × 2000 pixels tiles in the overlapping regions of all six satellite images for the multi-view
matching, where SIFT descriptors [34] were utilized with the ratio between the first best match and
the second best match as 0.8. We also applied SIFT matching with the ratio as 0.6 in the center of the
overlapping regions for BA accuracy checking and eliminated the mismatches in these SIFT matches
through a strategy of firstly RANSAC, then geometrically weighted BA. The remaining points in the
center can be used as checking image points (CIPs). The distributions of both the matching points and
the CIPs are shown in Figure 4.

Figure 4. Testing images from IARPA Multi-View Stereo benchmark. The distributions of the matching
points and the checking image points (CIPs) are shown in the left-most image as red points and green
points, respectively.

These CIPs were utilized to correct orientation parameters of all satellite images and then the
corrected orientations were used to detect mismatches (with the re-projection errors larger than 1 pixel)
from the matching points. In general, we totally found 59,239 correct matches and 255,761 mismatches.
The number of mismatches was nearly four times larger than that of the correct matches. Therefore,
we totally generate 18 matching point sets by keeping all correct matching points and gradually adding
different proportions of mismatches, as shown in Figure 5, where the blue bins represent the correct
match number, the red bins represent the mismatch number, the vertical axis represents the point
number and the horizontal axis represents the ratio between the mismatch number and the correct
match number. In the last dataset, the number of the mismatch is four times larger than that of the
correct match, which is a challenge to the traditional BA process.

Figure 5. The matching point sets with different mismatch proportions. The vertical axis represents the
match number in different point sets and the horizontal axis represents the mismatch proportions in
the bundle-adjustment (BA) process.

To evaluate our proposed method, we applied it on the all matching point sets and compared
it with the famous RANSAC mismatch detection strategy [15] as well as the iterative BA with the
re-projection error based weights [21]. In general, we firstly compared and analyzed the performances
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of all matching confidence metrics and selected the reliable confidence metrics for the BA process
(Section 3.1), then we compared our confidence based mismatch elimination method with the famous
RANSAC strategy [15] on all matching point sets and assessed their performances by evaluating
the orientation accuracy of the remaining correct matches of both methods (Section 3.2). We also
compared the combined weight in Equation (18) with three different geometric weights [6,16,19],
to test the effectiveness of the matching confidences in the weighted BA process (Section 3.3). Finally,
the whole workflow of our proposed method was compared with the state-of-the-art BA process (firstly
RANSAC and then iterative BA with inverse proportional model based geometric weights) [21] from
the aspects of the accuracy evaluations in both CIPs and ground control points (GCPs) (Section 3.4).
The root-mean-square deviation (RMSD) of the re-projection errors and the variance in elevation
directions of all matching points are chosen for the accuracy evaluation through all the experiments.

RMSD(M) =

√
∑j∈M ∑i∈I(Mj)

(ε2
i,j)

N(M)− 1.5|M|

Zvar(M) =

√√√√√∑j∈M ∑k,k′∈Mj∩k 6=k′(Zj
k,k′ − Zj)2

∑j∈M C2
Mj

,

(19)

where M is the matching point set of CIPs; |M| is the number of the matches; N(M) is the number
of all feature points of M; εi,j is the re-projection error of the j th match on the ith image; RMSD(M)

is the RMSD assessment of M; Zvar(M) is the variance in elevation directions of M; j means the jth
match; k, k′ mean any two feature points of Mj, which are visible on the kth, k′th images; Zi

k,k′ is the

elevation coordinate of the object space point from k and k′; Zj is the average of all elevations from
any two points of Mj. Since each feature point in M gives two observations and the unknowns of the
object space point coordinates are only three, 1.5|M| was subtracted in the first formula for a more
robust RMSD evaluation. For the elevation variance computation, we only used matches with at least
three-view connectivity, since the two-view correspondences only produce one elevation point.

3.1. The Performance Analysis of The Matching Confidence Metrics

To test the reliability of all the seven matching confidence metrics in Section 2.2, especially when
the mismatches are much more than the correct matches, this experiment compared their performances
on all the matching point sets with the increasing mismatch proportions (from 0 to 4). For each
matching point set, the seven-dimensional matching confidence vectors in Equation (8) are firstly
computed for all the matches and then these matches were used in BA for orientation corrections.
To test the sensitivity of these confidence metrics to the mismatches, the weights of each match in the
BA only adopt the matching confidence itself instead of the geometric weights. Therefore, we totally
computed seven BA results for the seven matching confidence metrics under the same matching point
set and compared the reliability of these confidence metrics by assessing the re-projection error based
RMSD and the z variances of CIPs. The RMSD and the z variance with the increasing mismatch
proportions are shown in Figure 6.
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(a) The RMSD (b) The Z Variance

Figure 6. The performance analysis of seven matching confidences. The horizontal axis shows the
proportions of mismatches in the matching point sets. ZNCC, LC, ML, AML, LRC, MND and MDD are
the names of seven matching confidence metrics (see Section 2.2). The vertical axes show the accuracy
of the BA results in the metrics of RMSD and z variance.

Figure 6 shows that the BA accuracy (the RMSD and the z variance) of all matching confidence
metrics tend to be worse with the increasing proportions of mismatches. When no mismatches
were available, all matching confidence metrics are able to achieve the sub-pixel level RMSD and
the sub-meter level z variance. However, the BA accuracy decreased obviously with the increasing
mismatches, since the matching confidence metrics often assign low, but still influential, weights to
the mismatches. For example, the ZNCC metric often computes high weights (larger than 0.9) for the
correct matches and low weights (smaller than 0.5) for the mismatches, while these low weights are far
beyond the negligible levels (weights close to zero). The mismatches with these low weights still made
significant contributions to the BA process, thus decreasing the BA accuracy. Therefore, the matching
confidence metrics are not suitable for directly using alone as the weights, especially when large
amounts of mismatches exist. However, such issue of matching confidences did not impact on our
proposed method. In the matching confidence based mismatch elimination (Section 2.3), our proposed
method only involves the highest-confidence matches instead of those low-confidence mismatches
and in the bundle adjustment with combined weights (Section 2.4), our proposed method only uses
correct matches, in which case the matching confidence based weights performed well.

To compute the importance of a certain matching confidence metric, we counted its ranks in all
matching point sets and averaged these ranks as the final score for the metric. The average ranks
of all matching confidence metrics under the z variance assessment were—ZNCC (3.8), LC (4.8),
ML (5.1), AML (4.3), LRC (3.6), MND (3.0) and MDD (3.5). Therefore, MND is the most important
metric with the average rank as 3.0 and the ML is the least important metric with the average rank
as 5.1. However, the accuracy differences between MND and ML were not significant, which shows
that all matching confidence metrics made similar contributions in the BA process. Thus, all seven
matching confidence metrics are employed to compute the final confidence score for each match in the
following experiments.

3.2. The Mismatch Elimination Comparisons

To test the effectiveness of the matching confidence based mismatch elimination strategy in
Section 2.3, we compared it with the famous RANSAC strategy [15] by firstly eliminating the
mismatches, then bundle adjustment using the remaining correct matches and finally evaluating
the BA accuracy using CIPs. Since the performances of our proposed method are related to the top
percentage a% of the highest-confidence matches selection (see Section 2.3.1), we firstly compared and
analyzed the BA results with different top percentage parameters and then selected the best parameters
for the comparisons with the RANSAC strategy.

In general, we predefined a series of top percentage parameters 1%, 5%, 10%, 15% and 20% in the
proposed mismatch elimination strategy. To guarantee the accuracy of the selected matches, we only
selected at most top 20% highest-confidence matches, since the larger percentage may involve more
mismatches, especially when the mismatches are much more than the correct matches. We tested the
proposed mismatch elimination strategy with different top percentages on the matching point sets
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with the mismatch proportions from 0.00 to 0.50, then used the remaining correct matches with equal
weights in the BA process and concluded their corresponding BA accuracy in Figure 7.

(a) The RMSD (b) The Z Variance

Figure 7. The BA accuracy with different top percentages of the matching confidence. The horizontal
axis shows the proportions of mismatches in the point sets while the below labels “0.01”, “0.05”, “0.15”
and “0.20” are the top percentages of the highest-confidence matches. The vertical axes show the
accuracy of the BA results in the metrics of RMSD and z variance.

Figure 7 shows all percentage parameters could achieve high BA accuracy. The accuracy of the
different top percentages are quite close—the maximum difference is less than 0.05 in both terms of
the re-projection error and the z variance. Their RMSD of re-projection errors were below 0.77 pixels
and the z variances were below 0.67 meters, which indicates that all these percentages were fit for
mismatch eliminations. However, considering the generality, the time efficiency and the accuracy
of our proposed mismatch elimination method, we prefer the 1% top percentage for three reasons.
(1) The 1% top percentage can be fit for various matching point sets with the theoretical mismatch
proportions being at most 99, while the theoretical mismatch proportions of the top 20% or even
higher percentages are only at most 4. When the mismatch proportions are larger than 4, the point
sets of the 20% or higher top percentages must have a significant number of mismatches, which will
greatly reduce the mismatch elimination accuracy. Therefore, the 1% top percentage is more general
in different matching point sets. (2) The smaller percentage means fewer matches involved in the
initial orientation corrections of the mismatch elimination procedure, thus resulting in more efficient
mismatch eliminations. (3) The average matching confidences of the top 1% point sets must be higher
than other point sets (e.g., 10%, 20% or even higher), which means that the matches in the top 1% point
sets have the highest possibilities of being correct. Therefore, the mismatch proportions in the top 1%
point sets should be less than other point sets, which results in more accurate orientation corrections
for the mismatch elimination. Therefore, the top percentage in our mismatch elimination method is set
to 0.01 through the following experiments.

Then, we compared our proposed mismatch elimination method with the RANSAC strategy on
all matching point sets with the mismatch proportions from 0.0 to 4.0 and computed the BA results
with the equal weights and the inverse proportional model based geometric weights [6], respectively.
The BA with equal weights aims at testing the residual mismatches after the elimination. More residual
mismatches will lead to lower BA accuracy. The BA with inverse proportional model based geometric
weights is to assess the performances of both methods in the traditional BA process. We also used CIPs
to evaluate the accuracy of these BA results in the aspects of the re-projection error based RMSD and
the z variances, as shown in Figure 8.
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(a) The RMSD (b) The Z Variance

Figure 8. The comparison between our matching confidence based mismatch elimination and the
RANSAC mismatch detection method. The horizontal axis shows the proportions of mismatches
in the point sets. “RANSAC” means the mismatch elimination method is based on RANSAC while
“Confidences” means it is based on ours; “Equal Weights” means all matches are assigned equal
weights in the BA process while “Geometric Weights” here means their weights are adaptively adjusted
inversely to their corresponding re-projection errors. The vertical axes show the accuracy of the BA
results in the metrics of RMSD and z variance.

Figure 8 shows that the “RANSAC + Equal Weights” achieved the worst overall accuracy,
because RANSAC can only be applied in pairwise matching. It cannot eliminate mismatches along the
epipolar lines. With the increasing mismatches, there are more mismatches along the epipolar lines,
thus leading to worse BA accuracy for “RANSAC + Equal weights”. Besides, the accuracy trend of
“RANSAC + Equal Weights” seriously varied, due to the random sampling of RANSAC. To address
the aforementioned issue, the traditional method adopts the geometric weights after the RANSAC,
which is able to reduce the weights of mismatches along the epipolar lines. Therefore, the “RANSAC
+ Geometric weights” could achieve more accurate and more robust BA results than the “RANSAC
+ Equal Weights”. Our proposed method achieved much better performances than RANSAC when
equal weights were used, it is because our proposed method selected some highest-confidence matches
to initially correct image orientations and then detected mismatches using these corrected orientations,
thus being able to eliminate the mismatches along the epipolar lines. The BA accuracy of “Confidence
+ Geometric weights” were only slightly better than those of “Confidence + Equal weights”, which
indicates that all mismatches were eliminated through our proposed method. Therefore, the geometric
weights did little improvement on the final BA results. In general, our proposed method performed
better than RANSAC in both scenarios of the equal weights and the geometric weights, which shows
that our proposed method is able to select higher-accuracy matches after the mismatch elimination.

In addition, a good mismatch elimination algorithm should eliminate mismatches as much
as possible and keep the correct matches as much as possible. Therefore, we further tested our
proposed method by counting the remaining point number after the mismatch eliminations. We totally
generated 18 matching point sets by keeping all correct matching points and gradually adding different
proportions of mismatches (from 0.0 to 4.0). Since the first matching point set has no mismatches,
we only focused on detecting the mismatches in the next 17 matching point sets with the mismatch
proportions from 0.05 to 4.0. The remaining matches after the proposed mismatch elimination were
collected in Table 1. The first column in the table shows different mismatch proportions, the second
column shows the remaining matches after the mismatch elimination, the third column shows the
true number of correct matches, the fourth column shows the differences between the numbers of
the remaining matches and the true matches and the fifth column shows the ratio about the number
differences. In general, Table 1 shows that the maximum number ratio is smaller than 3%, which
indicates that our proposed method is able to keep the correct matches after the mismatch eliminations
as much as possible. Most of the eliminated matches were mismatches, thus we did not need to
keep them.
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Table 1. Detected mismatch number in different matching point sets.

Mismatch Remained True Value Number Difference Difference Ratio
Proportion (N1) (N0) dN = N1− N0 |dN|/N1

0.05 59048 −191 0.003235
0.10 59109 −130 0.002199
0.20 59285 46 0.000776
0.30 59195 −44 0.000743
0.40 59232 −7 0.000118
0.50 59324 85 0.001433
0.60 59390 151 0.002543
0.70 59468 229 0.003851
0.80 59538 59,239 299 0.005022
0.90 59598 359 0.006024
1.00 59678 439 0.007356
1.50 59889 650 0.010853
2.00 60141 902 0.014998
2.50 60417 1178 0.019498
3.00 60581 1342 0.022152
3.50 60814 1575 0.025899
4.00 61053 1814 0.029712

3.3. The Tweighting Strategy Comparisons

To test the combined weights in our proposed method, we compared our proposed method with
the BA methods with three different geometric weighting strategies, which are geometric weights
with inverse proportional model (IGW) [6], geometric weights with exponential model (EGW) [19]
and geometric weights with t-distribution (TGW) [16], on all matching point sets with the mismatch
proportions from 0.0 to 4.0. For each matching point set, we firstly applied the matching confidence
based mismatch elimination strategy with the top percentage as 1% to eliminate the mismatches
and then utilized the remaining correct matches to respectively compute BA results with these four
weighting strategies. CIPs were used to evaluate the accuracy of these BA results, as shown in Figure 9.

(a) The RMSD (b) The Z Variance

Figure 9. The comparison among different weighting strategies. “IGW” means the inverse proportional
model based weighting strategy; “EGW” means the exponential model based weighting strategy;
“TGW” means t-distribution based weighting strategy; “Combined Weights” means our proposed
weighting strategy, which considers both the matching confidences and the re-projection errors.
The vertical axes show the accuracy of the BA results in the metrics of RMSD and z variance and the
horizontal axis represents the mismatch proportions in the BA process.

Figure 9 shows that all weighting strategies were able to achieve high-accuracy BA results,
even though the mismatches were four times more than the correct matches, since all mismatches
were previously eliminated by our proposed method. In both terms of the RMSD and the z variance,
our proposed combined weighting strategy achieved the highest accuracy than other three geometric
weighting strategies. It is because all geometric weights, no matter under what mathematical
models, are essentially defined by the leverage of all matching points, thus they cannot distinguish
the high-accuracy matches and the low-accuracy matches when both numbers of the matches are
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similar. As the matching confidences can provide good prior knowledge of the matching accuracy,
our combined weighting strategy is able to compute a more accurate BA result. In addition, IGW has a
litter bit higher accuracy and stability than EGW and TGW, thus IGW was applied in the state-of-the-art
BA process in the next section.

3.4. Overall Workflow Comparison

To give more comprehensive evaluation of our proposed method, we compared it with the
state-of-the-art BA process [21] (firstly RANSAC and then iterative BA with the inverse proportional
model based weights, also termed as RANSAC+Geometric Weights (RGW)) on all matching point sets
with the mismatch proportions from 0.0 to 4.0 and evaluated their BA accuracy with more accuracy
assessment metrics—(1) RMSD of re-projection errors of CIPs; (2) z variance of CIPs; (3) confidence
ellipse analysis of CIPs; and (4) absolute accuracy assessment of GCPs. We totally measured 12 GCPs
from the corresponding LiDAR point clouds, where 3 GCPs were involved in the BA process while
others are used to check the absolute accuracy of the BA results in the object space, as shown in
Figure 10.

Figure 10. The distribution of 12 ground control points (GCPs). 3 GCPs marked with red triangles
were applied in the BA process while other GCPs marked with yellow circles were used to check the
accuracy of the BA result in the object space.

Similar to the first three experiments, we firstly compared both methods from the aspects of the
re-projection error based RMSD and the z variance of CIPs, as shown in Figure 11. The comparison
results show that our proposed method achieved higher accuracy than the state-of-the-art method
(RGW), since our proposed method developed a more robust mismatch elimination strategy as well as
a more accurate weighting strategy. Besides, to test the robustness of both methods with the increasing
mismatches, the accuracy differences between any two adjacent mismatch proportions are plotted
in Figure 12. Figure 12 shows that the accuracy difference distributions of our proposed method are
flatter than the RGW method, which indicates better robustness of our proposed method in different
mismatch proportions. The RGW method adopted RANSAC in mismatch elimination, which depends
on the matching accuracy of the random samples. Therefore, the mismatch elimination results of RGW
are unstable, even though in the same matching point set. Since our proposed method only selects the
highest-confidence matches in the mismatch elimination, it can compute more robust BA results than
the RGW methods.
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(a) The RMSD (b) The Z Variance

Figure 11. The comparison between the RGW method and ours. The vertical axes show the accuracy of
the BA results in the metrics of RMSD and z variance and the horizontal axis represents the mismatch
proportions in the BA process.

(a) The stability of the RMSD (b) The stability of the Z variance

Figure 12. The stability of the RGW method and ours. The vertical axes show the accuracy differences
in the metrics of RMSD and z variance and the horizontal axis represents the index of the BA accuracy
differences of the adjacent mismatch proportions.

To give a better understanding of our proposed method, we also analyzed the 95% confidence
eclipses of CIPs under the corrected orientations using the RGW method and our proposed method,
respectively. Shorter major/minor axes of the confidence eclipse often represent higher BA accuracy.
In general, we computed the confidence eclipses of both RGW method and our proposed method with
increasing mismatch proportions and compared their bundle accuracy by computing the differences
between the major axes and the minor axes, as shown in Figure 13 and Table 2. Figure 13 shows
that both RGW and our proposed method achieved high-accuracy BA results with the major axes
and the minor axes around one pixel, even though the mismatches were four times more than the
correct matches. The major axes and the minor axes of our proposed method is shorter than RGW,
which indicates that our proposed method computed higher-accuracy orientations of satellite images.

We also computed the confidence ellipses with all mismatch proportions, as shown in Table 2.
Table 2 shows the comparisons of the 95% confidence ellipses of our proposed method with the RGW
method. The re-projection errors for 95 percent of points are small enough (about one pixel) for both
the RGW method and our proposed method. Moreover, ours has the smaller confidence ellipses axes
on all the matching point sets, which indicates that our proposed method achieved better accuracy
regardless of mismatch proportions.
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(a) The RGW method (b) Ours

Figure 13. The 95% confidence ellipses of the CIPs on the matching point set with 4.00 mismatch rate.
Each red dot is a re-projection error of a certain CIP; the 95% confidence ellipses are plotted with the
blue vectors as their major axes and the green vectors as their minor axes. The vertical axes show the
errors in the row directions and the horizontal axes show the errors in the column directions.

Table 2. The 95% confidence ellipses of the CIPs on all the matching point sets. a is the major axis while
b is the minor axis.

Proportion of The RGW Method (pixel) Our Method (pixel) a1− a2 b1− b2
Mismatches a1 b1 a2 b2

0.00 1.183 1.012 1.123 0.997 0.060 0.015
0.05 1.208 1.014 1.161 1.004 0.047 0.010
0.10 1.207 1.025 1.160 1.004 0.047 0.021
0.20 1.222 1.027 1.150 1.003 0.072 0.024
0.30 1.209 1.024 1.161 1.005 0.048 0.019
0.40 1.213 1.036 1.163 1.005 0.049 0.031
0.50 1.225 1.039 1.162 1.005 0.063 0.034
0.60 1.204 1.025 1.167 1.006 0.037 0.020
0.70 1.207 1.038 1.160 1.004 0.047 0.034
0.80 1.220 1.030 1.162 1.005 0.058 0.026
0.90 1.222 1.043 1.164 1.005 0.058 0.038
1.00 1.231 1.040 1.159 1.005 0.072 0.035
1.50 1.216 1.038 1.167 1.006 0.048 0.032
2.00 1.211 1.036 1.171 1.007 0.040 0.029
2.50 1.212 1.043 1.170 1.007 0.042 0.036
3.00 1.210 1.048 1.170 1.007 0.040 0.042
3.50 1.216 1.052 1.172 1.008 0.044 0.045
4.00 1.233 1.047 1.172 1.008 0.060 0.040

To further evaluate the absolute accuracy of our proposed method in the object space, we also
measured 12 GCPs from the LiDAR point clouds, where 3 are involved in the BA process and the others
are used to evaluate the BA accuracy. In general, we triangulated the object space coordinates of these
nine GCPs, then computed the plane distances and the elevation distances between the triangulated
coordinates and the measured coordinates of GCPs and finally concluded these distances as the RMSDs
in both plane and elevation directions. We evaluated the absolute accuracy of the RGW method and
our proposed method on all matching point sets, as shown in Figure 14.
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(a) The RMSD in plane (b) The RMSD in elevation

Figure 14. The root mean square deviations (RMSDs) of the GCPs on all matching point sets. The
vertical axes show the BA accuracy in the metrics of RMSD using GCP and the horizontal axes show
different mismatch proportions in the BA process.

Figure 14 shows that both two methods can achieve high absolute accuracy on all matching
point sets, while our proposed method always performed better than the RGW method in both
plane and elevation directions, due to the more accurate mismatch elimination strategy and the more
accurate weighting strategy in our method. The absolute accuracy of the RGW method tend to be
worse with the increasing mismatches. However, the accuracy decreasing trend is not obvious in our
method, which shows that our proposed method is more robust against the various proportions of
mismatches. the RGW method follows a sequential workflow of firstly RANSAC and then bundle
adjustment with the inverse proportional model based weighting strategy and our proposed method
follows a sequential workflow of firstly matching confidence based mismatch eliminations and then
bundle adjustment with the combined weighting strategy. Therefore, the main differences between
the RGW method and our proposed method mainly focus on two aspects—(1) mismatch elimination
strategies and (2) the weighting strategies. Different mismatch elimination strategies were compared in
Section 3.2 using the same weighting strategies, which shows that our proposed mismatch elimination
strategy achieved better matching accuracy than the RANSAC strategy. However, the BA accuracy of
our proposed mismatch elimination strategy using the equal weights and the geometric weights were
similar. On the other hand, different weighting strategies were compared in Section 3.3 after using our
proposed mismatch elimination strategy, which shows that our proposed combined weighting strategy
can further improve the BA accuracy, when compared with the BA results with only the geometric
weights. Therefore, the accuracy improvement of our proposed method in Figure 14 is contributed by
both the mismatch elimination strategy and the weighting strategy. In general, our proposed method
not only achieved better BA accuracy in both the image space and the object space but also was more
robust even though the mismatches were several times more than the correct matches, compared to
the state-of-the-art method.

4. Conclusions

In this paper, we proposed a matching confidence based bundle adjustment method, which is
able to compute accurate orientation results, even though the mismatches are several times more than
the correct matches. The main contributions of our proposed method include—(1) most works only
utilized matching confidence metrics in the dense matching of epipolar pairs, while our proposed
method developed the matching confidence metrics in the multi-view feature matching of original
images, which can help to compute prior knowledge of feature matching accuracy; (2) we propose
a matching confidence based mismatch elimination method, which is able to achieve more robust
mismatch elimination results than the famous RANSAC strategy; (3) we propose a combined weighting
strategy by formulating both the re-projection errors and the matching confidences as weights in BA,
which is able to compute more accurate orientation results than the geometric weighting strategy.
Experiments on the multi-view high-resolution satellite images show that our proposed method is able
to compute more accurate BA results than the state-of-the-art method (firstly RANSAC, than iterative
BA with inverse proportional model based geometric weights), even though the mismatches were four
times more than the correct matches.



Remote Sens. 2020, 12, 20 22 of 23

Author Contributions: Conceptualization, X.H. and X.L.; methodology, X.H. and X.L.; software, X.L. and X.H.;
validation, X.L. and X.H.; formal analysis, X.L. and X.H.; investigation, X.L. and X.H.; resources, X.H. and X.L.;
data curation, X.L. and X.H.; writing—original draft preparation, X.H. and X.L.; writing—review and editing, Y.Z.
and G.Z.; visualization, X.L., X.H. and G.Z.; supervision, X.L.; project administration, X.H. All authors have read
and agreed to the published version of the manuscript.

Acknowledgments: The authors would like to thank the IAPRA for providing the Multi-View Stereo satellite
image dataset.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, Y.; Zhang, Y.; Mo, D.; Zhang, Y.; Li, X. Direct digital surface model generation by semi-global vertical
line locus matching. Remote Sens. 2017, 9, 214. [CrossRef]

2. Yang, K.; Pan, A.; Yang, Y.; Zhang, S.; Ong, S.; Tang, H. Remote sensing image registration using multiple
image features. Remote Sens. 2017, 9, 581. [CrossRef]

3. Song, X.P.; Potapov, P.V.; Krylov, A.; King, L.; Di Bella, C.M.; Hudson, A.; Khan, A.; Adusei, B.; Stehman, S.V.;
Hansen, M.C. National-scale soybean mapping and area estimation in the United States using medium
resolution satellite imagery and field survey. Remote Sens. Environ. 2017, 190, 383–395. [CrossRef]

4. Jiao, N.; Wang, F.; You, H.; Yang, M.; Yao, X. Geometric Positioning Accuracy Improvement of ZY-3 Satellite
Imagery Based on Statistical Learning Theory. Sensors 2018, 18, 1701. [CrossRef]

5. Noh, M.J.; Howat, I.M. Automatic relative RPC image model bias compensation through hierarchical image
matching for improving DEM quality. J. Photogramm. Remote Sens. 2018, 136, 120–133. [CrossRef]

6. Zhang, Y.; Wan, Y.; Huang, X.; Ling, X. DEM-assisted RFM block adjustment of pushbroom nadir viewing
HRS imagery. IEEE Trans. Geosci. Remote Sens. 2015, 54, 1025–1034. [CrossRef]

7. Zhang, Y.; Zheng, M.; Xiong, X.; Xiong, J. Multistrip bundle block adjustment of ZY-3 satellite imagery by
rigorous sensor model without ground control point. IEEE Geosci. Remote Sens. Lett. 2014, 12, 865–869.
[CrossRef]

8. World View-3 Datasheet. Available online: https://www.spaceimagingme.com/downloads/sensors/
datasheets/DG_WorldView3_DS_2014.pdf (accessed on 10 August 2019).

9. GF-2 (Gaofen-2) High-resolution Imaging Satellite/CHEOS Series of China. Available online: https://
directory.eoportal.org/web/eoportal/satellite-missions/g/gaofen-2 (accessed on 10 August 2019).

10. Tatar, N.; Saadatsresht, M.; Arefi, H. Outlier Detection and Relative RPC Modification of Satellite Stereo
Images Using RANSAC+ RPC Algorithm. Eng. J. Geospat. Inf. Technol. 2016, 4, 43–56. [CrossRef]

11. Ozcanli, O.C.; Dong, Y.; Mundy, J.L.; Webb, H.; Hammoud, R.; Victor, T. Automatic geo-location correction
of satellite imagery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 307–314.

12. Zhang, K.; Li, X.; Zhang, J. A robust point-matching algorithm for remote sensing image registration.
IEEE Geosci. Remote Sens. Lett. 2013, 11, 469–473. [CrossRef]

13. Alidoost, F.; Azizi, A.; Arefi, H. The Rational Polynomial Coefficients Modification Using Digital Elevation
Models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 47. [CrossRef]

14. Barath, D.; Matas, J. Graph-Cut RANSAC. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 6733–6741.

15. Korman, S.; Litman, R. Latent RANSAC. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 6693–6702.

16. Omidalizarandi, M.; Kargoll, B.; Paffenholz, J.A.; Neumann, I. Robust external calibration of terrestrial laser
scanner and digital camera for structural monitoring. J. Appl. Geod. 2019, 13, 105–134. [CrossRef]

17. Zheng, M.; Zhang, Y. DEM-aided bundle adjustment with multisource satellite imagery: ZY-3 and GF-1 in
large areas. IEEE Geosci. Remote Sens. Lett. 2016, 13, 880–884. [CrossRef]

18. Cao, M.; Li, S.; Jia, W.; Li, S.; Liu, X. Robust bundle adjustment for large-scale structure from motion.
Multimed. Tools Appl. 2017, 76, 21843–21867. [CrossRef]

19. Wieser, A.; Brunner, F.K. Short static GPS sessions: Robust estimation results. GPS Solut. 2002, 5, 70–79.
[CrossRef]

20. Chang, X.; Du, S.; Li, Y.; Fang, S. A Coarse-to-Fine Geometric Scale-Invariant Feature Transform for Large
Size High Resolution Satellite Image Registration. Sensors 2018, 18, 1360. [CrossRef]

http://dx.doi.org/10.3390/rs9030214
http://dx.doi.org/10.3390/rs9060581
http://dx.doi.org/10.1016/j.rse.2017.01.008
http://dx.doi.org/10.3390/s18061701
http://dx.doi.org/10.1016/j.isprsjprs.2017.12.008
http://dx.doi.org/10.1109/TGRS.2015.2472498
http://dx.doi.org/10.1109/LGRS.2014.2365210
https://www.spaceimagingme.com/downloads/sensors/datasheets/DG_WorldView3_DS_2014.pdf
https://www.spaceimagingme.com/downloads/sensors/datasheets/DG_WorldView3_DS_2014.pdf
https://directory.eoportal.org/web/eoportal/satellite-missions/g/gaofen-2
https://directory.eoportal.org/web/eoportal/satellite-missions/g/gaofen-2
http://dx.doi.org/10.29252/jgit.4.3.43
http://dx.doi.org/10.1109/LGRS.2013.2267771
http://dx.doi.org/10.5194/isprsarchives-XL-1-W5-47-2015
http://dx.doi.org/10.1515/jag-2018-0038
http://dx.doi.org/10.1109/LGRS.2016.2551739
http://dx.doi.org/10.1007/s11042-017-4581-5
http://dx.doi.org/10.1007/PL00012901
http://dx.doi.org/10.3390/s18051360


Remote Sens. 2020, 12, 20 23 of 23
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