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Abstract: Pixels of clouds and cloud shadows in a remote sensing image impact image quality,
image interpretation, and subsequent applications. In this paper, we propose a novel cloud removal
method based on deep learning that automatically reconstructs the invalid pixels with the auxiliary
information from multi-temporal images. Our method’s innovation lies in its feature extraction and
loss functions, which reside in a novel gated convolutional network (GCN) instead of a series of
common convolutions. It takes the current cloudy image, a recent cloudless image, and the mask
of clouds as input, without any requirements of external training samples, to realize a self-training
process with clean pixels in the bi-temporal images as natural training samples. In our feature
extraction, gated convolutional layers, for the first time, are introduced to discriminate cloudy pixels
from clean pixels, which make up for a common convolution layer’s lack of the ability to discriminate.
Our multi-level constrained joint loss function, which consists of an image-level loss, a feature-level
loss, and a total variation loss, can achieve local and global consistency both in shallow and deep
levels of features. The total variation loss is introduced into the deep-learning-based cloud removal
task for the first time to eliminate the color and texture discontinuity around cloud outlines needing
repair. On the WHU cloud dataset with diverse land cover scenes and different imaging conditions,
our experimental results demonstrated that our method consistently reconstructed the cloud and
cloud shadow pixels in various remote sensing images and outperformed several mainstream
deep-learning-based methods and a conventional method for every indicator by a large margin.

Keywords: cloud removal; gated convolution; multi-temporal remote sensing images; joint loss function

1. Introduction

Satellite-mounted optical sensors offer a great opportunity to conveniently capture the geometric
and physical information of the Earth’s surface on a broad scale; however, these sensors are heavily
affected by atmospheric conditions, especially clouds. According to the statistics of a USGS study [1],
the average global annual cloud coverage is approximately 66%. A large number of satellite images
are inevitably covered by clouds and cloud shadows, which restrict subsequent applications such as
geo-localization, data fusion, land cover monitoring, classification, and object detection [2]. Hence,
repairing shaded pixels has become a practical and important research topic. A variety of cloud
removal methods have been designed in the past few decades, which can be simply classified into the
two approach categories of conventional and learning-based.

1.1. Conventional Cloud Removal Approaches

Conventional image-based cloud removal methods utilize the information from the neighboring
pixels of a cloud region, undamaged bands, cloudless temporal images, or auxiliary information from
other sensors to repair current cloudy images with mathematic, physical, or machine learning methods,
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such as image in-painting technology [3,4], exemplar-based concepts [5,6], interpolation theory [7],
and spreading or diffusion model.

Interpolation is a commonly-used technique in cloud removal. Cihlar et al. [8] directly replaced the
cloud-contaminated pixels in AVHRR composited images with linear interpolated values. Shuai et al. [9]
presented the spectral angle distance (SAD) weighting reconstruction method to interpolate missing
pixels. Siravenha et al. [10] applied a nearest-neighbor interpolation together with a DCT-based
smoothing method for cloud removal of the satellite images. Yu et al. [11] introduced inverse distance
weighted (IDW) interpolation and kriging interpolation to remove the missing pixels of MODIS
images. These types of interpolation methods have also been expanded from the spatial domain
to the temporal and multi-source domains. For example, Zhang et al. [12] expanded the ordinary
cokriging interpolation method from the spatial to the temporal domain to interpolate the values of
cloud pixels. Zhu et al. [13] attempted to remove thick clouds based on a modified neighborhood
similar pixel interpolation (NSPI) approach from a Landsat time series. Based on a cloudless temporal
image and two auxiliary images from another satellite sensor, Shen et al. [14] integrated a modified
spatiotemporal fusion method and a residual correction strategy based on a Poisson equation to
reconstruct the contextual details of cloud regions and enhance the spectral coherence.

The term in-painting is thought to have originated from computer vision. Mendez-Rial et al. [15]
developed an anisotropic diffusion in-painting algorithm for the removal of cloud pixels from
hyperspectral data cubes. Cheng et al. adopted an image in-painting technology based on non-local total
variation, in which multi-band data were utilized to achieve spectral coherence. Non-local correlation
in the spatial domain and low-rankness in the spatial-temporal-temporal domain were considered
separately in reference [16] to reconstruct missing pixels. Recently, He et al. [17] designed a new low-rank
tensor decomposition method and a total variation model for missing information reconstruction.

Multi-temporal images, a series of images covering the same region but at different times,
can provide the real land covers that cannot be seen from a cloud image, and many more studies make
use of multi-temporal images and are often called temporal-based methods. In references [18–21],
clouds and shadows were detected first, and thereafter the corresponding patches in the non-cloudy
image were used to replace them without considering the spectral differences between the temporal
images. Lorenzi et al. [22] implemented an isometric geometric transformation to enrich the candidates
for missing pixel repairing and a multi-resolution processing scheme to recover the missing pixels in
optical remote sensing images. A new combination of kernel functions in support vector regression
was designed with auxiliary radiometric information [23]. Zhang et al. [24] proposed a functional
concurrent linear model between cloudy and temporal Landsat 7 images to fill in the missing data.
Gao et al. [25] proposed a tempo-spectral angle mapping (TSAM) index in the temporal dimension
and then conducted the multi-temporal replacement method based on the index. Chen et al. [26]
introduced a spatially and temporally weighted regression (STWR) model and a prior modification
term for cloud removal based on a multi-temporal replacement. In reference [27], an auto-associative
neural network with principal component transform and stationary wavelet transform (SWT) was
designed to remove clouds from temporal images. Wen et al. [28] proposed a coarse-to-fine framework
with robust principal component analysis (RPCA) theory for cloud removal in satellite images.

1.2. Learning-Based Cloud Removal Approaches

Learning-based cloud removal technology has undergone rapid development, making it now the
mainstream approach for cloud removal. This popularity is not only due to its high-performance but
also its relief from the requirements of human intervention and handcrafted feature design. Its use in
cloud removal includes sparse representation, random forest, and deep learning.

Two multi-temporal dictionary learning algorithms have been expanded from the original
dictionary learning to the recovery of cloud and shadow regions without manually designed
parameters [29]. Cerra et al. [30] introduced sparse representation theory into cloud removal and
reconstructed the dictionary randomly from the available elements of the temporal image. Xu et al. [31]
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proposed multi-temporal dictionary learning (MDL) to learn the cloudy areas (target data) and the
cloud-free areas (reference data) separately in the spectral domain. Considering the local correlations
in the temporal domain and the nonlocal correlations in the spatial domain, Li et al. [32] introduced
patch matching-based multi-temporal group sparse representation theory into the missing information
reconstruction of optical remote sensing images. Based on the burgeoning compressed sensing theory,
Shen et al. [33] proposed a novel Bayesian dictionary learning algorithm to solve the dead pixel stripes
in Terra and Aqua images.

Subrina et al. [34] proposed an optical cloud pixel recovery (OCPR) method based on random forest
to reconstruct the missing pixels. With the aid of an extreme learning machine (ELM), Chang et al. [35]
designed a spatiotemporal-spectral-based smart information reconstruction (SMR) method to recover
the cloud-contaminated pixel values.

Different from shallow learning technology, such as sparse representation and ELM, deep learning,
as a powerful representation learning method with deep neural layers, has been widely introduced
to image restoration for denoising, deblurring, super-resolution reconstruction, and cloud removal,
the latter of which is, in essence, a missing information reconstruction problem. Zhang et al. [36]
introduced convolutional neural networks (CNNs) to the different tasks of missing information
reconstruction and proposed a unified spatial-temporal-spectral framework, which recently was
expanded into a spatial-temporal patch-based cloud removal method [37]. Praveer et al. [38] applied
generative adversarial networks (GANs) to learn the mapping between cloudy images and cloudless
images. Chen et al. [39] learned the content, texture, and spectral information of a missing region
separately with three different networks. Gao et al. [40] designed a two-step cloud removal algorithm
with the aid of optical and SAR images. Ji et al. designed a self-trained multi-scale full convolutional
network (FCN) for cloud removal from bi-temporal images [41].

1.3. Objective and Contribution

Although the recent deep-learning-based methods have boosted the study of cloud removal and
represent the state-of-the-art, some critical points have not yet been addressed, specifically, several useful
human insights raised from previous conventional studies are not yet reflected in a current deep-learning
framework. The designed cloud removal networks resemble the basic and commonly-used
convolutional networks, such as a series of plain convolutional layers [36,37,39] or U-Net [40,41], all of
which lack deeper consideration of the specific cloud removal task (i.e., a local-region reconstruction
problem). On the one hand, all these deep-learning-based methods [36–41] did not discriminate between
cloud and cloudless regions and used the same convolution operations to extract layers of features
without considering the difference between clouds and clean pixels. In fact, a discriminative mechanism
considering their distinct features could boost cloud removal performance. Although conventional
studies tended to use different empirical features to represent clouds and other regions, it is not
exploited in the recent deep-learning-based methods. On the other hand, all these methods [36–41]
used the single pixel-based loss function at the output space. This type of loss function is commonly
used in image semantic segmentation; however, it is insufficient for cloud removal from temporal
images for the following reasons. First, the pixel-based loss only matches the valid pixel values of
the predicted image and the cloudy image without considering the reconstructed regions. Second,
the pixel-based loss lacks a direct mechanism for ensuring color and texture consistency around the
reconstructed regions.

For handling the two critical problems, we introduce a novel gated convolutional neural network
for extracting spatiotemporal features for high-performance cloud removal in this paper. The main
idea and contributions of this work are summarized as follows:

(1) A spatiotemporal based framework for cloud removal is proposed. The network learns the
spatiotemporal features from bi-temporal images, a cloudy image, and a clean historical image through
a series of gated convolutional layers, which are introduced into cloud removal for the first time in
our method. The gated convolutional layers can discriminatively filter out the invalid pixels and
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encode the abstracted features only from clean pixels for subsequent image repairing, which solves
the problem that existed in all the recent deep learning based cloud removal methods [36–41] that a
common convolutional layer unavoidably encodes information from invalid pixels that would harm
the image repairing process. Another notable point is that we use a self-training strategy similar to the
work of reference [41] that requires no real training samples but rather requires only clean pixel pairs
of bi-temporal images for model training, which is different from [36–40] where real samples had to be
prepared through costly and tedious manual work.

(2) We developed a joint loss function that integrates pixel-, feature-, and local-level constraints to
strengthen the training process to achieve better global consistency, the ability of loss function is greatly
enhanced compared to the mainstream pixel-level loss function [36–41]. In particular, the local-level
constraint, implemented with a total variation (TV) operation, was designed for the color and texture
smoothness of the neighboring pixels of the reconstructed regions. As the gated convolution for
discriminating the cloud pixels, the TV loss we designed for smoothness constraint also reflects the
beneficial insight from early hand-crafted feature design. The feature-level constraint is implemented
through a basic CNN structure, VGG [42], on the assumption that the extracted features from VGG
from the original image and the reconstructed image resemble each other.

(3) Minor contributions include the introduction of a multi-scale module, atrous spatial pyramid
pooling (ASPP) module, and multi-scale fusion, which aims to expand the receptive field and make
full use of the multi-scale features. The other contribution is we apply sub-pixel convolution operation
in the multi-scale feature fusion instead of commonly-used upsampling algorithms such as the nearest
interpolation and deconvolution to restore more details of irregular clouds.

2. Methods

A spatial-temporal based gated convolutional network (STGCN) was proposed in our method for
cloudy image repairing from bi-temporal remote sensing images. The overall framework was detailed
in Section 2.1, and the designed network was shown in Section 2.2, Section 2.3, Section 2.4 elaborated
the gated convolutions and joint loss, respectively.

2.1. The Overall Framework

The framework of the proposed STGCN was shown in Figure 1. The current cloudy image, a mask
map of clouds and cloud shadows, and a cloudless recent image of the same area were prepared
in advance as the input. The mask map, which was a binary map where 1 represented the clean
pixels (black), and 0 represents the clouds and cloud shadows (white), can be generated from recent
CNN-based detection methods [43–45] or manual work. When an automatic algorithm was applied,
the recall rate should be set high to detect most of the clouds; however, a relatively lower precision score
will not affect the performance of the cloud removal task as a large number of clean pixels remain to
train the cloud removal network. The cloudless temporal image can be selected under two conditions:
(1) The two images can be accurately geo-registered, and (2) the time span of the two images was not
too long for ensuring that no large land cover changes could have happened.

After the input images were prepared, the bi-temporal images were multiplied by the cloud
mask map pixel-by-pixel to filter out the cloudy area (denoted as Cp and Tp). The four images,
bi-temporal images Cp and Tp, were processed by convolutional layers, each of which consisted of
32 3 × 3 convolution kernels and followed by a ReLU activation. The outputs, denoted as Fc, Fcp,
Ft, and Ftp, were concatenated to form a 128-dimension feature map, which was compressed to
32 dimensions by using a 3 × 3 convolution. The 32-dimension feature maps were then concatenated
with Fcp and processed by another 3 × 3 convolution layer. The final feature map was sent to the
developed cloud removal network.
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Figure 1. The overall framework. Cp and Tp are results of the bi-temporal images being multiplied by
the cloud mask map pixel-by-pixel to filter out the cloudy area. Fc, Fcp, Ftp, and Ft are features extracted
from cloudy image, Cp, Tp, and temporal image with 32 3 × 3 convolution kernels, respectively.

Our preprocessing had several advantages over directly sending the bi-temporal images and
the mask map into the cloud removal network. Firstly, through generating Cp and Tp, we explicitly
obtained clean pixels in bi-temporal images, which reduced the learning burden of the cloud removal
network. Secondly, the concatenation of features (i.e., Fc, Fcp, Ftp, and Ft) had experimentally shown
better performance than the concatenation of original images. Thirdly, the addition operation aimed to
enhance the weight of the clean pixels in the cloudy images with the goal of the prediction map from
the network and the cloudy image (only clean pixels) being as similar as possible.

2.2. The Cloud Removal Network

The cloud removal network we propose was shown in Figure 2. The backbone was a classic
FCN, as in reference [46] or U-Net [47]. However, each building block was replaced with our gated
convolution block (GCB) with skip connections. A multi-scale module at the top of the feature pyramid
and a multi-scale feature fusion module before the output layer are were also introduced.
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Figure 2. The structure of the network. The traditional convolution layers are replaced by the
gated convolution layers with two types GCB_A (purple) and GCB_B (pink). A multi-scale module
(sky blue) is applied at the top of the encoder, and a multi-scale fusion is introduced to concatenate the
last features of different scales of decoder, which are upsampled with sub-pixel convolution blocks
(orange) respectively.
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The GCB had two types: (1) Type A (GCB_A, colored with purple) had two skip connections
with the first connection a concatenation operator and the second an addition operator; and (2) Type B
(GCB_B, colored with pink) had one skip connection with an addition operation, which was only used
in the decoder. The last layer of each GCB was an ASPP module (Figure 3a). In the ASPP module,
different dilated rates (1, 3, 5, 7) were set to extract the features from different receptive fields, and then
the features from the different dilated rates were concatenated.
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Figure 3. Sub-modules in the network. (a) The atrous spatial pyramid pooling (ASPP) module.
(b) The multi-scale module.

The multi-scale module at the highest abstraction layer was applied to explore the multi-scale
information of the deep features. As shown in Figure 3b, the input feature map was resized to four
different sizes (1/2, 1/4, 1/8, 1/16) by average pooling. The features at each scale were then processed
by an ASPP module and a sub-pixel convolution layer. The sub-pixel convolutions, instead of direct
upsampling, resampled the features at the same scale as the input. Finally, 3 × 3 convolution layers
with ReLU were applied, and the output features were concatenated.

In the decoder, the deconvolution layers were used to upsample the features, which were then
concatenated to the corresponding features in the encoder and further processed by the GCB_B.

The multi-scale fusion process aggregated information from different spatial scales. The last
features at each scale of the decoder were processed by a 1× 1 convolution layer, followed by a sub-pixel
convolution layer to restore the size of the original input. Then, they were channel-wise concatenated
and processed by a convolution layer with three channels to obtain the restored cloudy image.

The parameters and super-parameters in the network were set as follows: The stride of the
convolution layer was 1, and the kernel size was 3 × 3 in the whole network, except for the specified
ASPP module. The rate of max pooling and the stride in the deconvolution layers was 2. The growth
rate of the GCB in the encoder was set to 256. The feature dimension of each scale in the decoder was
1024, 512, 256, 128, 64, from top to bottom. For global and local consistency, a joint loss function was
used in the training process, which will be described in Section 2.4.

2.3. Gated Convolution Layers

A normal convolution layer functions equally on each pixel of an image, which was suitable for
semantic segmentation where each pixel was assigned a category. The similarity between segmentation
and image restoring was that they were both pixel-level operations; however, there were explicit
invalid pixels in restoring, while in segmentation, there were not. In a deep network, the features
extracted from invalid pixels were gradually synthesized to the deeper layers along with the increasing
receptive field, which inevitably impacted the restoring quality. Hence, a normal convolution layer can
be revised to adapt to this situation by treating valid and invalid pixels separately.
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Two special convolutions can treat pixels from an image separately. The first one was called
partial convolution. In a partial convolution layer [48], the convolution kernel (i.e., the weight W
and bias b) functioned on the combination of an image I and an iteratively-updated binary mask M,
in which the value of the invalid pixels was 0. In Equation (1), image I was first multiplied by the mask
M element-wisely (denoted by �), and weighted by λ, the ratio of the number of the pixels in mask M
and the valid pixel number in M. The mask for the next convolutional layer was automatically updated
by a simple rule: If there existed at least one valid value able to condition the output, the location in
the mask was updated as valid.

Oy,x =

{ ∑∑
W(I �M)λ+ b, i f sum(M) > 0

0, otherwise
(1)

When going deeper into a convolutional network, the valid pixels in the updated mask inevitably
were increasing according to the updating rule, which means the side effect of the mask (invalid pixels)
was becoming bigger by progressively infiltrating into the valid pixels.

The other convolution was called gated convolution [49], which automatically learns a “soft”
mask that discriminates valid and invalid pixels and was different from the empirically-set “hard”
mask in partial convolution. Gated convolution is formulated as:

Gy,x =
∑∑

Wg·I + bg (2)

Fy,x =
∑∑

W f ·I + b f (3)

Oy,x = φ
(
Fy,x

)
�ψ

(
Gy,x

)
(4)

where Wg and Wf are the weights of two different convolutions, bg and bf are the corresponding
biases. Ψ is the sigmoid function to make the feature gated between 0 and 1 as the learning mask.
The elemental-wise multiplication of feature Φ(F) and the learning mask Ψ (G) is a gated convolution.
Sometimes, the feature F can be activated before the multiplication [49]. In (4), Φ can be any
activation function such as ReLU [50], LeakyReLU [51], and ELU [52]. Gated convolution can be
seen as a generalization of partial convolution. In cloud removal, we utilized gated convolution for
discriminating invalid and valid information in each convolutional layer. When the network goes
deeper, gated convolution obtains better discrimination ability with a representation learning manner
than partial convolution with an empirical setting.

2.4. Joint Loss

The mean square error (MSE) loss for image reconstruction only matched the valid pixel values of
the predicted image and the cloudy image. Our proposed loss functions targeted not only pixel-based
reconstruction accuracy but also feature level similarity and local smoothing.

As shown in Figure 4, at the image-level, we separately calculated the loss inside and outside the
cloudy region. Let Iout represent the reconstruction result, M is the binary mask for clouds and cloud
shadows (1 for holes), Igt is the ground truth. The pixel-level losses are calculated as:

lcloud =
∥∥∥∥M�

(
Iout − Igt

)∥∥∥∥
1

(5)

lnon−cloud =
∥∥∥∥(1−M) �

(
Iout − Igt

)∥∥∥∥
1

(6)

At the feature level, we employed a loss function that assessed the similarity between the high-level
features of the network output and the ground truth, which was a beneficial supplement of pixel-level
similarity. An ImageNet-pretrained VGG-16 [42] was used as a feature extractor to generate high-level
features from the network outputs and the ground truth. The loss consisted of two parts. The first part
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was the L1 distance between the VGG features of the network output and the ground truth. For the
second part, we generated a composite image Icomp for addressing the repaired region. The composite
image was the linear superposition of the non-cloud region of the ground truth and the mask region of
the network output, as shown in Equation (7). The second part was then the L1 distance between the
VGG features of the composite image and of the ground truth.
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Figure 4. Joint loss that consists of an image-level, a feature level, and a total variation constraint.
The image-level constraint includes the loss inside (loss-cloudy) and outside (loss-noncloudy) the
cloudy region, the feature-level constraint consists of two perceptual losses.

Icomp = (1−M) � Igt + M� Iout (7)

The feature-level loss (perceptual loss) is formulated as:

lpptl =
N−1∑
n=0

∥∥∥∥ψn(Iout) −ψn
(
Igt

)∥∥∥∥
1
+

N−1∑
n=0

∥∥∥∥ψn
(
Icomp

)
−ψn

(
Igt

)∥∥∥∥
1

(8)

where Ψn is the activation map of n-th layer of VGG given different inputs. Here, we used layers of
pool1, pool2, and pool3 for our loss.

To narrow the gap between the repaired region and the surroundings, i.e., realize the seamless
stitching effect of the composited image, we introduced the third loss, which was a smooth function to
realize a seamless reconstruction. A total variation (TV) loss was applied as the smoothing penalty of
the neighboring region of clouds, as shown in (9).

ltv =
∑

(i, j)∈P,(i, j+1)∈P

∥∥∥∥Ii, j+1
comp − Ii, j

comp

∥∥∥∥
1
+

∑
(i, j)∈P,(i+1, j)∈P

∥∥∥∥Ii+1, j
comp − Ii, j

comp

∥∥∥∥
1

(9)

where (i, j) is the pixel count of the neighboring region P of the cloud outlines. In practice, the neighboring
region P can be set as the whole input image, which has been cropped into small tiles (e.g., 256 × 256 pixels)
from original remote sensing images for deep-learning-based training and testing.

The final loss was the weighted combination of all the above loss functions. The optimal weights
λ is empirically determined by performing a hyper-parameter search.

ltotal = lnon−cloud + λclcloud + λtltv + λplpptl (10)

3. Experiments and Results

3.1. The Experimental Dataset

We selected the open-source WHU Cloud dataset (Supplementary Materials) [41] for our
experiments as that dataset covers complex and various scenes and landforms and is the only
cloud dataset providing temporal images for cloud repairing. Considering the GPU memory capacity,
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the six Landsat 8 images in the dataset were cropped into 256 × 256 patches with an overlap rate of
50%. In Table 1, the path and row, the simulated training, validation, testing sample numbers of each
data, and the real cloud samples for testing are listed.

Table 1. Introduction of WHU Cloud Dataset.

Data Path/Row Simulated Samples Real Samples
Train Validation Test

I 118/032 576 126 144 27
II 119/038 747 180 127 19
III 123/039 780 192 152 15
IV 124/033 899 216 180 13
V 126/035 616 151 126 104
VI 127/034 718 346 200 30

The six images have been pre-processed by radiometric and atmosphere correction with ENVI
software. Please note that, no real training samples are required in our algorithm, which avoids the
high-demand of huge samples for training a common deep-learning model. Instead, all the training
samples were automatically simulated on the clean pixels without requiring any manual work. They act
actually the same as true samples as providing cloud masks. The simulated samples are used for
quantitative training and testing, while the real samples (clouds and cloud shadows) without ground
truth (pixels beneath the clouds are never known) are used for qualitative testing.

The adaptive moment estimation (Adam) was used as the gradient descent algorithm and the
learning rate was set to 10−4. The training process was iterated 500 epochs each for our model and
the other deep learning-based methods to which our model was compared. The weights in (10) were
empirically set as λc = 5, λt = 0.5, and λp = 0.06. The algorithm was implemented under the Keras
framework of Windows 10 environment, with NVIDIA 11G 1080 Ti GPU.

3.2. Cloud Removal Results

We present our experiments and comparisons of different cloud removal methods: Our proposed
STGCN method, the non-local low-rank tensor completion method (NL-LRTC) [16], the recent
spatial-temporal-spectral based cloud removal algorithm via CNN (STSCNN) [36], and the very
recent temporal-based cloud removal network (CRN) [41]. A partial convolution-based in-painting
technology for irregular holes (Pconv) [48] was also executed for quantitative and visual comparison.
Except for NL-LRTC, all the other methods are mainstream deep-learning based methods.

The following representative indicators were employed to evaluate the reconstruction results:
Structural similarity index measurement (SSIM), peak signal to noise ratio (PSNR), spectral angle
mapper (SAM), and correlation coefficient (CC), among which PSNR is regarded as the main indicator.
Meanwhile, as the pixels beneath the real clouds could not be accessed, the removal of real clouds was
examined with a qualitative assessment (i.e., visual inspections).

Table 2 shows the quantitative evaluation results of different methods on the whole WHU
cloud dataset, while Table 3 is the separate evaluation results on different images. As displayed
in Tables 2 and 3, STGCN outperformed the other algorithms for all indicators. Pconv, which was
executed only on cloudy images, performed the worst due to the lack of complementary information
from temporal images. Although some indexes of the conventional NL-LRTC were sub-optimal,
the following reconstructed samples show that it was unstable in some scenes, especially those lacking
textures. STSCNN was constructed from an old-fashioned CNN structure, which resulted in the
worst performance of the temporal-based methods. CRN was constructed from a similar and popular
FCN structure as ours; however, it demonstrated worse performance than ours mainly because CRN
could not discriminate between valid and invalid pixels during feature extraction. We use gated
convolution for feature extraction. CRN’s inferior performance also was due to two other factors.
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First, the up-sampling operation with the nearest neighbor interpolation blurred some details. Second,
simple MSE loss focused on the similarity of the pixel values exclusively. In contrast, our sub-pixel
convolution and the combination of pixel-level, feature-level, and total variation loss contributed to
our much better performance. For efficiency, our method requires a little more computational time,
which is reasonable as our model is more complicated than those methods with plain convolutions.

Table 2. Average quantitative evaluation of different algorithms on simulated clouds of the whole
WHU dataset. The best value of each indicator is bolded.

Method mPSNR ↑ mSSIM ↑ mSAM ↓ mCC ↑ Time Efficiency

Training Test

STSCNN [36] 31.445 0.974 5.1823 0.9908 14 h 39 m 13s
CRN[41] 32.337 0.9768 5.1756 0.9887 14 h 52 m 7s

Pconv[48] 27.213 0.9425 5.8851 0.9601 18 h 49 m 5s
NL-LRTC[16] 34.115 0.9807 5.1455 0.9806 / 9 h 39 min 28s

STGCN 35.749 0.9831 5.0919 0.9916 26 h 2 min 24 s

↑: The higher score indicates the better effect. ↓: The lower score indicates the better effect.

Table 3. Quantitative evaluation of different algorithms on simulated clouds of each data in the WHU
dataset. The best value of each indicator is bolded.

Method STSCNN [36] CRN [41] Pconv [48] NL-LRTC [16] STGCN

Data mPSNR/mSSIM/mSAM

I 29.056/0.977/4.430 30.325/0.985/4.423 27.375/0.956/4.962 34.458/0.982/4.384 36.662/0.988/4.354
II 30.227/0.966/4.393 31.986/0.975/4.369 28.605/0.953/4.786 33.892/0.984/4.459 34.138/0.982/4.322
III 29.136/0.968/4.169 31.554/0.975/4.144 26.265/0.944/4.698 33.768/0.976/4.100 36.225/0.979/4.106
IV 33.701/0.986/4.450 32.955/0.976/4.534 27.121/0.940/4.842 34.753/0.985/4.462 36.052/0.988/4.424
V 31.514/0.976/6.234 31.843/0.980/6.225 24.680/0.907/7.627 34.173/0.982/6.221 34.788/0.984/6.154
VI 35.040/0.975/7.417 35.362/0.971/7.359 29.235/0.955/8.395 33.647/0.975/7.247 36.633/0.980/7.192

Figure 5 shows 12 different scenes, cropped from the six datasets, with huge color, texture,
and background differences that could challenge any cloud removal algorithm.

Figure 5a,b originated from data I. In Figure 5a, the regions reconstructed by Pconv and STSCNN,
obviously were worse. Pconv introduced incorrect textures and STSCNN handled color consistency
poorly. The other three methods showed satisfactory performance both in textural repairing and
spectral preservation, although the non-cloud image was very different from the cloud image. However,
in the seaside scene (Figure 5b), NL-LRTC performed the worst and basically failed because NL-LRTC
only paid attention to the low-rankness of the tensor of the textures while the sea was smooth.
Pconv was the second worst performer. Although the results of our method were not perfect, they did
exceed the results of all the other methods.
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Figure 5. Comparison of cloud removal results predicted from different methods in different scenes
of WHU cloud dataset. (1) Simulated cloudy image. (2) Temporal image. (3) Label. (4) Pconv.
(5) spatial-temporal-spectral based cloud removal algorithm via CNN (STSCNN). (6) non-local low-rank
tensor completion method (NL-LRTC) (7) cloud removal network (CRN). (8) spatial-temporal based
gated convolutional network (STGCN). (a) and (b) are samples from data I, (c,d) from data II, (e,f) from
data III, (g,h) from data IV, (i,j) from data V, and (k,l) from data VI.
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Figure 5c,d originated from data II, which was a city and farmland, respectively. In Figure 5c,
none of the repairing results were very good because the temporal image was blurred or hazy.
In contrast, in Figure 5d in spite of a bad color match, the temporal image was clear, which guaranteed
STSCNN, CRN, and our method obtained satisfactory results. The conventional NL-LRTC performed
the worst once again. From these examples, we concluded that the advanced CNN-based methods
can fix the problems caused by color calibration but are heavily affected by blurred temporal images,
which gives us direction as far as selecting proper historical images for cloud removal.

Figure 5e,f originated from data III and were covered with forests and rivers, where the large
parts of randomly simulated clouds challenged the cloud removal results. In Figure 5e, STSCNN,
CRN, and STGCN produced satisfactory results in spite of the color bias of the temporal image;
and in Figure 5f, CRN and STGCN performed the best. Our method performed the best in both cases.
The results and conclusions from Figure 5g,h, which were from data IV and covered with mountains,
resembled the results of Figure 5e,f.

Figure 5i,j from data V was an extremely difficult case in that the qualities of both the temporal
and cloudy images were low. The three temporal-based CNN networks obtained much better results
than the conventional method and single-image based method. The reconstructed results of Figure 5i
was relatively worse than that of Figure 5j. This further demonstrates the conclusion from Figure 5c,d:
The blurred temporal image Figure 5i heavily affected the reconstruction results, but the color bias
of image 5j did not appear to be harmful. Figure 5k,l from data VI covering bare land demonstrated
again that our method performed slightly better than the two temporal-based CNNs with the two
remaining methods performing the worst.

The performances of different methods for removing real clouds were judged by the visual effects,
as shown in Figure 6, for example. First, the clouds and cloud shadows were detected by a cloud
detection method called CDN [41]. Then, the mask of the cloud and cloud shadow was then expanded
by two pixels to cover the entire cloud area to avoid the damaged pixels involved in training the
network. Finally, the CNN-based methods were trained with the remaining clean pixels.

It was observed in Figure 6a that Pconv did not work at all, and there was obvious color
inconsistency in the results of STSCNN and apparent texture bias in the results of NL-LRTC. The results
from CRN were much better than the former three methods. However, it can be seen from a close
review that it blurred the repairing regions, which was largely caused by ignoring the difference
between the cloud and clean pixels. Our method exhibited best-repairing performance in all aspects:
Color consistency, texture consistency, and detail preservation. In Figure 6b, the results of NL-LRTC,
CRN, and our method were visually satisfactory. However, NL-LRTC showed some color bias,
which was overly affected by the temporal image. In Figure 6c, the problem occurred again in the
NL-LRTC result. Our method performed the best as the repaired region of the second-best CRN was
obviously blurred.3.3. Effects of Components

Our cloud removal method STGCN was featured with several new structures or blocks that were
not utilized in former CNN-based cloud removal studies. In this section, we demonstrate and quantify
the contribution of each introduced structure to the high performance of our method.



Remote Sens. 2020, 12, 3427 13 of 19

Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 18 

 

The performances of different methods for removing real clouds were judged by the visual 
effects, as shown in Figure 6, for example. First, the clouds and cloud shadows were detected by a 
cloud detection method called CDN [41]. Then, the mask of the cloud and cloud shadow was then 
expanded by two pixels to cover the entire cloud area to avoid the damaged pixels involved in 
training the network. Finally, the CNN-based methods were trained with the remaining clean pixels. 

 
(1) (2) (3) (4) (5) 

 
(6) (7) (8) (9) 

 

(1) (2) (3) (4) (5) 

(6) (7) (8) (9) 

 

(1) (2) (3) (4) (5) 

(6) (7) (8) (9) 

 
 

Figure 6. Comparison of cloud removal results predicted from different methods. (1) Real cloudy 
image. (2) Clouds and cloud shadows mask detected from CDN with high recall. Cloud shadows are 

Figure 6. Comparison of cloud removal results predicted from different methods. (1) Real cloudy
image. (2) Clouds and cloud shadows mask detected from CDN with high recall. Cloud shadows are
marked by gray, and clouds are marked by white. (3) Mask after expansion operation. All invalid pixels
are marked by white. (4) Temporal image. (5) Pconv. (6) STSCNN. (7) NL-LRTC. (8) CRN. (9) STGCN.
(a–c) are repaired samples of real cloud images from different scenes.
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3.2.1. Gated Convolution

Conventional convolution treats each pixel equally when extracting layers of features.
Gated convolution distinguishes the valid and invalid pixels in cloud repairing and automatically
updates the cloud mask through learning. Table 4, where STGCN_CC indicates that common convolution
layers replace the gated convolution layers, shows their difference in data I. After introducing the gated
convolutions, all of the indicator scores improved, especially the mPSNR score, which increased by
2.3. The significant improvement of PSNR intuitively indicates that the details and textures blurred by
common convolutions were repaired by the gated convolutions.

Table 4. Quantitative evaluation of cloud removal algorithms based on gated convolution layers and
common convolution layers on data I. STGCN_CC indicates gated convolution layers in our STGCN
have been replaced by common convolution ones.

Method mPSNR ↑ mSSIM ↑ mSAM ↓ mCC ↑

STGCN 36.6619 0.9877 4.3538 0.9943
STGCN_CC 34.3079 0.9845 4.3734 0.9918

↑: The higher score indicates the better effect. ↓: The lower score indicates the better effect.

3.2.2. Sub-Pixel Convolution

An up-sampling operation is commonly applied in a fully convolutional network several times to
enlarge the compact features up to the size of the original input images. In previous studies, it was
mathematically realized by the nearest interpolation, bilinear interpolation, and deconvolution. In this
paper, we introduced a sub-pixel convolution to rescale the features, which is also called pixel shuffle.
Table 5 shows the powerful effect of sub-pixel convolution. The mPSNR of STGCN was 2.4 higher than
STGCN with the nearest interpolation (NI), and 1.2 higher than up-convolution (UC). The effectiveness
of sub-convolution may relate to the special object we face: The fractal structure of clouds requires a
more exquisite tool to depict the details of the outlines.

Table 5. Quantitative evaluation of cloud removal algorithms with different up-sampling methods on
data I. w/NI is short for with the nearest interpolation. UC is short for up-convolution.

Method mPSNR ↑ mSSIM ↑ mSAM ↓ mCC ↑

STGCN 36.6619 0.9877 4.3538 0.9943
STGCN w/NI 34.2569 0.9871 4.3628 0.9943
STGCN w/UC 35.4819 0.9872 4.3551 0.9939

↑: The higher score indicates the better effect. ↓: The lower score indicates the better effect.

3.2.3. Joint Loss Function

Although MSE loss, a pixel-level similarity constraint, was commonly used for CNN-based image
segmentation and the inpainting of natural images in computer vision, it was far from enough for the
restoration of remote sensing images. This paper introduced a joint loss function that targeted not only
pixel-level reconstruction accuracy but also the feature-level consistency and color/texture consistency
of the neighboring regions of cloud outlines. Table 6 shows the effectiveness of the perceptual loss
designed for feature-level constraint and the TV loss for color consistency. With the optimized weights
that were found empirically, the introduction of the new loss component one at a time gradually
increased the mPSNR score up to 3.4 growth.
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Table 6. Quantitative evaluation of cloud removal algorithms with different components of loss
functions on data I. STGCN_1v5h0.5t means the loss function is the weighted addition of mean square
error (MSE) for clear pixels with weight 1, damaged pixels with weight 5, and TV loss with weight 0.5,
without the perceptual loss.

Method mPSNR ↑ mSSIM ↑ mSAM ↓ mCC ↑

STGCN 36.6619 0.9877 4.3538 0.9943
STGCN_1v5h0.5t 34.2403 0.9879 4.3586 0.9944

STGCN_1v5h 33.7992 0.9871 4.3719 0.9933
STGCN_MSE 33.2852 0.9837 4.3753 0.9941

↑: The higher score indicates the better effect. ↓: The lower score indicates the better effect.

3.2.4. Multi-Scale Module

Table 7 shows the effects of the multi-scale module. When the module for receptive field expanding
and multi-scale feature fusion was introduced, there was a slight increase of mPSNR, and the other
indicators remained almost the same, which indicated that the module works but was less important
than the above three improvements.

Table 7. Quantitative evaluation of cloud removal algorithms with and without multi-scale module.
w/o is short for without.

Method mPSNR ↑ mSSIM ↑ mSAM ↓ mCC ↑

STGCN 36.6619 0.9877 4.3538 0.9943
STGCN w/o MS 36.2912 0.9857 4.3543 0.9942

↑: The higher score indicates the better effect. ↓: The lower score indicates the better effect.

3.2.5. Addition Layer

Addition layers were implemented in both of our main building blocks, the GCB_A and GCB_B,
in the encoder and decoder, respectively (Figure 7). The base of GCB_A is a ResNet-like block
with a short skip connection; and the base of the GCB_B was a series of plain convolution layers.
After the additional shortcuts were added to the bases, we saw from Table 8 that the mPSNR score
improved by 0.7. As a variation of a skip connection, the addition layer seemed to be effective in cloud
removal, which indicated that the frequent short connections, which have widened communication
channels between different depths of layers, can improve the performance of a cloud removal network,
which resembles the findings in close-range image segmentation or object detection.
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Table 8. Quantitative evaluation of cloud removal algorithms with and without add operation in each
block. w/o is short for without.

Method mPSNR ↑ mSSIM ↑ mSAM ↓ mCC ↑

STGCN 36.6619 0.9877 4.3538 0.9943
STGCN w/o Add 35.9858 0.9877 4.3603 0.9942

↑: The higher score indicates the better effect. ↓: The lower score indicates the better effect.

4. Discussion

In this section, we discuss the extensions and limitations of our proposed work. First of all,
we need one recent cloudless image as auxiliary data. In our experiment, the cloudless image is
available from an open-source dataset that was manually constructed. As there are plenty of historical
remote sensing images in the same region, developing a pre-processing method to automatically
choose a high-quality image may be color-biased but not blurred, as suggested in Section 3.2, is a
significant enhancement to bi-temporal or multi-temporal based cloud repairing methods and is a
practical manner towards automation.

Second, we used the same data source (Landsat 8), instead of multi-sources, for our experiments.
However, the key problem was not rooted in the data sources as we have shown that the appearance
differences between the cloudless images and the cloud images, some of which suffered from severe
color bias, have no significant impact on cloud repairing. The key factor was pixel-level registration
because a deep-learning method learns spectral mapping and cloud repairing from aligned pixel pairs.
Therefore, it should be noted that highly accurate geometric registration is necessary before applying a
multi-temporal cloud repairing method such as ours.

Third, the strength of our method is in its discrimination ability of two types of pixels (invalid pixels
and clean pixels) and its process for handling global and local consistency through the gated
convolutions and total variation constraints. Our method is the first introduction of these technologies
into deep learning-based cloud repairing. However, they can be applied in any repairing problems
related to CNN-based remote sensing image processing.

Finally, this work emphasizes cloud removal instead of cloud detection, and we assume the
cloud mask is available or the cloud region can be well extracted by an algorithm. Cloud repairing
is, therefore, highly affected by the quality of cloud and cloud shadow masks. The popular cloud
detection methods are based on deep learning; however, they still suffer from the lack of enough
training samples and strong generalization ability. As a related research topic, the progress of cloud
detection will surely benefit most of the cloud removal methods, including ours.

5. Conclusions

In this paper, we presented a novel method that introduces technologies never before used in a
deep-learning framework for establishing mapping between the non-cloudy area of a cloudy image
and a corresponding cloudless temporal image while at the same time repairing the cloud regions.
There are three key technologies employed in our method: (1) Gated convolution layers, which learn
how to discriminate cloud and non-cloud regions and automatically update the cloud masks in layers
of features; (2) sub-pixel convolution, which replaces the commonly-used up-sampling operation to
achieve sub-pixel accuracy; and (3) joint-loss function, which addresses the pixel-level and feature-level
similarity and texture and color consistency of repaired regions. Our cloud repairing experiments with
bi-temporal images from various scenes demonstrated the robustness of our method and its superiority
over other conventional and deep-learning-based methods. The new technologies introduced in this
paper can be implemented for other repairing problems involving invalid pixels or emphasizing local
spatial and spectral consistency.

Supplementary Materials: The WHU Cloud dataset is available online at http://gpcv.whu.edu.cn/data/.
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