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ABSTRACT

Cloud cover hinders the usability of optical remote sensing
imagery. Existing cloud detection methods either require
hand-crafted features or utilize deep networks. Generally,
deep networks perform better than hand-crafted features.
However, deep networks for cloud detection need massive
and expensive pixel-level annotation labels. To alleviate
that, this paper proposes a weakly supervised deep learning-
based cloud detection method using only block-level labels,
with a new global convolutional pooling operation and a
local pooling pruning strategy to improve the performance.
For evaluating, we collect a training dataset containing over
160,000 image blocks with block-level labels and a testing
dataset including ten large image scenes with pixel-level la-
bels. Even under extremely weak supervision, our method
performed well with the average overall accuracy reached
97.2%. Experiments demonstrate that our proposed method
obviously outperforms the state-of-the-art methods.

Index Terms— Cloud detection, weakly supervised deep
learning, global convolutional pooling, local pooling pruning,
high-resolution remote sensing imagery

1. INTRODUCTION

Optical remote sensing (RS) imagery often degenerates be-
cause of cloud cover. Driven by various applications, cloud
detection in the RS imagery attracts extensive research inter-
est. Although numerous methods have been proposed, the off-
the-shelf cloud detection methods have limited performance
and weak universality. Hence, cloud detection in the RS im-
agery is still facing challenges.

So far, cloud detection methods are mainly designed for
the low or medium resolution RS imagery (e.g., MODIS [1],
Landsat [2, 3]). These images generally consist of many
spectral bands that benefit improving the accuracy. With
high-resolution RS satellites launched, the multi-spectral RS
imagery with four spectral bands have become increasingly
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prevalent. It is more difficult for cloud detection in the high-
resolution RS imagery with only four spectral bands [4].
Accordingly, it becomes very urgent to exploit the cloud
detection technique for the high-resolution RS imagery.

In the early years, cloud detection methods are mainly
based on hand-crafted features, such as spectral, textural, ge-
ometrical features [3], man-made filters [5], hand-crafted in-
dexes [4] and so on. Motivated by the tremendous success of
deep learning [6], various variants of deep semantic segmen-
tation networks [2,7] have been proposed to address the cloud
detection. Although these methods outperform the methods
based on hand-crafted features, their superior performance
highly depends on the pixel-level cloud masks requiring lots
of manual annotation labor. Therefore, it is quite significant
to explore advanced deep learning-based method of saving
annotation labor.

As is well known, block-level labels are much easier to
collect than pixel-level annotations. With the global pooling
operations like global average pooling (GAP), researchers [8]
have shown that deep networks trained with only block-level
labels are informative of object locations. However, because
of the inherent defects of global pooling operations [9], there
is a lack of the capability of obtaining the detail information
of objects, which is quite important for accurately detecting
the cloud boundary. The potential of weakly supervised deep
learning has not been well exploited.

In this paper, we leverage only block-level supervision
to train the deep networks for pixel-level cloud detection.
We propose a global pooling operation called global con-
volutional pooling (GCP) in the training stage which learns
channel-wise convolutional weights to enhance the represent-
ing ability of the feature map. Furthermore, we propose a
local pooling pruning (LPP) strategy in the testing stage dur-
ing generating the cloud activation map (CAM). By pruning
the local pooling layers in the trained deep networks, the spa-
tial resolution of CAM gets much better. After that, the final
cloud mask of one RS image can be obtained through natively
segmenting the CAM by an adaptively statistical threshold.

In the experiment, we train deep networks under the su-
pervision of RS image blocks with coarse labels, which only
indicate whether an image block contains cloud or not, but
purse the pixel-level cloud detection. Even under this ex-
treme setting, our proposed method still yields promising re-

1612978-1-7281-6374-1/20/$31.00 ©2020 IEEE IGARSS 2020

IG
AR

SS
 2

02
0 

- 2
02

0 
IE

EE
 In

te
rn

at
io

na
l G

eo
sc

ie
nc

e 
an

d 
Re

m
ot

e 
Se

ns
in

g 
Sy

m
po

siu
m

 |
 9

78
-1

-7
28

1-
63

74
-1

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IG
AR

SS
39

08
4.

20
20

.9
32

44
86

Authorized licensed use limited to: Wuhan University. Downloaded on March 08,2024 at 07:46:29 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. The architecture of our adopted deep network.

sults, and outperforms the existing methods [8–10]. Con-
sidering that there are not any qualified datasets to evaluate
the weakly supervised deep learning-based cloud detection
(WDCD) method, we collect a dataset based on the GaoFen-
1 multi-spectral imagery, which is one kind of typical high-
resolution RS imagery.

The collected dataset and our proposed method own good
generality. The rest of this paper is organized as follows. Sec-
tion 2 introduces our proposed WDCD method. Section 3
describes the dataset and reports the experimental results. Fi-
nally, Section 4 gives the conclusion of this paper.

2. METHODOLOGY

In this section, we give the details of our proposed WDCD
method. Section 2.1 gives the structure of our deep networks
and the learning process in the training stage. Furthermore,
how to perform the pixel-level cloud detection using the
trained deep network will be introduced in Section 2.2.

2.1. Learning deep networks under block-level supervi-
sion

With block-level labels, it is easy to build a discriminative
deep network (e.g., VGG [10]) only to classify the image
blocks as cloud or non-cloud. GAP showed that block-level
supervision can be used for object localization [8] but the
accuracy needs to be improved. Paper [9] improved the GAP
method with utilizing a two-stage-learning (TSL) method
while the networks cannot be learned in an end-to-end way.
To overcome aforementioned limitation, we proposed the
WDCD framework.

As depicted in Fig.1, the architecture of our deep net-
works is quite similar to the common convolutional neural
network (CNN) where the CNN is composed of local con-
volutional (Conv) operations and local pooling (LP) opera-
tions. The difference is that normal CNNs are designed for
classification tasks whereas we employ it under block-level
supervision to perform the cloud detection. That’s why we
replaced the GAP or fully connected layer with our proposed
GCP layer, in order to promote the representing ability of
the feature map. As displayed in Fig.1, the feature map is
performed a channel-wise convolution with the GCP layer,
by which the spatial variance will be well represented after
several iterations of network propagation. Let {(bn, yn)|n =

Fig. 2. The difference between deep networks with and with-
out local pooling pruning (LPP). It is noted that we don’t gen-
erate NCAM in the figure.

1, 2, · · · , N} denote the training cloud dataset. N is the num-
ber of image blocks, bn stands for the n-th image block, and 
yn denotes its binary label. Let Ψ = {C, G, W} denote the 
weights of the deep networks where C stands for the convo-
lutional weights, G denotes the GCP weight, and W stands 
for the cloud activation weights. For a given image block bn 
it is sent to the deep network and outputs the feature map fkn
as Eq. (1).

fkn = ϕk(bn;C) (1)

where fkn denotes the k-th channel of the last convolutional

n

layer’s output feature map, ϕ denotes the representation of 
computation in the deep networks. By global convolutional 
pooling fk per channel, we calculate the activation value of
fkn at each channel as depicted in Eq. (2).

Ok
n = fkn ⊗Gk (2)

where Ok
n denotes the activation value of fkn at the k-th chan-

nel, Gk ∈ G stands for the weights of the GCP layer at the
k-th channel, ⊗ denotes the channel-wise convolution.

Softmax-based cross-entropy loss function is taken to
learn the network Ψ = {C,G,W} specified by Eq.(3).

min
Ψ={C,G,W}

J = −
N∑

n=1

2∑
c=1

ycn · log


exp(

d∑
k=1

W c
k ·Ok

n +W c
0 )

2∑
c=1

exp(
d∑

k=1
W c

k ·Ok
n +W c

0 )


(3)

By optimizing the function in Eq.(3), the convolutional
weights C, the GCP weights G, and the cloud activation
weights W are learned simultaneously. Where W 1

k ∈ W
indicates the contribution of the feature map for cloud.
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Fig. 3. The process of computing the cloud activation maps 
(CAM) of one large RS image.

2.2. Pixel-level cloud detection using the trained deep net-
works under block-level supervision

Based on the findings [11] and our task requirement of pre-
serving precise spatial information, we prune the local pool-
ing layers from our cloud detection network when generating 
the CAM and name this operation as LPP. Extensive 
experiments tend out that LPP enhances the spatial resolution 
of the output CAM. Fig.2 depicts the difference between deep 
networks with and without LPP when generating the CAMs. 
The spatial resolution of CAM increases significantly from 
20 × 20 to 230 × 230 when we adopt the LPP strategy. It 
is noted that, the spatial resolution of generated CAMs will 
be resized to 250 × 250 so that the CAM will correspond to 
the size of the input image block. Given one image block b , 
the feature map f of the last convolutional layer can be cal-
culated by Eq. (1), and f is used to compute the activation 
value at each channel with the GCP weights G. Then we per-
form the channel-wise multiplication to f with its activation 
values. After that we adjust the value of f to the appropriate 
range with a linear normalization (LN) operation by Eq. (4).

T k =
δ(fk)

τ(fk)
× fk (4)

where T k is the modified feature map of the k-th channel; 
δ(fk) = fk ⊗Gk denotes the activation value of the k-th 
channel of the last convolutional layer; τ(fk) stands for a 
statistic value such as the average or median of fk.

Furthermore, we calculate the CAM M b of the block b by 
Eq. (5).

M b =
d∑

k=1

W 1
k × T k =

d∑
k=1

W 1
k ×

δ(fk)

τ(fk)
× fk (5)

where W 1
k , k = 1, 2, · · · , d stands for the cloud activation

weights.
Given one large RS image, it is cropped to a set of over-

lapped blocks by sliding windows. By calculating the CAM
of each block and mosaicking them together, the CAM of im-
age is obtained as depicted in Fig.3. Due to the high-quality
CAM, the binary cloud mask can be determined by an adap-
tive threshold segmentation algorithm. The visual segmenting
results are shown as Fig.4.

Fig. 4. The segmentation of CAM. (a) The original image,
(b) The corresponding ground truth map of (a), (c) The com-
puted CAM of (a), (d) The final cloud mask computed via
segmenting the CAM (c).

3. EXPERIMENTS

In this section, we report the experiments. Section 3.1 intro-
duces the detail description of the dataset, which is specifi-
cally collected for evaluating cloud detection via weakly su-
pervised deep learning. Section 3.2 reports the experimental
results.

3.1. The collected datasets

3.1.1. The training dataset with block-level labels

Given that there are no existing datasets for weakly super-
vised cloud detection like our WDCD method, we created a
large-scale block-level dataset for it using the GaoFen-1 im-
agery. The dataset includes a training part and a validation
part. The training part consists of 166,764 image blocks with
their binary label which denotes the block containing cloud
or not. Each image block is with the size of 250×250 and
166,764 image blocks are randomly cropped from 597 large
image scenes from the GaoFen-1 satellite in various regions
across China. More specifically, there are in total 79,316 im-
age blocks containing the cloud while the rest 87,448 image
blocks contain no cloud at all. With regard to training, we ran-
domly select 90% of the training part to train the deep network
while the rest 10% are used to adjust the hyper-parameters of
the deep network.

3.1.2. The testing dataset with pixel-level labels

To evaluate the cloud detection performance, we build a test-
ing dataset consisting of ten large image scenes and their
pixel-level labeled cloud masks. Specifically, three im-
ages are from ZiYuan-3 satellite while the others are from
GaoFen-1 satellite. The three large ZiYuan-3 image scenes
are specially added to verify the generalization ability of our
WDCD approach. The testing dataset is qualified to evaluate
the cloud detection performance across multi-source RS data.
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Each image in the testing dataset contains several typical land 
cover types such as cities, mountains, snow and ice, seas, 
lakes. And these images with good universality observed var-
ious locations from northeastern China to southwest China 
and even areas in southeast Asia.

3.2. The experimental results

In this section, we report quantitative detection results of 
our method as well as some baselines for evaluation of the 
cloud masks. As analyzed before, this is the first t ime that 
the weakly supervised deep learning idea is applied to cloud 
detection in RS imagery. To verify the superiority of our 
method, we design some baselines based on several methods 
designed for object detection using the weakly supervised 
deep learning idea in computer vision and RS domain.

Classify and assign (CAA) [10] uses DCNN to classify 
the image blocks as containing cloud or not. Considering the 
block as a whole, it roughly detects the cloud by assigning the 
value to all pixels inside the block based on the classification 
results. The network structure of CAM with GAP [8] is quite 
similar to CAA [10], while CAM with GAP replaces the fully 
connected layer with a global average pooling layer. After the 
training stage, CAM with GAP utilizes the activation weights 
to combine the feature map and generate the CAM, which 
is the same with our method. Paper [9] designs a method 
based on two-stage-learning (TSL) called CAM with TSL, 
which trains the convolutional weights and the cloud 
activation weights as two different stage and compute the 
CAM the same as CAM with GAP. We further evaluate the 
cloud detection performance of the cloud masks generated 
by segmenting these methods including: CAA [10], CAM 
with GAP [8], CAM with TSL [9], our proposed CAM with 
GCP and our proposed CAM with GCP+LPP. More 
specifically, several comprehensive metrics are used 
including overall accuracy (OA), Kappa, Intersection over 
Union (IOU), and F1. Table 1 shows that our proposed 
WDCD method obviously outperforms the baselines.

4. CONCLUSION

This paper proposes a new framework that can train the deep 
networks with only block-level binary labels indicating the 
image block contains cloud or not. To improve the repre-
senting ability of the feature map, we propose a new global 
pooling operation called GCP which can learn channel-wise 
convolutional weights of each channel of the feature map. 
After the iterative backward propagations, the feature map 
owns the ability to represent the region of the cloud and will 
be used to compute the CAM. Furthermore, we propose the 
LPP to improve the spatial resolution of the computed CAM. 
Through adaptively segmenting the CAM, the pixel-level 
cloud mask is obtained. With GCP and LPP, the trained deep 
networks can detect the pixel-level cloud mask. Even un-

Table 1. Metrics(%) of results by our method and the base-
lines.

F1 mIOU Kappa OA

CAA [10] 53.0 37.2 43.8 82.6
CAM with GAP [8] 73.8 59.6 70.5 94.7
CAM with TSL [9] 73.5 59.5 70.4 95.1
Our WDCD method

via CAM+GCP 78.1 64.6 75.3 95.5

Our WDCD method
via CAM+GCP+LPP 81.2 69.2 79.5 97.2

der this extremely weak supervision, the proposed WDCD
approach still achieves promising results and outperforms
the state-of-the-art methods. In general, the cloud detection
results can be utilized for many applications such as cloud
removal and shadow detection [4] and further support the
continuous cartography and wide-range environmental evalu-
ation.
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