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ABSTRACT
Digital Elevation Model (DEM),representing the height of the earth
terrain, is one of the crucial geographic information products. One of
the main data source of DEM is the airborne LiDAR point cloud with
its non-ground-reflections filtered out. Point cloud filtering in thick-
forested areas is difficult without enough ground control points when
using conventional methods. In this paper, a supervised method is
proposed to handle the problem of automatic DEM extraction with
little ground control points. The design of the method is inspired
by the successful application of the convolutional neural networks
(CNN) in the image super resolution (SR) process. First, with the
given LiDAR point cloud, the digital surface model (DSM) is resam-
pled with regular grid. Then, by learning the spatial autocorrelation
between the DSM and its corresponding DEM, a robust CNN model
is established.Finally, the DEM in thick-forested areas can be gen-
erated from the DSM with the trained model. Experimental results
at two different mountain sites in China validate the effectiveness of
the proposed method of high-precision DEM generation.

Index Terms— Digital Elevation Model (DEM), Digital Sur-
face Model (DSM), convolutional neural network (CNN), LiDAR
point cloud, DEM extraction

1. INTRODUCTION

Digital Elevation Model (DEM) is a grid-wise model which ex-
presses the height of the earth terrain in a given coordinate. DEM is
widely used in various applications, such as topographic mapping,
landslide monitoring, etc. Automatic acquisition of accurate DEM
is one of the key problems of remote sensing [1, 2].

As a new technology of active aeronautical remote sensing, the
ability of penetrating into shallow tree’s canopies makes LiDAR
point clouds a valuable data source for accurate DEM extraction[3],
especially when dealing with complex terrains, such as shallow
forested areas, coastal zones, and desert areas[4, 5, 6]. Generally,
DEM in these areas are always extracted by point cloud filtering
with assistance of accurate ground control points [7] and laborious
manual supplement. However, due to the limited number of ground
control points in thick-forested terrains, the above-mentioned meth-
ods can hardly work.

To deal with the problem of DEM retrieval in thick-forested
areas, Luo et al.[8] proposed a supervised method based on deep
neural network, where the DSM and its corresponding were decom-
posed into paired 1-dimension digital terrain signals and their la-

tent relationship were studied by a stacked autoencoder. In conse-
quence, with the trained deep neural network architecture and the
DSM data, the corresponding DEM can be retrieved automatically.
Nevertheless, since the method decomposed the DSM/DEM pairs
into 1-dimension terrain signals, which neglected the correlation in-
formation in the point cloud, the retrieved DEM results could not fit
the terrain perfectly, especially over the protrusive terrains.

Considering that the low resolution image and high resolution
image share the same low-frequency information, convolutional
neural networks are utilized to learn the nonlinear degradation re-
lationship between the high/low resolution image pairs in the task
of image super resolution. Similar to the high/low images, the
DSM and DEM are also highly relevant. Therefore, in this paper,
we rethought the problem of DEM extraction from the point of
view of correlation learning rather than focusing on directly non-
ground-reflection removal from the LiDAR point cloud and propose
a Convolutional neural network for DEM Extraction (CDE). More
precisely, the main contributions of this work are listed as follows:

1. a simple but effective method, containing a convolutional neu-
ral network, is designed to extract DEM from DSM.

2. The proposed method CDE takes the spatial correlation be-
tween DSM and DEM into consideration, which outperforms the
traditional method in thick-forested areas.

2. METHODOLOGY

In this section, the data preprocessing procedure was introduced, the
proposed model was detailed and the utilized loss function was pre-
sented.

2.1. Data Preprocessing

The proposed method CDE aims at thick-forested terrains, so the
accident cases of barren land and buildings in LiDAR point clouds
are unexpected and need to be removed from the training samples.
Therefore, a data preprocessing procedure is added to select suitable
training samples.

As an apriori assumption, the fluctuations of DSM and DEM
in thick-forested terrains are extremely similar and the deviation be-
tween the DSM and the DEM floats within a certain range. However,
the DSMs and DEMs over the barren lands and the residential areas
do not follow this assumption. The DSM and the DEM share the
same elevation over barren lands and have constant deviations over
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Fig. 1. The flowchart of the proposed CNN-based method

flat building roofs. ON the contrary, in thick-forested areas, the DSM
contains lots of sharp features and have variable elevation deviation
compared with the corresponding DEM.

Considering the above-mentioned priori, a moving-window
based optimal sample selection method is applied to filter out barren
land and buildings from the LiDAR point clouds to obtain training
data. The window size is set as 20× 20 pixels, and the moving
speed is set as 4 pixels in this paper. The DSM samples are re-
sampled from the selected LiDAR point clouds with regular grid.
Meanwhile, with the assistance of given ground control points, the
high-precision DEM labels are manually edited at some reachable
locations, where measurements can be implemented. In addition, to
filter out the LiDAR point cloud over barren lands and residential
areas, the following two assumptions are followed:

a. To filter out barren land, a DSM/DEM deviation matrix is
generated by subtracting DEM from its DSM counterpart.If the
median DSM/DEM deviation within the moving-window is smaller
than 0.5m, the area is judged as barren land and the DSM and DEM
pairs located within the window is removed from the training data.

b. If half of the adjacent deviation values within the window is
lower than 0.1m, the area is considered as containing building roofs
and the corresponding DSM and DEM pairs are removed from point
cloud data.

It needs to be mentioned that, theoretically, the elevation differ-
ence of DSM and DEM in barren land should be 0, as well as the
elevation deviation of adjacent positions in building areas. In this
paper, to avoid the error brought by original LiDAR data acquisition
and point cloud regularization, the thresholds of filtering barren land
and buildings are set as 0.5m and 0.1m rather than 0.

After the above-mentioned data preprocessing step, a much bet-
ter training dataset is established to serve the subsequent model train-
ing.

2.2. Model Design

The flowchart of the proposed CDE method is illustrated in Fig.1.
The convolution layers used for DEM extraction is modified from

those in image super-resolution models. Generally, a 7-layers CNN
structure equipped with PReLU[12] is designed to learn the spatial
correlation between DSM and DEM pairs. On one hand, the spatial
correlation between DSM and DEM is relative simple compared to
that between HR images and LR images in image super-resolution
tasks. Therefore, too deep structure will result in overfitting problem
(i.e, 20-layers VDSR[9]) and is unnecessary in the DEM prediction
task. On the other hand, too shallow structures (i.e, 3-layers SR-
CNN) cannot fully represent the features. Thus, we design a 7-layers
model that balance the model complexity and the ability of feature
representation.

As shown in Table 1, the model is composed of three parts,
namely, image-to-feature transform, feature extraction, and terrain
reconstruc-tion. The image-to-feature transform part contains a
single convolution operation, followed by batch normalization and
PReLU[12]. This part transforms DSM samples into feature domain
for further feature ex-traction. In the feature extraction parts, five
tandem convolution units are stacked to learn the spatial correla-
tion between the DSM and DEM pairs. It should be noted that the
up-sampling operations are not in-cluded in the modified model,
since the DSM and the DEM share the same size. After the feature
extraction, a convolution operation trans-forms the features back to
the image domain and reconstruct the terrain. With the above three
parts, a predicted DEM can be reconstructed from the model.

Table 1. Parameter Details of the Proposed Method

Layer Structure Details

Image-to-feature transform Convolution kernel size=3
Batchnorm

PReLU activation function
Feature extraction 5 conv units kernel size=3

PReLU activation function
Terrain reconstruction Convolution kernel size=3
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2.3. Loss Function

The root-mean-square error (RMSE), which can express both the
systematic and the stochastic characteristics of the data, is selected
as the loss function to evaluate the model performance rather than the
Euclidean distance used in Luo et al.[8]. The formulation of RMSE
is denoted as (1).

RMSE =

√∑n
i=1

1
width×height

∥∥xi − x
′
i

∥∥2
n

(1)

Where xi denotes the ground truth DEM, and x
′
i denotes the

predicted DEM.

3. EXPERIMENTS
3.1. Data and Settings

In this paper, two airborne LiDAR point cloud datasets, acquired
over the thick-forested areas in Fujian province, China and Hainan
province China, were used for experiments. The DEMs with 5m
spatial resolution were used as the ground truth. To test the per-
formance of the proposed model, accurate artificial ground control
points in both of the two test areas were provided for verification. As
shown in Fig.2, the two datasets were both randomly divided into in-
dependent training set and testing set with 9:1 ratio.

(a) Fujian Dataset (b) Hainan Dataset

Fig. 2. Two datasets of thick-forested areas

All the training process was implemented on Caffe Library [11].
During the training process, the initial learning rate was set to 0.01,
and the batch size was 4. After 10,000 iterations, the learning rate de-
creased to 0.008. The training process ended at the iteration 100,000.
To train the model, the DSM/DEM pairs were normalized and the
symmetric padding was utilized to offset the convolution-caused in-
formation loss and the extra-introduced mistakes.

3.2. Results and Analysis

This section evaluated the performance of CDE. To the best of
our knowledge, CNN-based methods have rarely been employed
for DEM extraction in thick-forested terrains. Therefore, spatial
interpolation method and the most related work [8] were taken as
comparison methods.

In order to show the effects of the proposed method intuitively,
the DEM extraction results were visualized with a commercial soft-
ware named LiDAR-Suite. This software has been widely used for
generating interpolation DEM results from original DSM data due
to its superior filtering performance.

As shown in Fig.3, the Fig.3(a) and Fig.3(d) were spatial inter-
polation results of Fujian and Hainan datasets. The spatial inter-
polation method filtered the DEM out from the original DSM with
assistance of some ground control points, and then interpolated it by
the traditional inverse distance weight interpolation method. It is ob-
vious that the results of the interpolation-based method were like a
combination of numerous finely shredded planes and could not meet
the visual requirements. Moreover, most of the key information at

the mountain peaks and ridge lines were lost during the interpolation
process, which heavily harmed the global reconstruction accuracy.

Table 2. Quantitative evaluation of the DEM extraction results (me-
ter)

Experiment 1: Fujian Dataset
Method DNN method [8] CDE
MAE 5.6924 4.8718
AVE 0.7289 0.6969

RMSE 0.6278 0.5077
Experiment 2: Hainan Dataset

MAE 5.0431 5.0736
AVE 0.9575 0.9045

RMSE 0.7358 0.7454

Compared to the interpolation results, as depicted in Fig.3(b)
and Fig.3(e), the DNN-based method could improve the results to
a large extent. The slope of DNN-based result was smoother, and
reconstruction results at ridge lines were also closer to the real ter-
rain. However, terrain protrusions in the two mountain areas were
still difficult to be correctly reconstructed, such as the ellipse ar-
eas in Fig.3(b) and Fig.3(e). Besides, from the rectangle regions
in Fig.3(b) and Fig.3(e), it could be seen that there were still some
small retrieval mistakes on the mountain peaks. Furthermore, as the
terrain of Hainan data was sharper than Fujian data, the mistakes
became more obvious on some sudden scarps.

Fig.3(c) and Fig.3(f) displayed the results of CDE. Gener-
ally,CDE reached a better visualization results compared to its com-
petitors. Since the proposed method resolved the problem from the
idea of image SR process, which considered the spatial correlation
between the DSM/DEM pairs, the results of CDE were closer to the
real terrain, especially at finely terrain protrusions. More precisely,
compared to the DNN-based method, this method obtained much
more accurate results and at ridge lines and the results on mountain
peaks were also sharper. For example, it could be seen from the
ellipse area of the Fujian dataset that the DNN-based method could
not fit the terrain well, while the result of CDE was much better.
Meanwhile, the results of rectangle regions in Fig.3(c) and Fig.3(f)
demonstrated that CDE extracted the terrain information better and
was less likely to make mistakes.

To test the superiority of the proposed model, quantitative results
were also taken into analysis. The maximum error (MAE), average
error (AVE), and root-mean-square error(RMSE) were selected as
evaluation criterion. The evaluation results were depicted in Table 2.

According to Table 2, CDE outperformed DNN-based method
with a large margin on the Fujian test area while performed similar
on the Hainan test area. Combining the visualization results in Fig.3,
the experimental results were explicable. Since the reconstruction
superiority of CDE mainly lay in complex protrusions, while the ter-
rain of Hainan dataset was relatively smoother and had little protru-
sions, therefore, the difference of the two methods at Hainan dataset
were not as obvious as the results in Fujian dataset.

Concretely, the MAE of CDE were namely 4.8718m and
5.0736m at the two datasets, which was equal to the resolution
of the LiDAR point clouds.The results were acceptable considering
the complexity of the thick-forested terrains. Besides, the AVE and
RMSE were under 1m with both of the two sets of the test data,
which indicated that the reconstructed DEM can fit the real terrain
well.
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(a) interpolation result (b) DNN-based result (c) CDE result

(d) interpolation result (e) DNN-based result (f) CDE result

Fig. 3. Visualization of the DEM Extraction Results: (a)(b)(c) were the results of Fujian dataset; (d)(e)(f) were the results of Hainan dataset

4. CONCLUSION
In previous research works, DEM extraction in thick-forested areas
highly relied on spatial interpolation and manual supplement, which
needed numerous ground points as assistance. To address the prob-
lem and improve the automation of DEM extraction over such ter-
rains, a novel CNN-based method was proposed in this paper.The
proposed solves the problem of DEM extraction in thick-forested
areas within the idea of image super resolution, which works well
without the need of ground control points.

Future research will focus on accuracy improvement and the de-
sign of more comprehensive and robust models for DEM extraction
from LiDAR point clouds.
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