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Band-Independent Encoder–Decoder Network for
Pan-Sharpening of Remote Sensing Images

Chi Liu , Yongjun Zhang , Shugen Wang, Mingwei Sun , Yangjun Ou, Yi Wan, and Xiu Liu

Abstract— Pan-sharpening is a fundamental task for remote
sensing image processing. It aims at creating a high-resolution
multispectral (HRMS) image from a multispectral (MS) image
and a panchromatic (PAN) image. In this article, a new band-
independent encoder–decoder network is proposed for pan-
sharpening. The network takes a single band of the MS (BMS)
image, the PAN image, and the low-resolution PAN (LRPAN)
image as inputs. The output of the network is the corresponding
band of high-resolution MS (HRBMS) image. In this way,
the network can process MS images with any number of bands.
The overall structure of the network consists of two encoder–
decoder modules at low-resolution and high-resolution, respec-
tively. An auxiliary LRPAN image is used to speed up the training
and improve the performance. The partly shared network and
hierarchical structure for low-resolution and high-resolution
enable a better fusion of features extracted from different scales.
With a fast fine-tuning strategy, the trained model can be
applied to images from different sensors. Experiments performed
on different data sets demonstrate that the proposed method
outperforms several state-of-the-art pan-sharpening methods in
both visual appearance and objective indexes, and the single-band
evaluation results further verify the superiority of the proposed
method.

Index Terms— Band-independent, deep learning, encoder–
decoder, pan-sharpening.

I. INTRODUCTION

PAN-SHARPENING is a typical application of image
fusion in the remote sensing field. It fuses low spatial res-

olution multispectral (MS) images and high spatial resolution
panchromatic (PAN) images to construct high spatial resolu-
tion MS (HRMS) images. As a preprocessing for applications
like image classification [1], object detection [2], and change
detection [3], pan-sharpening provides synthetic images with
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both high spectral and spatial quality. With the emergence of
newly launched satellite sensors, the problem becomes more
complicated for the diverseness in spectral characteristics and
spatial resolutions. Various algorithms have been proposed to
address this problem.

Traditional approaches are component-substitution (CS)-
based methods and multiresolution analysis (MRA)-based
methods. The representative CS algorithms are principal com-
ponent analysis (PCA) [4], intensity hue saturation (IHS)
transform [5], and Gram–Schmidt (GS) sharpening [6]. Due
to the spectral differences between the MS image and the
PAN image, CS methods often encounter problems with spec-
tral preservation and suffer from spectral distortions. Lately
proposed CS methods concentrate on improving the spectral
quality, strategies like adaptive coefficient calculation [7],
partial replacement [8], local coefficient calculation [9] are
used to reduce the spectral distortions, but the trade-off
between spectral preservation and details injection remains
a problem. The ideas of MRA methods are more straight-
forward than the CS methods. Details are extracted from the
PAN image and then injected into the upsampled MS image.
To obtain multiscale details, multiresolution analyses such
as Laplacian pyramid [10], wavelet transform [11], curvelets
transform [12], and non-subsampled contourlets transform [13]
are used. As the quality of the output is sensitive to the details
injected, insufficient details injection leads to blurring effects
and excessive details injection results in artifacts and spectral
distortions.

The third series of approaches is the model-based optimiza-
tion (MBO) approaches. The main ideas of these approaches
are to build models according to the relationship among the
MS image, the PAN image, and the desired HRMS image.
A priori constraints or different regularizations are formu-
lated to solve the ill-posed inverse problem. Representative
algorithms are sparsity regularization [14]–[17], Bayesian pos-
terior probability [18], [19], variational models [20]–[24],
and Markov random fields [25]. MBO methods are highly
dependent on the regularization terms, sometimes the solution
is unstable, and the time complexity of the MBO methods is
much higher than many other algorithms.

There are also approaches based on geostatistics the-
ory [26]–[28]. These approaches assume that when downsam-
pling the pan-sharpened HRMS image to the MS resolution,
the result should be identical to the MS image. This assump-
tion makes the geostatistics-based approaches have a sig-
nificant advantage in preserving the spectral characteristics
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of the MS image. However, the regression models used by
geostatistics-based approaches are linear, and it is difficult for
the models to formulate the complex pan-sharpening process
when the spectral range of the MS bands is not fully covered
by that of the PAN image.

Recently, deep learning has been introduced to the field of
remote sensing image processing tasks, several pan-sharpening
networks [29]–[40] have been designed, and their performance
has shown great potential. The high nonlinearity of the con-
volutional neural network makes it practical to deal with
the pan-sharpening problem. However, most of the existing
networks are not customized for the pan-sharpening task.
The common cases are adopting networks for other computer
vision tasks like image super-resolution [41], [42] or semantic
segmentation [43]–[46], the characteristics of the MS image
and the PAN image are ignored. What is more, the networks
can only process MS images composed of specified bands.
Different models have to be trained for images with a different
number of bands.

In this article, probing into the problems in pan-sharpening,
we propose a band-independent encoder–decoder network for
pan-sharpening. The main contributions of this article lie in:
1) inputs of the network are a single band of the MS (BMS)
image and the PAN image, which makes the network robust to
spectral difference and permits the network to handle images
with any number of bands; 2) an auxiliary low-resolution
PAN (LRPAN) image is used to speed up the training and
to improve the performance; 3) the partly shared network and
hierarchical structure enable a better fusion of features from
different scales; and 4) single-band evaluation and comparison
of the pan-sharpening results.

The remainder of this article is organized as follows.
Section II briefly introduces the background knowledge of the
encoder–decoder network and the existing deep learning-based
pan-sharpening methods. A detailed description of the pro-
posed network is presented in Section III. The experimen-
tal results and assessments are presented and discussed in
Section IV. Finally, discussion and conclusion are given in
Section V.

II. RELATED WORK

A. Encoder–Decoder Network

The encoder–decoder network was first proposed by Hin-
ton and Salakhutdinov [47] in 2006 for data reduction.
High-dimensional data contain a lot of redundant informa-
tion and noise. By training a multilayer “encoder” network,
it can be converted to low-dimensional codes that only
keep the most critical information, and a similar multilayer
“decoder” network can recover the data from the codes. With
a well-trained encoder and decoder network, the conversion
between high-dimensional data and low-dimensional data is
accomplished.

With the rise of deep learning, the encoder–decoder net-
works have been successfully applied to many applications.
In the field of image processing, the encoder–decoder net-
works are associated with the image resolution and have
a broader meaning. Typically, an encoder–decoder network

contains an encoder module that gradually reduces the fea-
ture maps and captures higher semantic information and a
decoder module that gradually recovers the low-resolution
encoded feature maps to full input resolution feature maps.
The encoder–decoder networks have been widely used in
computer vision tasks including human pose estimation [48],
object detection [49], [50], semantic segmentation [43]–[46],
and single image super-resolution [41], [42], [51]–[53].

An extensively researched problem with the encoder–
decoder network in image processing task is the preservation
of details. The boundary information lost in the encoder
module is difficult to be recovered in the decoder module.
To overcome this problem, many efforts have been made.
In [50], each decoder upsampled input feature maps and
added them to the corresponding encoded feature maps to
produce the input of the next decoder. In [54], the locations
of the maximum feature value in each pooling window was
memorized for each encoder feature map, and the decoder
network upsampled its input feature maps using the mem-
orized max-pooling indices from the corresponding encoded
feature maps. In [55], a U-shaped structure network (U-Net)
was proposed, the upsampled feature maps in the decoder
module were concatenated with the corresponding encoded
feature maps. The U-Net is simple, yet effective, and it
has been adopted and improved by many researchers [56]–
[59]. Our proposed network is also based on the idea
of U-Net.

B. Deep Learning-Based Pan-Sharpening

The first time deep learning used for pan-sharpening was
in [29], modified sparse denoising auto-encoder (MSDA) net-
work was trained using the low-resolution and high-resolution
PAN image patches, and then used to predict HRMS images
from LRMS images. In [30], a similar network was proposed.
In [31], a deep metric learning method was proposed to
learn a refined geometric multimanifold neighbor embedding
via multiple nonlinear deep neural networks, and by the
assumption that MS patches and PAN patches formed the
same geometric manifolds in two distinct spaces, the high-
resolution MS image patches were estimated. These methods
transform the pan-sharpening task into image superresolution,
and only the PAN images are involved in the training. The
spectral characteristics of the LRMS image are ignored, and
the outputs of the networks often encounter problems with
spectral quality.

Other methods take the MS image and the PAN image
together as the inputs of the network. In the preprocessing
step, these methods upsample the MS image and concate-
nate it with the PAN image to compose a synthetic image.
Masi et al. [32] designed a shallow network with only three
convolutional layers for pan-sharpening. Scarpa et al. [33]
improved architectures of [32], they used a deeper net-
work with residual-learning and added a target-adaptive
tuning phase, after an efficient fine-tuning, significant per-
formance could be achieved even for across sensor images.
Wei et al. [34] used a 11-layer deep residual network for pan-
sharpening, and they adopted convolution kernels of larger size
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Fig. 1. Structure of the proposed network. The low-resolution
encoder–decoder module is inside the red dotted area, and the high-resolution
encoder–decoder module is in the blue dotted area.

for better performance. In [35], a two-stream network was
proposed, convolutional kernels of different sizes were used
to extract features of different scales. Yao et al. [36] built a
pan-sharpening model employing the structure of U-Net. How-
ever, these methods process the MS image and the PAN image
in the same way and ignore their individual characteristics.
In addition, the upsampling operation in preprocessing step
increases the quantity of computation.

In [37], a bidirectional pyramid structure was proposed
to process the MS image and the PAN image separately
following the general idea of MRA. Multilevel details were
extracted from the PAN image and injected into the MS
image to reconstruct the pan-sharpened image. Similarly,
in [38], a details injection network was proposed for pan-
sharpening. However, in both the networks, two streams of
the networks are connected only using an adding operation,
which makes it difficult for the networks to explore the
relationship between the MS image and the PAN image.
Yang et al. [39] trained network parameters in the high-pass
filtering domain rather than the image domain to preserve
the spatial structure. Shao and Cai [40] extracted feature maps
from the MS image and the PAN image separately and
then concatenated them to reconstruct the details. Never-
theless, these two networks have not considered multiscale
analysis, so the adaptability of the networks remains to be
explored.

Another common drawback of existing networks for
pan-sharpening is that the number of bands for the MS image
has to be predefined. The input of the networks is related to
the number of bands for the MS image, so are the network
structures (mainly the dimension of convolutional kernels).
Different models have to be trained for MS images with a
different number of bands, and the applicability of the models
is limited.

III. METHODOLOGY

In this section, we will describe the design methodology
of the proposed network. Fig. 1 shows the overall struc-
ture of the proposed network. The network consists of a
low-resolution encoder–decoder module and a high-resolution

encoder–decoder module. The low-resolution encoder–decoder
module copes with the BMS image and the LRPAN image
to obtain a low-resolution feature map. The high-resolution
encoder–decoder module takes the PAN image and the output
of the low-resolution module as inputs to reconstruct the band
of high-resolution MS (HRBMS).

A. Single-Band Inputs

To the best of our knowledge, all the existing
pan-sharpening networks take the multiband MS image
and the PAN image as inputs. Although the networks can
output the multiband pan-sharpened image end to end, they
have a limited range of applications. First, the networks are
sensitive to spectral difference, and the model trained on the
image composed of certain bands is difficult to be fine-tuned
for images composed of other bands. Another limitation of
existing networks is that the number of bands for the MS
image is fixed when the bands of the input are not matched
with the model, the network cannot work. Therefore, different
models have to be trained for images with a different number
of bands.

For most satellite sensors, the spectral range of the MS
bands are nonoverlapped or little overlapped, making the
relationship among the MS bands ambiguity. Usually, this
relationship is connected with the PAN image based on the
assumption that the PAN image can be simulated by a linear
combination of the MS bands. However, the complexity of
ground objects and different spectral responses of sensors
make this relationship unreliable and unstable. Thus, many
traditional approaches [10]–[12] process the MS image band
by band.

Considering the limitations of multiband inputs, we propose
our band-independent network. The inputs of the network
are single-band images, and the output of the network is the
corresponding HRBMS image. Multiscale details and spectral
information are extracted from the PAN image and the BMS
image, respectively, to reconstruct the HRBMS image. In the
training, each BMS image is used as a training sample,
so fewer training image pairs are needed. Different bands of
the MS image share the same network, making the network
robust to spectral characteristics of the inputs and work for
images from more satellite sensors. Moreover, the band-
independent property permits the trained model to predict MS
images with any number of bands.

B. Auxiliary LRPAN Image

The resolution of the PAN image is four times that of the
MS image, making it difficult for the network to process them
together. So in most of the existing networks, the MS image
is upsampled to the resolution of the PAN image so that they
can be processed synchronously. However, the upsampling
operation does not improve the resolution of the MS image
essentially, rudely connecting the MS image with the PAN
image in this way not only brings in artifacts but also increases
computational cost.

When adopting the encoder–decoder framework for pan-
sharpening, to get feature maps of the same scale, the network
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Fig. 2. Different encoders for the PAN/LRPAN image. (a) Proposed encoder.
(b) Shares the same structure with (a) but only takes the PAN image as input.
(c) Takes the PAN image as input and outputs similar features with (a).

for the PAN image has to be deeper than the network for
the MS image, which leads to an increase in network depth.
Moreover, when feature maps of the PAN image and the MS
image come from different depths of the network, it becomes
difficult for the network to converge. To avoid these problems,
in the proposed network, we add an LRPAN as input to reduce
the depth of the network and speed up the training. The same
encoder network is used by the PAN image and the LRPAN
image, which not only reduces the size of our pan-sharpening
network but also makes the network able to extract multiscale
details and effective for satellite images of different spatial
resolutions. In addition, the LRPAN image can serve as the
bridge between the MS image and the PAN image to help the
network converge quickly.

A comparison between networks with and without the
LRPAN image is shown in Fig. 2. Fig. 2(a) is the structure of
the proposed encoder for PAN/LRPAN image, by taking the
PAN image and the LRPAN image together as inputs, with
a shallow network, feature maps at five different scales are
extracted. The network in Fig. 2(b) shares the same network
with Fig. 2(a), but only takes the PAN image as input, and only
extracts feature maps at three scales. The network in Fig. 2(c)
takes the PAN as input and extracts feature maps at five
scales; however, it is much deeper than the proposed network.
The performance comparison between the networks will be
discussed in Section IV in detail.

C. Hierarchical Network

To take full use of the LRPAN image, a hierarchical
structure is adopted. As shown in Fig. 1, the proposed network

consists of a low-resolution module and a high-resolution
module. In the low-resolution module, the MS image and
the LRPAN image are encoded separately and then decoded
together into a fusion feature map at the resolution of the
MS image. In the high-resolution module, the PAN image is
encoded into multiscale feature maps and then decoded with
the fusion feature map from the low-resolution module. Since
the LRPAN image is of the same resolution with the MS
image, it helps the network in the low-resolution module to
better preserve the spectral characteristics of the MS image.
The participant of the LRPAN image is also beneficial for
the fusion of the low-resolution feature maps and the encoded
PAN feature maps.

To get the multilevel expression of the input MS image,
we adopt the first six layers of the VGG16 [60] as an encoder
network for the MS image. Some modifications have been
made for our specific task. Since the input of the MS encoder
network is a single-band image, the kernel dimension of
the first convolutional layer is changed to 1. The residual
learning [61] solves the gradient vanishing problem and learns
the residual between the input and output, which is especially
suitable for the pan-sharpening task, so we add skip connec-
tions [61] to all the convolutional layers. The outputs of the
MS encoder network are feature maps at different scales whose
number of channels are 64, 128, and 256, respectively. The
encoder network for the PAN image and the LRPAN image
is similar to that of the MS image. Since the feature maps
of the PAN image and the LRPAN image concentrate on
image details which degrade dramatically after downsampling,
there is no need to double the number of channels for the
feature maps after each downsampling layer, so the number
of channels for the output feature maps is fixed to 64 in
the PAN/LRPAN encoder network. Using a fixed number of
channels also largely reduces the memory cost of the network.

The encoded MS feature maps are concatenated with the
LRPAN feature maps, and then two convolutional layers are
used to fuse the feature maps, after which an upsampling layer
is used to upsample the feature maps. Like the U-Net, each
time the feature maps are upsampled, they are concatenated
with the encoded feature maps at the same scale. The output
of the low-resolution decoder is a 64-channel feature map
which is of the same resolution with the input MS image.
This together with the encoded PAN feature maps is used as
the inputs of the high-resolution decoder. The main structure
of the high-resolution decoder is similar to the low-resolution
one. The output of the high-resolution decoder is a single-band
image, i.e., the desired HRBMS.

D. Objective Function

The proposed network is an image generative network [62],
which aims at producing an image as similar to the target
image as possible. There are many objective functions to
choose from, such as content loss [62], perceptual loss [63],
and adversarial loss [64]. Among the objective functions,
the perceptual loss and adversarial loss are complicated to
be calculated, additional networks are introduced for loss
calculation. So, these two loss functions are more suitable
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Algorithm 1 Network Training
Input: training samples, training epochs
Output: trained model

1 Initialization: Set learning rate, training epochs;
2 for n = 1, …, nEpochs do
3 for m = 1, …, nSamples do
4 Get multiscale MS feature maps

�ms = {ψ1
ms,ψ

2
ms,ψ

3
ms} from the BMS image

using the MS encoder;
5 Get multiscale LRPAN feature maps

�lrpan = {ψ1
lrpan , ψ

2
lrpan , ψ

3
lrpan} from the LRPAN

image using the PAN encoder;
6 Decode �ms and �lrpan into low-resolution feature

map �lr using the low-resolution decoder;
7 Get multiscale PAN feature maps

�pan = {ψ1
pan, ψ

2
pan, ψ

3
pan} from the PAN image

using the PAN encoder;
8 Decode �lr and �pan using the high-resolution

decoder to get the HRBMS;
9 Calculate the loss between the output HRBMS and

the ground truth;
10 Back propagation and update the network

parameters;

for high-level computer vision task but inefficient for pan-
sharpening. The content loss is more basic and straightforward
in calculation, and the common ones are �1-loss and �2-loss.
�2-loss is sensitive to significant errors and tends to produce
smooth images, so we use the �1-loss, which is efficient and
edge-sensitive as our objective function

loss = 1

w ∗ h

w∑

i=1

h∑

j=1

‖ I(i, j)− G(i, j) ‖1 (1)

where i and j are the pixel indexes, w and h are the width
and height of the image, I is the output HRBMS of the
network, G is the ground truth (the desired HRBMS image),
and ‖ · ‖1 is the absolute value function. For each BMS, a loss
is calculated and used to update network parameters. Training
is carried out by optimizing the objective function using Adam
optimization algorithm [65] based on back propagation [66].
The training process of the proposed network is summarized
in Algorithm 1.

IV. EXPERIMENTS

A. Experimental Setup

In the proposed network, each BMS image can be used as
a training sample, so much fewer image patches are needed.
The training set is composed of 1000 GeoEye-1 (GE1) image
patches from six GE1 images, 800 GaoFen-2 (GF2) image
patches from four GF2 images and 400 WorldView (WV)
image patches from three WV images. The validation set
and test set are both composed of 200 GE1 image patches,
200 GF2 image patches, and 50 WV image patches. It should
be noted that since our network takes the BMS as input,

Fig. 3. Loss curves of the GE1 training set and the validation set.

the actual number of samples for the network is equal to the
product of the number of image patches and the number of
bands in the MS image. Following Wald’s protocol, spatially
degraded images are used as inputs, and the original MS
images are used as the reference images. For full-resolution
evaluation, other 150 GE1 image patches, 200 GF2 image
patches, and 80 WV image patches are prepared. The patch
sizes of the MS image are 100 × 100 pixels for the degraded
experiments and 200 × 200 pixels for the full-resolution
experiments.

Besides our proposed method, seven state-of-the-
art pan-sharpening methods are used for comparison,
i.e., BDSD [67], MMP [68], MTF-GLP [10], GLP-
SEGM [69], PNN [33], MSDCNN [35], and BDPN [37].
Among them, BDSD is a well-known CS-based method;
MMP is a creative approach which is a combination of the CS
method and the MBO method; MTF-GLP and GLP-SEGM
are MRA-based methods which achieve state-of-the-art
performance; the other three methods (i.e., PNN, MSDCNN,
and BDPN) are deep learning-based approaches mentioned in
Section II-B. To make a comprehensive assessment, test results
of different methods are evaluated by a series of indexes,
both at reduced-resolution and full-resolution. Six indexes
are chosen for reduced-resolution evaluation, i.e., correlation
coefficient (CC), relative dimensionless global error in
synthesis (ERGAS) [70], root-mean-square error (RMSE),
spectral angle mapper (SAM) [71], universal image quality
index (Q2n) [72], and structural similarity index (SSIM) [73].
Three indexes are chosen for full-resolution evaluation,
i.e., spectral distortion index (Dλ), spatial distortion
index (Ds ), quality with no reference index (QNR) [74].

B. Training Details

Since training a model with all the training data took more
time, we trained the model using only the GE1 training set,
and then fine-tuned the model on the GF2 training set and
WV training set for GF2 image and WV image, respectively.
We selected the GE1 training set because it has the largest
number of training samples, and the resolution of GE1 image
(0.5 m for the PAN image) falls in between the resolution
of GF2 image (1.0 m for the PAN image) and WV image
(0.5/0.31 for the WV2/WV3 PAN image). Impressive results
have been achieved in this way, and the detailed results are
given in Section IV-D.
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Fig. 4. Loss curves of each band using different training sets. The training sets of (a)–(d) are images from all bands, images from a single band, images
from b/g/nir band and images from r/g/b band, respectively. (e) and (f) Loss curves when fine-tuning the model of (c) and (d) on images from all bands,
respectively.

In training, the initial learning rate was set to
1.0 × 10−4; the learning rate descent factor was set to
0.8 every 100 epochs. The model converged after about
600 epochs, which took about 6 hours. In the fine-tuning
stage, the learning rate was set to 1.0 × 10−5, the model was
fine-tuned on the GF2 training set and WV training set for 5
epochs, respectively, which took about 5 min. The batch size
for training and fine-tuning were 12. The training patches
were randomly clipped to 64 × 64 and 256 × 256 pixels for
MS images and PAN images, respectively, before being put
into the network.

The loss curves of the training set and the validation set
are shown in Fig. 3. Since the validation set is a com-
position of images from different sensors, its loss curve

is not as stable as the training set. However, the over-
all trend of the loss curves is similar. It means that
even the model is trained only on GE1 image patches,
and its performance on image patches from other sen-
sors improve. This verifies the robustness of the proposed
network.

C. Ablation Study

To demonstrate the band-independent property of the net-
work, we grouped the images by the band and used different
band groups as training sets. First, we trained the network
with images from all bands, at the same time, the loss curves
of every single band were recorded, and the result is shown
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Fig. 5. Loss curves of networks with different structures. (a) Plots of the loss curves of networks with different encoders for the PAN/LRPAN image. (b) Plots
of the loss curves of the networks with and without skip connections.

in Fig. 4(a). Though the losses of each band converge at
different values, all bands decline synchronously and converge
at about 600 epoch. This demonstrates the band-independent
property of the network to some degree. However, the losses of
each band are different, especially the loss of the near-infrared
band is much heavier than the other three bands. It is doubtful
whether the network has achieved its best performance on each
band. So, we added another experiment which used images
from a single band as the training set and trained the network.
For each of the R, G, B, and NIR bands, a model was trained
and the loss curve was recorded. The four loss curves are
plotted in Fig. 4(b). It can be seen that the loss curves are
almost the same as that in Fig. 4(a), which demonstrates
that images from different bands are independent and can be
trained together.

Also, we trained the network with images from three bands
and used images from the remaining band as a validation data
set. Specifically, two models were trained, one was trained
on images from the green, blue, and near-infrared bands, and
the other one was trained on images from the red, green, and
blue bands. The loss curves are shown in Fig. 4(c) and (d),
respectively. It can be seen that losses of the bands used for
training are similar to that in Fig. 4(b), which further verifies
the band-independent property. However, for the bands not
involved in the training (the validation band), the losses are
not as well as that in Fig. 4(b). The loss curve of the red band
in Fig. 4(c) converges at the 200 epoch, and its final loss is
heavier than that in Fig. 4(b), which means the network does
not achieve its best performance on the red band. The loss
curve of the near-infrared band in Fig. 4(d) does not converge,
and the loss is much heavier than that in Fig. 4(b). The poor
performance on the validation data sets is mainly caused by the
spectral characteristics of different bands. To further explore
the network’s ability to learn spectral characteristics, we fine-
tuned the model with images from all bands, and the loss
curves are shown in Fig. 4(e) and (f). In both the figures,
the losses of the three bands which have been trained hardly
change; but for the bands not involved in the training, the loss
curves drop rapidly and converge to a value similar to that
in Fig. 4(a) after about 50 epochs. This demonstrates the good
adaptability of the network, and that is why the trained model

can be used to process images from other sensors with a brief
fine-tuning.

To verify the effectiveness of the LRPAN image, we trained
networks without the LRPAN image and compared them with
the proposed network. To make a fair comparison, the struc-
tures of the networks are similar except for the encoder
for the PAN image. The compared networks ED_NLR and
ED_NLRD are obtained by replacing the encoder for the
PAN/LRPAN image with the encoders introduce in Fig. 2(b)
and (c), respectively. Since the PAN encoder in ED_NLR
outputs only three scale features, features of the PAN image
did not participate in the low-resolution module in ED_NLR.
The loss curves of the networks on GE1 training set are shown
in Fig. 5(a), it can be seen that the proposed network converges
most quickly and achieves the minimum loss. The ED_NLR
also converges quickly; however, its final loss is heavier than
the proposed network, and this verifies that the LRPAN image
helps to improve the performance of the network. We think
the reason is that it is difficult for the low-resolution module
to extract useful information without the LRPAN image.
The final loss of the ED_NLRD is close to the proposed
network; however, it converges much slower than the other
two networks, and this is mainly caused by its deep network
structure.

Another experiment we do is to explore the impact of
the skip connections. We removed all the skip connections
in the network to obtain a comparison network which we
called ED_NRes. Since the skip connections do not add any
parameters to the network, the ED_NRes has exactly the
same number of parameters with the proposed network. The
loss curve of the ED_NRes on GE1 training set is shown
in Fig. 5(b). For ease of comparison, the loss curve of the
proposed network is also plotted. It can be seen that the two
loss curves are almost overlapped, which shows that the skip
connections have not helped much in the proposed network.
We think the reason might be that the skip connection is
effective for vanishing gradients problem in deep networks,
but the proposed network is relatively shallow. Since the skip
connection is a common technique, and it does not cause a
negative impact on the network, we still add skip connections
to our network.
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TABLE I

OBJECTIVE PERFORMANCE OF THE PAN-SHARPENING METHODS ON GE1 TEST SET

Fig. 6. Comparison of pan-sharpening results obtained by different methods (downsampled GE1 image). (a) Low-resolution MS image. (b) PAN image.
(c)–(j) Pan-sharpening results of BDSD, MMP, MTF-GLP, GLP-SEGM, PNN, MSDCNN, BDPN, and the proposed method. (k) Reference image.

D. Evaluation on the Test Set

In this section, we compare the performance of different
methods on the test sets. Objective indexes are listed in tables,
with the best result for each index shown in boldface. For
visual comparison, sample image patches are displayed at
reduced resolution and full resolution. All the images are
rendered by ArcGIS Desktop [75] with default parameters;
for the MS images, the red, green, and blue bands (band 3,
2, 1 for GE1 and GF2, band 5, 3, 2 for WV) are chosen for
display.

Table I shows the objective performance of different meth-
ods on the GE1 test set. It can be seen that the pro-
posed method performs the best for all the reduced-resolution
indexes, as well as the QNR index, whereas MSDCNN and
BDPN get the best Dλ index and Ds index, respectively. Fig. 6
shows the results of a GE1 test image patch at reduced-
resolution. The results of BDSD, MMP MTF-GLP suffer
from color distortions, the color of bare lands is different
from that in the reference image. In the enlarged views,
the color of the vegetation regions is abnormal in the results of
GLP-SEGM, MSDCNN, and BDPN, indicating that these
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Fig. 7. Comparison of pan-sharpening results obtained by different methods (GE1 image). (a) Low-resolution MS image. (b) PAN image. (c)–(j) Pan-sharpening
results of BDSD, MMP, MTF-GLP, GLP-SEGM, PNN, MSDCNN, BDPN, and the proposed method.

Fig. 8. Comparison of pan-sharpening results obtained by different methods (downsampled GF2 image). (a) Low-resolution MS image. (b) PAN image.
(c)–(j) Pan-sharpening results of BDSD, MMP, MTF-GLP, GLP-SEGM, PNN, MSDCNN, BDPN, and the proposed method. (k) Reference image.
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Fig. 9. Comparison of pan-sharpening results obtained by different methods (GF2 image). (a) Low-resolution MS image. (b) PAN image. (c)–(j) Pan-sharpening
results of BDSD, MMP, MTF-GLP, GLP-SEGM, PNN, MSDCNN, BDPN, and the proposed method.

TABLE II

OBJECTIVE PERFORMANCE OF THE PAN-SHARPENING METHODS ON GF2 TEST SET

results also suffer from color distortions. As for spatial quality,
only the proposed method successfully recovers the house in
the enlarged view, the results of other methods suffer from a
different level of blurring effects. Fig. 7 shows a full-resolution
experiment performed on GE1. The results of BDSD,
GLP-SEGM, and BDPN suffer from color distortions, and the
color of vegetation regions in the results of these methods is
different from that in the MS image. The result of MMP suffers
from blurring effect, the road centerlines and the pedestrian
crossing are not very clear. In the enlarged views, the result
of the proposed method is more clear and natural, whereas
in the results of other methods, there are different levels of
halo effects around the white building. The result of PNN
also suffers from serious artifacts.

Table II shows the results on the GF2 test set, and
the proposed method achieves the best performance on
reduced-resolution indexes except for SAM. As for the
full-resolution indexes, in general, all the methods achieve
good performance regarding the Ds index, whereas the Dλ
index is not that satisfactory. The MMP method and the

BDPN achieve the best Dλ and Ds , respectively, and the
proposed method achieves the best QNR. Fig. 8 shows a
GF2 experiment at reduced resolution. The results of MTF-
GLP, GLP-SEGM, and BDPN suffer from spectral distortions,
the color of the lawns are different from that of the ground
truth. In the enlarged views, it can be seen that the proposed
method achieves the image with the best quality, the color of
the lawns are the most natural and the boundaries of the roads
are clearest. Fig. 9 shows a GF2 experiment at full resolution.
The results of MTF-GLP, GLP-SEGM, MSDCNN, and BDSD
suffer from serious color distortions, the color of the vegetation
regions and the water regions in these results are different from
the MS image. The result of BDSD also suffers from a little
color distortion, the vegetation region in it is brighter than that
in the MS image. In the enlarged views, only the proposed
method successfully reconstructs the building, and the results
of other methods suffer from different levels of blurring effects
around the boundary of the buildings.

Table III shows the results on the WV test set. Since
the BDPN method mainly works on images with four-bands,
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TABLE III

OBJECTIVE PERFORMANCE OF THE PAN-SHARPENING METHODS ON WV TEST SET

Fig. 10. Comparison of pan-sharpening results obtained by different methods (downsampled WV image). (a) Low-resolution MS image. (b) PAN image.
(c)–(i) Pan-sharpening results of BDSD, MMP, MTF-GLP, GLP-SEGM, PNN, MSDCNN, and the proposed method. (j) Reference image.

and there are not enough data to train an eight-band model,
it does not participate in the comparison. From the table,
it can be seen that the proposed method achieves the best
performance on reduced-resolution indexes except for CC.
As for full-resolution evaluation, MMP achieves the best per-
formance, followed by GLP-SEGM. The deep learning-based
methods (PNN, MSDCNN, and the proposed method) do not
perform as good as the traditional ones (MMP, GLP-SEGM),
the reason is that the deep learning models cannot properly
deal with the noise in full-resolution WV test images. Fig. 10
gives an example of a reduced-resolution WV experiment. The
result of BDSD suffers from spectral distortions as indicated
by the abnormal color of the vegetation regions. The results
of MMP, MTF-GLP, GLP-SEGM, PNN, and MSDCNN suffer
from different levels of spatial distortions; in the enlarged
views, the shadows of the buildings are blurring. Only the
proposed method produces a clear pan-sharpened image simi-
lar to the reference image. Fig. 11 gives an example of the
full-resolution WV experiment. To reduce the influence of
noise, we selected a patch with little noise. It can be seen in
the enlarged views that the results of BDSD and PNN suffer

from severe artifacts around the ground objects. The results of
MTF-GLP, GLP-SEGM, and MSDCNN are a little blurring,
and there are halos around the highlighted objects. MMP and
the proposed method achieve clear pan-sharpened images.

E. Single-Band Evaluation

Since our proposed method works on single-band images,
we also compare the single-band performance of our method
with the contrast algorithms. By comparing the result of
different bands, some laws and regulations have been dis-
covered. To the best of our knowledge, this is the first time
the pan-sharpening results have been evaluated in single-band.
Since most of the full-resolution indexes cannot be applied
to a single-band image, the comparisons are made at reduced
resolution. Specifically, four indexes, i.e., ERGAS, CC, Q, and
SSIM, which can be used for single-band image, are selected
as evaluation indexes.

The single-band evaluation results of the GE1 test set
are shown in Fig. 12. By comparing the results of different
methods, it can be seen that the proposed method robustly
achieves the best performance for all the indexes of each
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Fig. 11. Comparison of pan-sharpening results obtained by different methods (WV image). (a) Low-resolution MS image. (b) PAN image. (c)–(i)
Pan-sharpening results of BDSD, MMP, MTF-GLP, GLP-SEGM, PNN, MSDCNN, and the proposed method.

Fig. 12. Single-band evaluation of pan-sharpening results obtained by different methods (GE1).

band, which verifies the superiority of the proposed method.
Besides, the proposed method performs more equally on each
band compared to other methods. By comparing the results of
different bands, we also find some laws. For most methods,
the red band achieves the best performance regarding CC, Q,
and SSIM, and the performance on the near-infrared band is
not as good as the other three bands. It can be concluded
that the red band is the most correlated with the PAN image,
whereas the near-infrared band is the least. However, for the
ERGAS index, the red band performs worse than the blue
band and the green band. The reason is that the red band has
a lower average value than the blue and green bands in the
GE1 image.

The single-band evaluation results of the GF2 test set are
shown in Fig. 13. Comparing the results of different methods,
the proposed method almost achieves the best performance
for all indexes, except that it achieves the second perfor-
mance for the CC and SSIM on the red band. Comparing
the results of different bands, similar to the GE1 image,
the proposed method performs more equally on each band,
and all methods perform the worst on the near-infrared band.
The difference is that the compared methods perform the
best on the red band, but the proposed method performs the
best on the blue band, which shows the band-independent
training in the proposed method better explores the relation-
ship between single-band MS image and the PAN image and
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Fig. 13. Single-band evaluation of pan-sharpening results obtained by different methods (GF2).

Fig. 14. Single-band evaluation of pan-sharpening results obtained by different methods (WV).

breaks through the limitations of traditional methods to some
extent.

The single-band evaluation results of the WV test set are
shown in Fig. 14. Like the previous process, we first compare
the performance of different methods. Since the WV image
has more bands compared to GE1 and GF2, the comparison is
more challenging. However, it can be seen that the proposed
method still achieves the best performance on most indexes for
single bands. In particular, a dramatic improvement has been

made on band 7 and band 8 compared to most of the contrast
algorithms, and this demonstrates once again the stability of
the proposed method. Then, we compare the performance
upon different bands. Generally, all methods perform better
on band 3 to band 6, but different methods achieve the best
performance on different bands. For example, the proposed
method and MSDCNN perform the best on band 6, while
BDSD, MMP, MTF-GLP, and GLP-SEGM perform the best on
band 3, PNN performs the best on band 5. The reason for better
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performance on these bands is that the spectral ranges of these
bands are covered by the spectral range of the PAN image.
However, it is difficult to explain why all the methods perform
not very well on the blue band (band 2), whose spectral range
is also fully covered by the spectral range of the PAN image.
The results of two near-infrared band (band 7 and band 8) are
very similar, because the spectral range of the two bands are
partly overlapped, and the spectral responses of ground objects
to these two bands have strong consistency.

V. CONCLUSION

In this article, we have proposed a new band-independent
encoder–decoder network for pan-sharpening. By adopting
single-band input and a reused encoder module, the network
is robust to spectral characteristics and spatial resolution of
the input images. Much fewer samples are needed to train the
model, and with a fast fine-tuning strategy, the trained model
can be applied to images from different sensors. Compared
with seven existing state-of-the-art pan-sharpening methods,
the results on different data sets verify the superiority and
robustness of the proposed method. However, similar to the
BDPN, the proposed network can only be used to process MS
and PAN images whose resolutions differ by four times, and
with some modifications, the network can process MS and
PAN images whose resolutions differ by 2n times. We will
explore to optimize the proposed method for MS and PAN
images with any level of scaling factors.
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