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ABSTRACT 
 

As one of the fundamental tasks in aerial image 
understanding, multi-label aerial image scene classification 
attracts increasing research interest. In general, the semantic 
category of a scene is reflected by the object information 
and the topological relations among objects. Most of 
existing deep learning-based aerial image scene 
classification methods (e.g., convolutional neural network 
(CNN)) classify the image scene by perceiving object 
information, while how to learn spatial relationships from 
image scene is still a challenging problem. In literature, 
graph convolutional network (GCN) has been successfully 
used for learning spatial characteristics of topological data, 
but it is rarely adopted in aerial image scene classification. 
To simultaneously mine both the object visual information 
and spatial relationships among multiple objects, this paper 
proposes a novel framework combining CNN and GCN to 
address multi-label aerial image scene classification. 
Extensive experimental results on two public datasets show 
that our proposed method can achieve better performance 
than the state-of-the-art methods. 

Index Terms—Graph convolutional network (GCN), 
convolutional neural network (CNN), multi-label aerial 
image classification. 
 

1. INTRODUCTION 
 

Aerial images scene classification takes the image scene 
as basic interpretation unit and aims at assigning semantic 
categories to the image scene (i.e., one image block) 
according to its visual and contextual content [1, 2]. Due to 
its wide applications in object detection [3], image retrieval 
[4, 5], and so forth, aerial image scene classification attracts 
increasing research interest. Compared with single-label 
aerial image scene classification, multi-label aerial image 
scene classification is a more realistic and complex task, 
which assigns multiple semantic labels to represent scenes. 
As a whole, multi-label aerial image scene classification is 
still an open problem and deserves much more exploration. 

Benefiting from the hierarchy abstract ability of deep 
learning, convolutional neural network (CNN) has been 
widely used for multi-label aerial image scene classification 
and shows significant improvement. In [6], the authors 

adopt CNN and design multi-labeling layer to address 
multi-label aerial image scene classification. To fully 
exploit the co-occurrence dependencies among multiple 
labels, the authors in [7] propose a class attention-based 
convolutional and bidirectional LSTM network 
(CA-CNN-BiLSTM) and the authors in [8] propose an 
attention-aware label relational reasoning network 
(AL-RN-CNN). In [9], the authors propose a CNN-RNN 
framework and adopt multi-attention mechanism for 
classification. However, these CNN-based methods only 
perceive the objects in the scene but ignore the spatial 
distribution relationships among many separate objects in 
the image scene. 

In fact, when judging the categories of an aerial image 
scene, people not only recognize what objects are in the 
scene, but also consider the spatial relationships of objects. 
Motivated by the fact that CNN is effective in representing 
the visual content of local regions in the image scene and 
the spatial relationships of topological data can be 
effectively learned by graph convolutional network (GCN) 
[10], we propose an aerial image scene classification 
framework by combining CNN and GCN. Specifically, we 
encode the spatial structure of image scene by constructing 
region adjacency graph for each image using unsupervised 
segmentation algorithm. The CNN is used to extract deep 
features vector of regions to semantically represent the 
visual content of regions. And the GCN is used to 
synthesize high-level visual features and spatial 
relationships of local regions and learn abstract 
representation for classification.  

We use the proposed CNN-GCN framework to 
comprehensively address multi-label aerial image scene 
classification task. The extensive experimental results on 
the UCM and AID multi-label datasets show that our 
proposed method can achieve better classification 
performance compared with the existing methods. 

 
2. METHODOLOGY 

 
To effectively represent the spatial structure of aerial 

image scene, we construct region adjacency graph for each 
image scene where the image is over-segmented into 
non-overlapping regions and the feature representation of 
each region is semantically represented by CNN. Taking the 
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Figure 1. An overview of the proposed CNN-GCN framework. 

 
region adjacency graph as the input, a GCN model is 
trained to mine the spatial relationship among regions and 
complete multi-label classification. 

 
2.1. Constructing CNN-based region adjacency graph 

The region adjacency graph can encode the image as a 
graph structure consisting of adjacency matrix 𝐴 ∈ ℝ𝑁×𝑁 
and vertex feature matrix 𝑋 ∈ ℝ𝑁×𝐷 , where 𝑁  is the 
number of vertices and 𝐷 is the number of features.  

We use SLIC super-pixel algorithm [11] to segment the 
image and get multiple non-overlapping regions as vertices 
of graph. Note that the region is made up of homogeneous 
pixels, so it can be assumed that it is an approximate 
representation of local objects.  

Similar to [10], we quantify the spatial relationship 
between regions to obtain the adjacency matrix 𝐴. When 
regions 𝑖 and 𝑗 have a common boundary, the adjacency 
weight 𝑎𝑖𝑗 is calculated by Eq. (1),  

𝑎𝑖𝑗 = 𝛽1�𝑐𝑖 − 𝑐𝑗�2 + 𝛽2�𝑜𝑖 − 𝑜𝑗�        (1) 
where 𝑐𝑖  represents the centroid pixel of region and 𝑜𝑖 
represents the orientation angle. 𝛽1  and 𝛽2  are 
empirically set in 0.8 and 0.2 to assign weights for distance 
and direction relations between adjacent regions. 

We use the high-level visual features as the vertex 
features to represent visual elements in the scene. 
Particularly, we feed images into the pre-trained CNN and 
obtain a series of feature maps from convolutional layers. It 
is worth mentioning that the CNN can also be trained from 
scratch using the addressed multi-label dataset. Then we 
combine the feature maps and segmentation results by 

up-sampling the features to the size of original image. 
According to the region boundary of the segmentation, we 
calculate the max value of each feature map slice as the 
corresponding vertex feature of the region. Therefore, for 
each region, we can get multidimensional features from 
multiple channels of feature maps. In this way, we can get 
the vertex feature matrix 𝑋 of graph. 

 
2.2. Learning graph convolutional network 

To explore the spatial distribution relationships of 
different regions, we adopt the spatial GCN model proposed 
in [12], which can take 𝐴 and 𝑋 of graph as input directly. 
The convolution, pooling and fully connected operations in 
GCN are briefly introduced as follow.  

 
2.2.1. Graph convolution operation 

Generally, a convolutional layer uses a parameter-shared 
convolution kernel as a filter to extract features by 
calculating the weighted sum of adjacent pixels. In the case 
of graphs, the receptive field of convolution needs to be 
provided by 𝐴. Taking the first order neighborhoods into 
account, we use a simplified spatial-domain convolution 
filter 𝐹 ∈ ℝ𝑁×𝑁×𝐷, shown in Eq. (2),  

𝐹 = 𝑤0𝐸 + 𝑤1𝐴               (2) 
where 𝐸 is the 0-th order adjacency matrices, and 𝑤0 and 
𝑤1 are learnable weights. Graph convolution is the matrix 
multiplication between 𝐹  and 𝑋 , and the graph 
convolution operation is given by Eq. (3),  

𝑋𝑜𝑢𝑡 = ∑ 𝐹(𝑑)𝑋𝑖𝑛
(𝑑) + 𝑏 𝐷

𝑑=1           (3) 
where 𝑋𝑖𝑛  indicates the input vertex feature, 𝑋𝑜𝑢𝑡 
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indicates the output and 𝑏 is a bias. The size of 𝑋𝑜𝑢𝑡 can 
be adjusted by adding another dimension to 𝐹. For example, 
we can set 𝐹  in ℝ𝑁×𝑁×𝐷×𝐷′  and get 𝑋𝑜𝑢𝑡 ∈ ℝ𝑁×𝐷′  by 
repeating the Eq. (3) 𝐷′ times. 
 
2.2.2. Graph embed pooling operation 

Using pooling operation can reduce dimensions of the 
input and improve the computing performance. Since 
graphs are often heterogeneous structures, pooling should 
be done by embedding, which can map the input graph of 
any size to a fixed-size output [12]. Graph embed pooling is 
implemented through an embedded matrix 𝑋𝑒𝑚𝑏 ∈ ℝ𝑁×𝑁′, 
which can be learned as Eq. (4), where 𝑁′ is the new 
number of vertices. And Eq. (5) shows a softmax operation 
to normalize 𝑋𝑒𝑚𝑏. 

𝑋𝑒𝑚𝑏
(𝑛′) = ∑ 𝐹𝑒𝑚𝑏

(𝑑,𝑛′)𝑋𝑖𝑛
(𝑑) + 𝑏𝐷

𝑑=1          (4) 
𝑋𝑒𝑚𝑏∗ = 𝜎(𝑋𝑒𝑚𝑏)              (5) 

Then the vertex features output 𝑋𝑜𝑢𝑡 and the adjacency 
matrix output 𝐴𝑜𝑢𝑡 can be calculated by Eq. (6) and Eq. 
(7), respectively.  

𝑋𝑜𝑢𝑡 = 𝑋𝑒𝑚𝑏∗𝑇 𝑋𝑖𝑛               (6) 
𝐴𝑜𝑢𝑡 = 𝑋𝑒𝑚𝑏∗𝑇 𝐴𝑖𝑛𝑋𝑒𝑚𝑏∗              (7) 

Because embed pooling method is learnable, the output 
structure is an optimized result representing the 
reduced-dimension input structure. So, it has the potential 
to optimize the distribution of vertices. 

 
2.2.3. Fully connected operation 

After a series of operation of graph convolution and 
pooling, the vertex feature matrix is projected into the 
one-dimensional vector space by the fully connected layer, 
which is a case of graph embed pooling layer to produce 
graph with only one vertex. And we use sigmoid as the 
activation function of the end of the network. Eq. (8) shows 
the formula to transform the features vectors 𝑥𝑖 into the 
classification probabilities of multi-hot label.  

𝜎(𝑥𝑖) = 1
1+exp (−𝑥𝑖)

              (8) 
Furthermore, we use the binary cross-entropy as the loss 

function for multi-label classification, which can be 
computed by Eq. (9), 
𝑙𝑜𝑠𝑠 = −∑ �𝑦𝑖 log�𝜎(𝑥𝑖)� + (1 − 𝑦𝑖) log�1 − 𝜎(𝑥𝑖)��𝑖  (9) 
where 𝑦𝑖 indicates the ground truth label of class 𝑖. 

Through backward propagation, parameters of the GCN 
can be optimized based on the gradient of 𝑙𝑜𝑠𝑠, and we use 
GCN to learning abstract features and complete 
classification in an end-to-end manner. 
 

3. EXPERIMENTAL RESULTS 
 

In this section, data description and the details of 
experimental settings are presented at first. The 
experimental results and analysis are given after that. 

 
3.1. Data description 

We performed experiments on two public multi-label 
aerial image scene classification datasets, which are 
described below. UCM multi-label dataset, which contains 
2100 aerial images with 0.3 m/pixel spatial resolution and 
256×256 pixels image size, is labeled into 17 categories 
base on DLRSD dataset [13]. In addition, we use AID 
multi-label dataset [8], which contains 3000 aerial images 
from the AID dataset [14] and is assigned with 17 object 
labels. The spatial resolutions of images vary from 0.5 to 
0.8 m/pixel, and the size of each image is 600×600 pixels.  

 
3.2. Experimental settings 

For experiment, the UCM and AID multi-label datasets 
are split into 80% for training and 20% for testing. 

We use pre-trained VGG16 [15] to extract visual features 
and our model using the 28×28×512 feature maps output 
from the third convolutional layer of block4 in VGG16 as 
the visual features.  

Our GCN architecture contains a graph convolution layer 
with 512 filters and a graph embed pooling layer outputting 
a 64-vertex graph. At the end of the GCN, we set up two 
fully connected layers with 256 outputs and 17 (number of 
classes) outputs, respectively. 

Moreover, the dropout layer is set in the middle of each 
layer, and ReLU activation function and batch 
normalization are used for all but the last layer. We train the 
GCN with Adagrad optimizer. The learning rate is initially 
set as 0.01 and decayed during training process. 

 
3.3. Comparison with the state-of-the-art methods 

We compare our proposed CNN-GCN method with 
several recent methods, including the standard CNN 
method, CNN-RBFNN [6], CA-CNN-BiLSTM [7] and 
AL-RN-CNN [8]. For a fair comparison, all compared 
methods adopt the same VGG16 structure as the CNN 
backbone. We calculate Precision (P), Recall (R), F1-Score 
(F1) and F2-Score (F2) to evaluate the multi-label 
classification performance of each method. As the 
compared methods also adopt the same training/testing data, 
we take the reported evaluation results from their separate 
publications as the reference in this paper.  

Table 1 shows the experimental results of our proposed 
CNN-GCN method and other methods on the UCM 
multi-label dataset. We can observe that our proposed 
method achieve the highest scores of Recall, F1-Score and 
F2-Score. In general, our proposed method achieves the 
best performance. In comparison with AL-RN-CNN, our 
method increases F1-Score and F2-Score by 0.11% and 
0.73%, respectively. We can also observe that our methods 
with GCN have significant improvement compared with the 
methods only use CNN. Compared to the method of CNN, 
our method gains an improvement of 7.27% in F1-Score 
and 6.37% in F2-Score, which demonstrates that learning 
spatial relationships via GCN plays an important role in 
advancing classification performances. 
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Table 1. The performances of different methods on the 
UCM multi-label dataset (%). 

Methods P R F1 F2 
CNN [15] 79.06 82.30 78.54 80.17 

CNN-RBFNN [6] 78.18 83.91 78.80 81.14 
CA-CNN-BiLSTM [7] 79.33 83.99 79.78 81.69 

AL-RN-CNN [8] 87.62 86.41 85.70 85.81 
Ours (CNN-GCN) 86.68 87.59 85.81 86.54 

 
Table 2. The performances of different methods on the AID 

multi-label dataset (%). 
Methods P R F1 F2 

CNN [15] 87.41 86.32 85.52 85.60 
CNN-RBFNN [6] 84.56 87.85 84.58 85.99 

CA-CNN-BiLSTM [7] 88.68 87.83 86.68 86.88 
AL-RN-CNN [8] 89.96 89.27 88.09 88.31 

Ours (CNN-GCN) 89.61 89.55 88.26 88.68 
 

Table 2 shows the experimental results on the AID 
multi-label datasets. We can also observe that our proposed 
method has the best performance with the highest scores of 
Recall, F1-Score and F2-Score. Compared to standard CNN 
method, our method increases F1-Score and F2-Score by 
2.74% and 3.08%, respectively. Compared to AL-RN-CNN, 
our method gains an improvement of 0.17% in F1-Score 
and 0.37% in F2-Score. The superior performances on both 
UCM and AID multi-label datasets can demonstrate the 
robustness and effectiveness of our method. 
 

4. CONCLUSION 
 

In this work, we propose a CNN-GCN framework for 
multi-label aerial image scene classification, where GCN is 
used to learn spatial relationships among regions in the 
region adjacency graph constructed based on CNN. The 
experimental results on two publicly open multi-label aerial 
image scene datasets show the robustness and effectiveness 
of our framework. In the future work, we will consider 
using a larger number of samples to explore the potential of 
our proposed framework. 
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