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Cloud cover is a common and inevitable phenomenon that often hinders the usability of optical remote sensing
(RS) image data and further interferes with continuous cartography based on RS image interpretation. In the
literature, the off-the-shelf cloud detection methods either require various hand-crafted features or utilize data-
driven features using deep networks. Overall, deep networks achieve much better performance than traditional
methods using hand-crafted features. However, the current deep networks used for cloud detection depend on
massive pixel-level annotation labels, which require a great deal of manual annotation labor. To reduce the labor
needed for annotating the pixel-level labels, this paper proposes a weakly supervised deep learning-based cloud
detection (WDCD) method using block-level labels indicating only the presence or the absence of cloud in one RS
image block. In the training phase, a new global convolutional pooling (GCP) operation is proposed to enhance
the ability of the feature map to represent useful information (e.g., spatial variance). In the testing phase, the
trained deep networks are modified to generate the cloud activation map (CAM) via the local pooling pruning
(LPP) strategy, which prunes the local pooling layers of the deep networks that are trained in the training phase
to improve the quality (e.g., spatial resolution) of CAM. One large RS image is cropped into multiple overlapping
blocks by a sliding window, and then the CAM of each block is generated by the modified deep networks. Based
on the correspondence between the image blocks and CAMs, multiple corresponding CAMs are collected to
mosaic the CAM of the large image. By segmenting the CAM using a statistical threshold against a clear-sky
surface, the pixel-level cloud mask of the testing image can be obtained. To verify the effectiveness of our
proposed WDCD method, we collected a new global dataset, for which the training dataset contains over
200,000 RS image blocks with block-level labels from 622 large GaoFen-1 images from all over the world; the
validation dataset contains 5 large GaoFen-1 images with pixel-level annotation labels, and the testing dataset
contains 25 large GaoFen-1 and ZiYuan-3 images with pixel-level annotation labels. Even under the extremely
weak supervision, our proposed WDCD method could achieve excellent cloud detection performance with an
overall accuracy (OA) as high as 96.66%. Extensive experiments demonstrated that our proposed WDCD method
obviously outperforms the state-of-the-art methods. The collected datasets have been made publicly available
online (https://github.com/weichenrs/WDCD).

1. Introduction

With the rapid development of remote sensing (RS) technology, RS
images have been widely utilized in various applications. Compared
with the active observation techniques (e.g., Synthetic Aperture Radar),
optical RS imagery has remarkable advantages including a low price
and a clear record of detailed information about the observed objects.
Nevertheless, optical RS imagery is often degenerated because of cloud
cover. As derived from the MODIS cloud mask, the global cloud fraction
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is approximately 67% (King et al., 2013). Generally, cloud detection in
the optical RS imagery has two main application requirements, in-
cluding the online and offline modes. The first online demand origi-
nates from the on-board communication processor module (Shan et al.,
2009; Tan et al., 2016). To save the network bandwidth and storage
space, the on-board processor needs to rapidly detect the cloud cover in
the RS imagery and selectively transmit the fresh RS images based on
the cloud cover rates. The second offline demand comes from the
ground systems (Schmitt et al., 2019; Xu et al., 2019; Zhang et al.,
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2019). As the preprocessing step of producing the wide-range RS ima-
gery without clouds, cloud detection and removal can provide data
support for continuous cartography and dynamic monitoring. Driven by
various applications, cloud detection in RS imagery attracts extensive
research interest. Although numerous methods have been proposed, off-
the-shelf cloud detection methods tend to have limited performance
and weak universality. Hence, cloud detection in the RS imagery is still
facing challenges, and it is worthwhile to devote much effort to in-
vestigating this topic.

So far, many cloud detection methods are mainly designed for low-
resolution RS imagery (e.g., MODIS (Ishida et al., 2018)) and medium-
resolution RS imagery (e.g., Landsat (Zhu et al., 2015; Chai et al., 2019;
Qiu et al., 2017; Qiu et al., 2019)). The images generally consist of
many spectral bands that are beneficial to improvement of the cloud
detection accuracy (Huang et al., 2010). Because of the growing
number of high-resolution RS satellites that have been launched, mul-
tispectral RS imagery with four spectral bands has become increasingly
prevalent. Compared with low-resolution and medium-resolution RS
imagery, high-resolution RS multispectral imagery has higher spatial
resolution but fewer spectral bands. As pointed out in (Li et al., 2017),
the limited spectral information increases the ambiguity and confusion
between cloud and the underlying surface, which makes it more diffi-
cult for cloud detection in the high-resolution RS imagery with only
four spectral bands. Accordingly, it becomes very urgent to exploit the
cloud detection technique for high-resolution RS imagery.

In recent years, different kinds of cloud detection methods have
been proposed based on either hand-crafted features or deep learning.
The deep learning-based cloud detection methods obviously outperform
the methods based on hand-crafted features (Francis et al., 2019), but
their superior performance highly depends on massive pixel-level cloud
masks. Considering that different kinds of satellite imagery often have a
large variance in terms of the spectrum and spatial resolution, a deep
learning-based cloud detection method needs a corresponding pixel-
level annotation dataset for each kind of satellite imagery, which re-
quires a great deal of manual annotation labor. From this perspective, it
is of great significance to explore the advanced deep learning-based
cloud detection method to save annotation labor.

It is well known that scene-level/block-level labels are much easier
to collect than pixel-level annotations of images. With the aid of global
pooling operations, such as global average pooling (GAP), researchers
(Zhou et al., 2014; Zhou et al., 2016a; Zhou et al., 2018) in the com-
puter vision community have shown that deep networks trained with
only scene-level/block-level labels are informative of object locations
and can even be used for semantic segmentation. However, due to the
use of local pooling layers and the inherent defects of global pooling
operations (Li et al., 2018a), there is a lack of capability to obtain de-
tailed information on objects with the existing methods, which is quite
important for accurately detecting the cloud boundary in cloud detec-
tion tasks. Generally, the potential of weakly supervised deep learning
has not been completely exploited to address cloud detection, and it
deserves further exploration.

In this paper, we leverage only block-level supervision to train deep
networks for pixel-level cloud detection. With the consideration that
the accurate detection of clouds requires more useful information, we
propose a new global pooling operation called global convolutional
pooling (GCP) in the training phase, which learns channel-independent
convolutional weights to enhance the ability of the feature map to re-
present useful information (e.g., spatial variance). Furthermore, we
propose a novel local pooling pruning (LPP) strategy for use in the
testing phase during generation of the cloud activation map (CAM),
which is used to generate the final cloud mask. By pruning the local
pooling layers in the trained deep networks, the quality (e.g., spatial
resolution) of the CAM is improved, and the classification performance
of the deep networks remains stable. Then, the final cloud mask of one
RS image can be obtained through segmenting the CAM with a statis-
tical threshold against a clear-sky surface, which can be calculated by
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using negative samples in the training dataset.

It is noted that thin cloud and thick cloud are treated in the same
way in this paper, which means our proposed method strictly detects all
the clouds together regardless of whether they are thin or thick.
However, the thin or thick cloud can be distinguished if needed using
some methods such as hand-crafted features or indexes (Li et al., 2017).
With regard to the shadow around the cloud, it can also be dis-
criminated after the accurate detection of the cloud. For instance, ac-
cording to the solar elevation angle and solar azimuth angle from the
image metadata, the location of the shadow can be easily inferenced
according to the detected region of the cloud, which will be displayed in
our future work.

Considering that there do not exist any qualified datasets that can be
used to evaluate the weakly supervised deep learning-based cloud de-
tection (WDCD) technique, we collected a new global dataset based on
the multispectral imagery from the GaoFen-1 satellite. Specifically, the
GaoFen-1 satellite includes two integrated cameras with 8-m spatial
resolution and 4-day temporal resolution. Each camera has four mul-
tispectral bands, spanning the visible to the near-infrared spectral re-
gions. The collected global dataset includes the training dataset, the
validation dataset and the testing dataset. The training dataset consists
of more than 200,000 image blocks cropped from 622 large GaoFen-1
images distributed around the world, and each image block has a binary
label indicating if the block contains a cloud or not. The validation
dataset consists of 5 large GaoFen-1 images with manually annotated
pixel-level cloud masks, which are generally used to tune the hy-
perparameters. The testing dataset is composed of 25 large RS images
with manually annotated pixel-level cloud masks, with 19 large images
from the GaoFen-1 satellite and 6 large images from the ZiYuan-3 sa-
tellite. As displayed in Tables 1 and 2, the GaoFen-1 imagery has a
similar bandwidth and spatial resolution setting as the ZiYuan-3 ima-
gery. Since the GaoFen-1 imagery is one kind of typical high-resolution
RS imagery, both the collected dataset and the proposed method pos-
sess a good generality. It is worth mentioning that the testing dataset is
qualified for use to evaluate the cloud detection performance for mul-
tisource RS data.

In the experimental setting, we train deep networks under the su-
pervision of RS image blocks but pursue the pixel-level cloud detection
with coarse labels that only indicate whether an image block contains a
cloud or not. Even under this extreme setting, our proposed method still
yields promising results and outperforms the existing methods
(Simonyan and Zisserman, 2014; Zhang and Xiao, 2014; Zhou et al.,
2016a; Li et al., 2018a; Zou et al., 2019). The main contributions of this
paper can be summarized as follows:

e This paper proposes a new WDCD method that trains the deep
networks under block-level supervision for pixel-level cloud detec-
tion in high-resolution RS imagery.

e This paper proposes a novel global pooling operation (i.e., GCP).
Compared with the existing global pooling operation (e.g., GAP),
GCP can learn channel-independent convolutional weights to en-
hance the ability of the feature map to represent useful information
(e.g., spatial variance). Additionally, the deep networks can be
trained in an end-to-end manner.

o This paper proposes a new LPP strategy to generate the CAM. The
LPP strategy dramatically enhances the quality (e.g., spatial

Table 1
The bandwidth information of the used satellite imagery.

Multi-spectral imagery GaoFen-1/ZiYuan-3

Band 1 (Blue/um) 0.45-0.52
Band 2 (Green/um) 0.52-0.59
Band 3 (Red/um) 0.63-0.69
Band 4 (Near-Infrared/um) 0.77-0.89
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Table 2

The spatial resolution information of the used satellite imagery.
Multi-spectral imagery GaoFen-1 ZiYuan-3
Spatial resolution (m) 8 5.8

resolution) of the generated CAM.

e Last but not least, this paper collects a new global RS image dataset
for weakly supervised cloud detection. Specifically, the training
dataset contains over 200,000 image blocks with block-level binary
labels (i.e., containing cloud or not), and the validation and testing
datasets contain 30 large RS images with pixel-level cloud masks.

The rest of this paper is organized as follows. Section 2 reviews the
related work. Section 3 specifically displays the collected dataset.
Section 4 introduces our proposed WDCD method. Section 5 reports the
experimental results. Section 6 gives a discussion of the experimental
details. Finally, Section 7 gives the conclusion of this paper.

2. Related work

In this section, we briefly review the most relevant works in the
literature that include weakly supervised deep learning and cloud de-
tection in RS imagery.

2.1. Weakly supervised deep learning

To alleviate the labor of bounding box annotations, pioneers in
computer vision exploit scene-level or image-level tags as weak super-
vision for localizing objects in images or scenes. More specifically,
multi-instance learning was combined with deep convolutional features
(Pinheiro and Collobert, 2015; Pathak et al., 2015; Cinbis et al., 2017;
Wang et al., 2019b) to localize objects. Similarly, region proposal-based
methods using weak supervision (Bilen and Vedaldi, 2016; Tang et al.,
2017; Tang et al., 2018b) have been proposed to solve object detection.
Based on the observation that the action depicted in the image/video
can provide strong cues about the location of the associated object,
Yang et al. (2019) and Singh and Lee (2019) leveraged the action labels
to improve the performance of weakly supervised object detection.
Most recently, the idea of weak supervision has also been widely ex-
plored in semantic segmentation (Kolesnikow and Lampert, 2016; Wei
et al., 2016; Chen et al., 2018; Tang et al., 2018a) and saliency detec-
tion (Wang et al., 2017; Hsu et al., 2019). Moreover, Wei et al. (2018)
revisited dilated convolution and proposed to leverage multiple con-
volutional blocks with different dilated rates to generate dense object
localization maps. Gao et al. (2018) proposed count-guided weakly
supervised localization that uses the per-class object count as a new
form of supervision to improve weakly supervised localization. Wan
et al. (2018) proposed a min-entropy latent model to address weakly
supervised object detection, which combined recurrent learning with
region proposals. Zhang et al. (2019) applied the idea of adversarial
learning, which learns two parallel-classifiers, to leverage com-
plementary object regions for classification and finally generate integral
object localization together. In general, these methods were originally
designed for natural images and fall short of detecting detailed in-
formation. Thus, they cannot be directly used for RS images because
they have insufficient capability to handle the challenges in RS images,
which contain complex backgrounds and densely distributed objects
with arbitrary orientations (Li et al., 2018a).

2.2. Cloud detection in RS imagery

Cloud detection is a common issue in the RS domain. Traditional
cloud detection algorithms can be divided into two categories: hand-
crafted feature-based approaches and deep learning-based approaches.
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The hand-crafted feature-based approaches detect clouds either using a
constant or adaptive threshold in different spectral bands derived from
the physical characteristics of clouds, such as spectrum, texture, tem-
perature and elevation (Wilson and Oreopoulos, 2013; Oishi et al.,
2018; Wang et al., 2019a), or using manual features to train classifiers
(e.g., decision trees (Hollstein et al., 2016), fuzzy models (Shao et al.,
2017) and support vector machines (Ishida et al., 2018)). Researchers
(Zhu et al., 2015; Zhou et al., 2016b; Li et al., 2017; Qiu et al., 2017;
Qiu et al., 2019) also combine several methods together and use mul-
tifeatures for cloud detection. Although existing methods have achieved
promising results under their specific experimental settings, these ap-
proaches possess limited generalization ability to some extent. There
still exists much space to improve the performance.

Motivated by the great progress of deep learning (Krizhevsky et al.,
2012; LeCun et al., 2015; Li et al., 2018b; Li et al., 2018¢c; Tan et al.,
2018; Tao et al., 2019a; Tao et al., 2019b; Li et al., 2020), researchers in
the RS community set up to develop the deep learning-based cloud
detection approaches. By formulating cloud detection as a semantic
segmentation problem, they modified several popular networks de-
signed for semantic segmentation such as SegNet (Chai et al., 2019), U-
Net (Wieland et al., 2019; Jeppesen et al., 2019), FCN (Mohajerani and
Saeedi, 2019; Shao et al., 2019), DeepLab (Segal-Rozenhaimer et al.,
2020) for cloud detection. Segal-Rozenhaimer et al. (2020) utilizes the
domain adversarial neural networks to perform the cloud detection
across multisource satellite imagery. Nevertheless, the performance of
these deep learning-based methods highly depends on the number of
training samples and the accuracy of their labels. Recently, Zou et al.
(2019) formulated cloud detection as a mixed energy separation pro-
cess between the foreground and background of images. Specifically,
the generative adversarial framework was adopted to conduct weakly
supervised matting of a cloud image by incorporating the physics be-
hind it. It is worth noting that this work does not depend on pixel-level
annotation. As a whole, this kind of work based on weak supervision is
still in the embryonic stage. However, it requires massive efforts to
improve the cloud detection performance by fully exploiting the weak
supervision condition.

3. Dataset description

In this section, we detail the description of the dataset, which is
specifically collected for evaluating cloud detection via weakly su-
pervised deep learning.

3.1. The training dataset with block-level labels

In recent years, researchers (Chai et al., 2019; Shao et al., 2019;
Jeppesen et al., 2019) have tended to regard cloud detection as a se-
mantic segmentation problem, which uses pixel-level labels to indicate
whether each pixel contains cloud or not. Given that there are no ex-
isting datasets for weakly supervised cloud detection methods such as
our WDCD method, we created a large-scale block-level global dataset
for it using the GaoFen-1 Level-1A imagery (Digital Number). The
training dataset consists of 206,384 image blocks with their binary la-
bels, which denote whether the block contains cloud or not. Each image
block has a size of 250 x 250 and 4 spectral bands. First, image blocks
are randomly cropped from 622 large GaoFen-1 Level-1A images dis-
tributed all over the world. With the aid of visual interpretation, do-
main experts label the blocks without any cloud pixels as negative
samples and annotate the blocks with a cloud cover rate over 25% as
positive samples for training stability. In total, 51,596 blocks are
manually collected. Then, rotation is performed for each image block at
angles of 90, 180 and 270 degrees so that the number of image blocks
becomes four times that of the original number and is increased to
206,384. There are in total 109,312 negative samples and 97,072 po-
sitive samples.

As seen in Fig. 1, the negative samples do not contain any cloud and
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Fig. 1. Visual example of the training dataset. (a) Shows the negative samples (i.e., image blocks do not contain any cloud). (b) Illustrates positive samples (i.e.,

image blocks are covered by over 25% cloud).

Dataset Distribution

Latitude

Training 3
Validation =
# Testing *
—90 - T T T T T T T T T T T 1
—-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
Longitude

Fig. 2. The distribution of samples from the training, validation, and testing datasets. To avoid overfitting, the images from the training, validation, and testing

datasets are not overlapped with each other.

include different land cover types such as ice, snow, bare land, vege-
tation, water, building, and farmland. The positive samples are covered
by at least 25% cloud and include various cases in which image blocks
are covered by clouds with different shapes, volumes, and underlying
surfaces. The global distribution characteristic of samples from the
training dataset is visually depicted in Fig. 2.

3.2. The validation and testing dataset with pixel-level labels

To determine the hyperparameters of the method and evaluate the
cloud detection performance, we manually annotate 30 large RS images
with pixel-level labels. In this work, both thin and thick clouds are
considered, and both of them are carefully labeled by domain experts.
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Fig. 3. The validation and testing datasets. The figure shows 30 large RS images and their corresponding pixel-level annotations. Each image is followed by its
annotations where the red-color regions denote the cloud masks. The pairs in the first row with blue labels indicate the validation dataset, and those in the remaining
four rows with yellow labels come from the testing dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

As shown in Fig. 3, five of the images are from different regions and
are used as validation to tune the hyperparameters, while the other
twenty-five globally distributed images are used for testing and evalu-
ating the overall performance. It is noted that all the pixel-level labels
are only used for evaluating but not for training. Specifically, all images
in the validation dataset (i.e., the 1st to the 5th validation images) are
from the GaoFen-1 satellite. The 1st to the 6th testing images are from
the ZiYuan-3 satellite, while the others are from the GaoFen-1 satellite.
As seen in Tables 1 and 2, ZiYuan-3 and GaoFen-1 have the same
bandwidth setting but different spatial resolutions. It is worth men-
tioning that 6 large ZiYuan-3 images (i.e., the 1th to the 6th testing
images) are added to verify the generalization ability of our proposed
WDCD approach. We chose these large testing images according to the
variety in terms of cloud covers, land surfaces, and geographical loca-
tions. The images in the testing dataset contain several typical land
cover types such as agriculture, water, grassland, bare, buildings, and
snow/ice. Moreover, different kinds of cloud covers are included (e.g.,
100% cloud cover, clear-sky, cumulus clouds, stratus cloud, cirrus
cloud, and mixed). The distribution of validation and testing datasets is
also depicted in Fig. 2. As seen, these images observed in various lo-
cations distributed all over the world show good universality. All da-
tasets have been made available online (https://github.com/
weichenrs/WDCD).

4. Methodology

In this section, we give the details of our proposed WDCD method.
Section 4.1 gives the structure of our deep networks and the learning
process in the training phase. The method used to perform the pixel-
level cloud detection using the trained deep networks is introduced in
Section 4.2.

4.1. Learning deep networks under block-level supervision

To clarify our WDCD method, we first depict the whole framework
of our proposed deep networks based on GCP and intuitively illustrate
the superiority of GCP. Then, we give the implementation details for
learning the deep networks.

With the block-level labels, it is easy to build discriminative deep
networks (e.g., VGG (Simonyan and Zisserman, 2014)) to classify the
image blocks as cloud or non-cloud without the ability to perform ob-
ject localization and segmentation. The development of GAP showed
that block-level supervision can be used for object localization (Zhou
et al., 2016a), but the localization accuracy needs to be improved due
to the weak connectivity yielded by the GAP. Li et al. (2018a) improved
the GAP method by utilizing a two-stage-learning (TSL) method for
object localization, whereas the networks cannot be learned in an end-
to-end way. To overcome the aforementioned limitation, we proposed
the WDCD framework based on GCP.

As depicted in Fig. 4, during the training phase, the architecture of
our deep networks is similar to that of the common convolutional
neural networks (CNN) used for image recognition, where the CNN is
composed of local convolutional (Conv) operations and local pooling
(LP) operations. Under block-level supervision, normal CNNs are de-
signed for block-level classification tasks; however, we employ it to
perform pixel-level cloud detection under block-level supervision by
leveraging the intermediate feature maps of the convolutional layers.
For this reason, we replaced the GAP or fully connected layer with our
proposed GCP layer, in order to promote the representation ability of
the feature map. As displayed in Fig. 4, the feature map is performed
with a spatialwise convolution of each channel with the GCP layer, by
which the spatial variance will be well represented after several itera-
tions of back-propagation.
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Fig. 4. The architecture of our adopted deep networks.

As mentioned in Section 1, GAP (Zhou et al., 2016a) is a popular
global pooling operation. Due to the usage of the global pooling op-
eration, there is only a very weak connectivity between the block label
and feature map outputted by the last convolutional layer. To facilitate
understanding, we give a toy example to show the weak connectivity
that GAP yields and the drawback of this weak connectivity in Fig. 5(a)
and (b). During the forward propagation, the spatial units of each
channel in the feature map outputted by the last convolutional layer are
aggregated into one single unit in the aggregation feature vector as il-
lustrated in Fig. 5(a). Accordingly, the gradient value of each unit in the
aggregation feature vector is equally divided into the spatial units of
each corresponding channel in the feature map in the backward gra-
dient propagation illustrated in Fig. 5(b). However, this process impairs
perceiving the spatial variance of each channel.

Considering that GAP can impair perceiving the spatial variance of
each channel, we propose a novel global pooling operation named GCP.
As seen in Fig. 5(c) and (d), the GCP layer trains d channel-independent
convolutional kernels where d denotes the number of channels, which
will be further discussed in Section 6.1. Unlike the GAP operation
shown in Fig. 5(a) and (b), the GCP layer learns channel-independent
convolutional weights, and the feature map is used to perform spa-
tialwise convolution of each channel with the learned GCP weights.
After the iterative forward and backward propagations during training,
we consider that the GCP layer owns the capability to exploit the im-
portant and useful information (e.g., spatial variance) of the feature
map intuitively.

Outwardly, our proposed GCP is similar to the Depthwise Separable
Convolution (DSC) (Chollet, 2017) in its computation form. However,
there are some substantial differences between them. First, the con-
volutional kernel sizes and outputs are different. The kernel size of GCP
is the same as the input feature map, and the output of GCP is a k-
dimensional feature vector. According to DSC, its kernel size is smaller
than the input feature map, while the output of DSC is still a feature
map. Second, their purposes are totally different. We adopt GCP, which
brings learnable parameters to capture the spatial variance of the fea-
ture map, whereas the DSC is used to reduce the number of parameters.
The last but the most important difference is that GCP can serve as a
variant of global pooling (e.g., global average pooling), which performs
spatialwise convolution with each channel of the feature map to obtain
the global features.

Let {(b,,y»)|n = 1,2,---,N} denote the training cloud dataset. More
specifically, N is the number of image blocks in the training dataset, b,
stands for the n-th image block, and y, denotes its label (i.e., y, = [1,0]

indicates that the given image block contains cloud and y, = [0,1]
means that the given image block does not contain any cloud).

Let ¥ = {C,G,W} denote all of the weights of the deep networks,
where C stands for the weights of the hierarchical convolutional layers,
G denotes the weights of the GCP layer, and W stands for the cloud
activation weights. For a given image block b, it is sent to the deep
networks and outputs the feature map f,* as Eq. (1).

f5 = ¢k (bs;0) 1

where f,* denotes the k-th channel of the last convolutional layer's
output feature map, ¢ denotes the representation of convolution,
pooling, activation computation in the deep networks. By global con-
volutional pooling f,* per channel, we calculate the activation value of
f.X at each channel as depicted in Eq. (2).

of=ff® G )

where 0, denotes the activation value of fnk at the k-th channel, G* € G
stands for the weights of the GCP layer at the k-th channel, ® denotes
the spatialwise convolution channel by channel.

In this experimental setup, each training image block has its binary
label indicating if the block contains cloud or not. Therefore, the
softmax-based cross-entropy loss function is taken to learn the networks
¥ = {C,G,W} and model the connectivity between the global con-
volutional result and the block label, which is specified by Eq. (3).

d
N 2 exp(z W,gxo,’:+W5)
o=~ 2 ol
w={C,G,W
n=1e=1 > exp(z WE x OF + Wg)

c=1 k=1

d
N 2 exp( Z Wi x (((pk(bn;C)) ® Gk) + W(f)
=—ZZy:><log . k(=1

d
=t et Y exp| X WE X (@ (bs;C) @ G + Wé)

c=1 k=1

3)
where W' € W denotes the cloud activation weights, which indicate
the contribution of f* for cloud.

By optimizing the function in Eq. (3), the convolutional weights C,
the GCP weights G and the cloud activation weights W are learned si-
multaneously. In Section 4.2, we will introduce how to conduct cloud
detection using the learned deep networks, whose parameters are
composed of the convolutional weights C, the GCP weights G and the
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forward propagation of GCP. (d) The backward propagation of GCP.
cloud activation weights W.

4.2. Pixel-level cloud detection using the trained deep networks

Section 4.2.1 discusses the effects of local pooling layers and in-
troduces the local pooling operation pruning (LPP) strategy, which we
use to modify the trained deep networks. In Section 4.2.2, we introduce
how to automatically generate the CAM of one large RS image using the
learned deep networks in Section 4.1. In addition, we give a brief
summary of our proposed WDCD approach in Section 4.2.3.

4.2.1. Cloud activation maps for blocks via local pooling pruning

Local pooling operation is one common and essential part of con-
volutional neural networks. Typically, the local pooling operation is
utilized to reduce the cost of memory and computation, enlarge the
receptive field, and provide the translation invariance. However, the
use of local pooling is an infinitely strong prior that each unit should be
invariant to small translations. Local pooling is only useful when the

assumptions made by the prior are reasonably accurate. If a task relies
on preserving precise spatial information, then using local pooling on
all features can increase the training error (Goodfellow et al., 2016).
Furthermore, Ruderman et al. (2018) find that pooling layers are nei-
ther necessary nor sufficient for achieving the optimal form of de-
formation stability for natural image classification. Additionally,
pooling confers too much deformation stability for image classification
at initialization, and during training, networks have to learn to coun-
teract this inductive bias (Ruderman et al., 2018).

It is well known that deep CNNs (DCNNs) are generally composed of
multiple convolutional layers and local pooling layers. In addition, the
convolutional layers contain learnable weights, but local pooling layers
do not contain any weights and aim to pursue the shift-invariance and
rotation-invariance by decreasing the size of feature maps. Due to the
homogenization characteristic of cloud, shift and rotation are not the
critical factors in the cloud detection task. To a certain degree, the kinds
of cloud samples naturally cover the shift-rotation-invariance cases
when the volume of various training samples is large enough. Hence, it



Y. Li, et al.

Keeping all operations of the
trained deep networks

| et/ —{c
/
=S =

Image block

=

LULLL

1

Remote Sensing of Environment 250 (2020) 112045

Cloud activation map
(CAM)

2
]

Non-cloud activation
map (NCAM)

Conv

0[H{d

Pruning the LP operations of the
trained deep networks §

E

Image block

=

WT;WT

=

Cloud activation map,
(CAM)

Non-cloud activation
map (NCAM)

Fig. 6. The difference between deep networks with and without local pooling pruning (LPP). It is noted that we do not generate NCAM in this figure.

seems to be reasonable to use the convolutional layers as feature ex-
tractors and prune the local pooling layers in the testing phase to pursue
the higher resolution of the feature maps. In addition, this statement is
also verified in the experimental section.

Based on the aforementioned theory and the consideration that the
cloud detection task requires preserving precise spatial information, we
prune the local pooling layers from our cloud detection networks when
generating the CAM. and this operation is named as LPP. Extensive
experiments show that the LPP operation enhances the spatial resolu-
tion of the output CAM with the performance of networks remaining
stable. Fig. 6 depicts the difference between deep networks with and
without LPP when generating the CAM. The spatial resolution of CAM
increases significantly from 20 X 20 to 230 X 230 when we adopt the
LPP strategy. It is noted that, whether the LPP operation is utilized or
not, the spatial resolution of the generated CAM will be resized to
250 x 250 so that the CAM will correspond to the size of the input
image block.

Fig. 7 shows the comparison of the results generated by our method
with and without LPP. To better illustrate the superiority of LPP, we

used the synthetic image of the results. As depicted, the LPP dramati-
cally enhanced the quality (i.e., spatial resolution) of the CAM, which is
the key to detecting small and densely distributed objects. That is, the
LPP operation can be leveraged in DCNN-based detection tasks that
highly depend on the high spatial resolution of the output feature map,
such as small-object detection, UAV image object detection and so on.

Given one image block b, the feature map f of the last convolutional
layer can be calculated by Eq. (1) based on the convolutional weights C,
then the f is used to compute the activation value at each channel with
the GCP weights G. Due to the LPP operation, the feature map has a
larger size than the GCP weights so that the GCP weights are resized to
the same size as the feature maps before computation. After that we
adopt a linear adjustment (LA) operation by Eq. (4).

k
= B(fk) x f*

() )
where T¢ is the modified feature map of the k-th channel;

8() = f* ® G* denotes the activation value of the k-th channel of the
last convolutional layer with the aid of the GCP weights G; z() stands

Tk
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Fig. 7. The details of CAM computed with and without LPP. (a) Shows an input image block. (b) Shows the CAM of the block without LPP. (c) Illustrates the CAM of

the block. It is noted that (b) and (c) depict the color scale from blue (the low cloud probability) to red (the high cloud probability). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

for a statistic value such as the average or median of f.

The LA operation is adopted to adjust the value of f to the appro-
priate range. First, we multiply the f with its activation values, After
that the result will be divided by the average of f.

Furthermore, we calculate the CAM M? of the block b by Eq. (5).

; i O
Mb= ) Wix Th= ) Wix x fk
& = Wy ©

where Wi, k = 1, 2, ---, d stands for the cloud activation weight.

4.2.2. Cloud activation maps for extended scenes using sliding windows

Given one large RS image I, we obtain a set of overlapped blocks
{b1,by, -, by} by sliding windows from left to right and top to bottom.
We calculate the CAM of each block from {bq,bs,---,b,,} using Eq. (5).
To increase the detection efficiency, we first use the trained deep net-
works in Section 4.1 to classify the image blocks as cloud or non-cloud,
and only those blocks categorized as cloud are used to compute the
CAMs. Through mosaicking the block-level CAMs where the overlapped
regions are fused by the average voting, the CAM M of the image I can
be calculated by Eq. (6).

M'" = Mosaic(M?1, M?z,.--, MPm) (

©))
(7

To facilitate clarification, the specific process for generating the
CAM of one large RS image is visually shown in Fig. 8.

4.2.3. Generating the cloud mask by segmenting the cloud activation map
With the high-quality CAM, the binary cloud mask can be
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Cloud

Non-cloud

determined by a simple threshold segmentation algorithm. To restrain
omission errors of thin clouds and small clouds, we calculated the
threshold against a clear-sky surface by Eq. (7).

h=u+kxo @)

where k is an empirical constant,  denotes the average of the CAMs of
all negative samples in the training dataset, o stands for the standard
deviation of the CAMs of all negative samples in the training dataset,
and 7 denotes the threshold against clear-sky surface.

Based on the threshold # in Eq. (7), the binary cloud mask S of the
image I is calculated by Eq. (8).

. {255, if ML) > h

S'(Qj) = I
0, YM(G)<h 8)

Given one RS image, the visual results of the segmenting process
including the intermediate CAM and the final binary mask are visually
depicted in Fig. 9.

To facilitate understanding of the proposed method, we briefly
summarize the training and testing phases of our proposed WDCD ap-
proach in Fig. 10.

5. Experimental results

Section 5.1 first introduces the experimental setup of this paper.
From the prediction perspective, Section 5.2 uses the user's accuracy-
producer's accuracy (UA-PA) curves (Wang et al., 2017) and true po-
sitive rate-false positive rate (TPR-FPR) curves (Hanley, 1989) to

The large image

CAM of the original large
image

Fig. 8. The process of computing the cloud activation maps (CAM) of one large RS image.
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(b)

()

Fig. 9. The segmentation of CAM. (a) The original image, (b) The corresponding ground truth of (a), (c) The computed CAM of (a), (d) The final cloud mask

computed by segmenting the CAM (c).

evaluate the cloud detection performance of the CAMs. Moreover,
Section 5.3 reports quantitative detection results of our method as well
as some baselines via several comprehensive metrics for evaluation of
the cloud masks.

5.1. Experimental setup

In this section, we display the implementation details of our pro-
posed WDCD method. In our implementation, we refer to the archi-
tecture of the VGG-16 net (Simonyan and Zisserman, 2014) and modify
it based on our task. The details of the network structure are shown in
Table 3. The size of Conv +ReLU means s, X Si X Mgin X Neous Where si
denotes the size of convolutional kernel, n., and n.,, stands for the
numbers of input and output channel. and the size of Local Pooling and
Global Convolutional Pooling denotes s, X s,, where s, means the stride
of the pooling window, while the size of Fully Connected stands for
Nein X Meoue Which are the numbers of input and output channel. In the
whole deep networks, the strides of all convolutional layers are 1, and
zero padding is not used.

As far as the general parameters, we set them according to the re-
sults of our experiments and analysis. We employed the Adam

10

optimizer (Kingma and Ba, 2015) with the default parameter setting
except a learning rate that is decayed with iteration. The initial learning
rate is set to 0.0001. After each iterative epoch, the learning rate will be
multiplied by the learning rate decay which is empirically set to 0.9.
The max iterative time is set to 10. During the training phase, the inputs
of deep networks are image blocks with the size of 250 x 250, while
the testing phase requires generating the cloud mask for one large
image. Thus, the sliding window strategy is utilized to compute the
CAM. The sliding window size was set to 250 by 250, and the sliding
step was set to 125. The overlapped regions are fused by the average
voting. After computing the CAM, we choose the appropriate parameter
k to segment the CAM and generate the cloud detection mask.

All approaches including our proposed approach and other base-
lines are implemented by PyTorch and conducted on a Dell station with
8 Intel Core i7-9700 k processors, 32 GB of RAM, and the NVIDIA
GeForce RTX 2080Ti.

5.2. Performance evaluation on cloud activation map

To directly verify the cloud detection performance of the CAM, this
section adopts the pixel-level metrics in the saliency evaluation task
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Fig. 10. The flowchart of our proposed WDCD approach.

Table 3

The architecture of our proposed deep networks.
Layers Size
Convl + ReLU 3X3x4x64
Conv2 + ReLU 3X3X64x%x64
Local Pooling Layer (Pruned in the testing phase) 2X2
Conv3 + ReLU 3X3X64x128
Conv4 + ReLU 3X3x128x128
Local Pooling Layer (Pruned in the testing phase) 2Xx2
Conv5 + ReLU 3X3x128x256
Conv6 + ReLU 3X3 X256 X256
Conv7 + ReLU 3 X 3X256 X256
Local Pooling Layer (Pruned in the testing phase) 2Xx2
Conv8 + ReLU 3X3Xx256x512
Conv9 + ReLU 3X3x512x512
Convl0 + ReLU 3x3x512x1024
Global convolutional pooling layer 20%x20
Fully connected layer 1024 x 2

(Wang et al., 2017), which calculates the similarity between the esti-
mated map and the ground truth map. Section 5.2.1 introduces the
evaluation metrics, Section 5.2.2 quantitatively explains the char-
acteristic of LPP, and Section 5.2.3 gives the quantitative comparison
result with some competitive baselines.

5.2.1. Evaluation measures

By segmenting the CAM at different thresholds, we calculate the
pixel-level evaluation measures including user's accuracy (UA), pro-
ducer's accuracy (PA), true positive rate (TPR), and false positive rate
(FPR) values by comparing the segmented CAM with the ground truth
maps mentioned in Section 3.2. Additionally, the UA-PA curves (Wang
et al., 2017) and the TPR-FPR curves (Hanley, 1989) are taken to
evaluate the cloud detection performance of the CAM. These metrics
are calculated by:

11

UA= e ©
PA = % 10)
TR = TPT+7PFN an
FPR = FPI-:;—% 12)

where TP denotes the number of pixels whose ground truths (GT) and
predictions are both positive, that is, categorized as cloud. TN stands for
the number of pixels whose GTs and predictions are both negative (i.e.,
categorized as non-cloud). FN denotes the number of pixels whose GTs
are positive while predictions are negative. Finally, FP indicates the
number of pixels whose GTs are negative while predictions are positive.

5.2.2. Analysis of the local pooling pruning strategy

We specifically verify the effects of our proposed LPP operation by
modifying several baselines of cloud detection with the LPP operation
and comparing the cloud detection performance of the pairs such as
CAM with GAP (Zhou et al., 2016a) and CAM with GAP + LPP, CAM
with TSL (Li et al., 2018a, 2018b, 2018c) and CAM with TSL + LPP, our
proposed CAM with GCP, and our proposed CAM with GCP + LPP. As
depicted in Fig. 11, the results of methods with LPP achieve consider-
able improvements over those without LPP.

As aforementioned, in CAM with GCP + LPP, the local pooling
layers are kept in the training phase but pruned in the testing phase.
Furthermore, we verify the performance of our proposed deep learning
model without local pooling layers in the training phase. In other
words, this is a thorough solution of LPP where local pooling layers are
pruned in both training and testing phases, termed as CAM with
GCP + LPP*. Benefiting from the larger size of the GCP layer, which
increases from 20 X 20 to 230 x 230, CAM with GCP + LPP* naturally
owns better capability in exploiting the spatial variance than CAM with
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Fig. 11. The quantitative curves of different CAM generators with LPP or without it. (a), (c) and (e) show the UA-PA curves of CAM generators with LPP or without
LPP. (b), (d) and (f) show the TPR-FPR curves of CAM generators with LPP or without LPP.

GCP + LPP. It can be seen from Fig. 12 that CAM with GCP + LPP* feature maps in deep networks are much larger than they used to be.
performs better than CAM with GCP + LPP. However, since the local That costs much more memory occupation in the training phases.
pooling layers are pruned in the training phase, the intermediate Furthermore, the training time of CAM with GCP + LPP* is almost 10

12
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Fig. 12. The quantitative curves of GCP variants. (a), (c) and (e) show the UA-PA curves. (b), (d) and (f) depict the TPR-FPR curves.

times more than that of CAM with GCP + LPP. Actually, in the testing
phase, CAM with GCP + LPP* also costs much more time than CAM
with GCP + LPP*, which will be specifically discussed in the following
section.

As CAM with GCP and CAM with GCP + LPP adopt the same
training process, their running time equals each other. In addition, as
shown in Table 4, CAM with GCP + LPP* is the most time-consuming.
As a whole, CAM with GCP + LPP is recommended when the compu-
tational efficiency is a critical indicator. Of course, one can apply the
CAM with GCP + LPP* to pursue better performance when the running
time is allowed in the specific task.

5.2.3. Comparison with the state-of-the-art methods

To verify the superiority of our proposed method, we compare our
proposed method with the state-of-the-art methods. More specifically,
the baselines include the recently proposed weakly supervised deep
learning-based cloud detection method (Zou et al., 2019). In addition,
we also reimplement several recent object detection methods based on
weakly supervised deep learning in the computer vision and RS do-
mains as the baselines.

More specifically, the Generative Adversarial Training for Weakly
Supervised Cloud Matting (GCM) (Zou et al., 2019) formulates cloud
detection as a mixed energy separation process between foreground and
background images. Their model consists of three networks, a cloud
generator G, a cloud discriminator D, and a cloud matting network F,
where G and D aim to generate realistic and physically meaningful
cloud images by adversarial training, and F learns to predict the cloud
reflectance and attenuation. The predicted cloud reflectance is used to
compute the CAM. The network structure of CAM with GAP (Zhou
et al., 2016a, 2016b) is quite similar to the VGG-16 net (Simonyan and
Zisserman, 2014), while CAM with GAP replaces the fully connected
layer with a global average pooling layer. After the training stage, CAM
with GAP utilizes the activation weights to combine the feature map
and to generate the CAM, which is the same with our proposed method.
Li et al. (2018a, 2018b, 2018c) designs a two-stage-learning (TSL)
method called CAM with TSL based on CAM with GAP, which trains the

Table 4

Running time of methods with different training strategies.
Methods GCP GCP + LPP GCP + LPP*
Running time (hour) 13.5 13.5 140.2
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convolutional weights and the cloud activation weights in two different
stages and then computes the CAM in the same way as CAM with GAP.
In addition, we report the results of our proposed WDCD method under
three variants including CAM with GCP, CAM with GCP + LPP, and
CAM with GCP + LPP*.

It is worth noting that all the methods including the aforementioned
baselines and our proposed CAM with GCP + LPP receive the input of
image blocks cropped from the large image and compute the CAM of
each image block separately. Finally, the CAM of the whole large image
is generated via the sliding window approach. Fig. 13 shows the vi-
sualized results of the CAMs. As illustrated in Fig. 13, our proposed
CAM with GCP can intuitively outperform the baselines. Without any
further training cost, our proposed CAM with GCP + LPP can obtain
further improved results. In addition, our proposed CAM with
GCP + LPP* can obtain the best prediction performance.

In Fig. 14, we report the UA-PA curves and TPR-FPR curves of our
proposed method and the baselines. As shown in Fig. 14, our proposed
CAM outperforms the baselines by a large margin.

5.3. Performance evaluation on cloud mask detection

In the following, Section 5.3.1 introduces the metrics for evaluating
binary cloud masks, and Section 5.3.2 summarizes the quantitative
comparison result with the state-of-the-art methods.

5.3.1. Evaluation measures

Different from the pixel-level measures in Section 5.2, this section
uses several comprehensive metrics including overall accuracy (OA),
and F;_score. These metrics are calculated by:

TP + TN

0OA =
TP + TN + FP + FN (13)
F. score = 2 X UA X PA
- UA + PA 14)

The definitions of TP, TN, FP, FN and the calculations of UA and PA
have been listed in Section 5.2.1.

5.3.2. Comparison with the state-of-the-art methods

In this section, we further evaluate the quality of binary cloud de-
tection masks, which are generated by the following methods: GCM
(Zou et al., 2019), progressive refinement scheme (PRS) (Zhang and
Xiao, 2014), classification and assignment (CAA) (Simonyan and
Zisserman, 2014), CAM with GAP (Zhou et al., 2016a), CAM with TSL
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Fig. 13. The CAMs of testing images. (a) The original large testing images, (b) The corresponding ground truths of (a), (c) The GCM, (d) The CAMs with GAP, (e) The
CAMs with TSL, (f) Our proposed CAMs with GCP, (g) Our proposed CAMs with GCP + LPP, (h) Our proposed CAMs with GCP + LPP*. (c) to (h) Depict the color
scale from blue (low cloud probability) to red (high cloud probability). (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

(Li et al., 2018a), our proposed CAM with GCP, our proposed CAM with
GCP + LPP, and our proposed CAM with GCP + LPP*.

More specifically, PRS (Zhang and Xiao, 2014) constructs a sig-
nificance map, which highlights the difference between cloud regions
and non-cloud regions. Based on the significance map and the proposed
optimal threshold setting, it obtains a coarse cloud detection result,
which classifies the input aerial photograph into the candidate cloud
regions and non-cloud regions. To accurately detect the cloud regions
from the candidate cloud regions, it then constructs a robust detail map

14

derived from a multiscale bilateral decomposition to remove non-cloud
regions from the candidate cloud regions. Finally, a guided feathering is
performed to achieve the final cloud detection result, which detects
semitransparent cloud pixels around the boundaries of cloud regions.
CAA (Simonyan and Zisserman, 2014) uses DCNN to classify the image
blocks as containing cloud or not. Taking the block as a basic unit, CAA
can only predict the coarse cloud region, which has an obvious saw-
tooth effect. Fig. 15 depicts the visualized results of the cloud masks by
different methods. In addition, Table 5 reports the quantitative
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Fig. 14. The quantitative curves of our proposed method and the existing methods. (a) Shows the UA-PA curves. (b) Illustrates the TPR-FPR curves.

comparison results. As depicted in Table 5, our proposed WDCD
method with several variants obviously outperforms the state-of-the-art
methods. In addition, our proposed WDCD method based on CAM with
GCP + LPP performs better than our proposed WDCD method based on
CAM with GCP, which verifies the superiority of the presented LPP
strategy. Our proposed WDCD method based on CAM with GCP + LPP*
can achieve the best performance among all of the variants.

Furthermore, we also discuss the running time of various methods in
the online stage (i.e., the testing phase). Table 6 reports the average
running time of different methods in generating the cloud mask for one
large multispectral image whose size is approximately 4548 X 4544. As
shown in Table 6, the running time of our proposed CAM with GCP is
slightly longer than that of PRS, CAA, CAM with GAP, and CAM with
TSL and much shorter than that of GCM. As the local pooling layers are
pruned, the computational complexity of our proposed CAM with
GCP + LPP is naturally increased. As depicted in Table 6, our proposed
CAM with GCP + LPP costs much more time than our proposed CAM
with GCP, and our proposed CAM with GCP + LPP* costs much more
time in generating cloud masks than other methods including CAM with
GCP + LPP. Hence, researchers are suggested to select the appropriate
solution from CAM with GCP + LPP and CAM with GCP + LPP* based
on their specific demands.

6. Discussion

In the following, Section 6.1 provides the sensitivity analysis of the
critical parameters based on the validation dataset used in our experi-
ments. Section 6.2 shows the limitations of the work in this paper and
gives suggestions on how to further improve the method in the future.

6.1. Sensitivity analysis of critical parameters

In this section, we specifically analyzed the sensitivity of the critical
parameters based on the validation dataset. The critical parameters
include the depth d of the global convolutional pooling (GCP) layer and
the segmentation threshold parameter k.

We first trained the deep networks with d set to 512. To save
computational time, when evaluating the performance of deep network
under other d, we transfer the deep networks with d set to 512 and
finetune the deep networks with the new depth of the last convolutional
layer. Specifically, with other layers fixed, we finetune the last con-
volutional layer with the new depth, GCP layer and the fully connected
layer. With the depth of the last convolutional layer d (whose depth
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should be the same as the GCP layer) set to 256, 1024 and 2048, we
calculate the CAMs via different deep networks with different d.
Furthermore, based on CAMs on the validation dataset, we calculate the
UA-PA curves (Wang et al., 2017) and the TPR-FPR curves (Hanley,
1989). As depicted in Fig. 16, our proposed method is not very sensitive
to d, and the depth of 1024 (i.e., the yellow line) shows a little super-
iority to the others. Hence, d is empirically set to 1024 in our im-
plementation.

With the depth d of GCP layer fixed to 1024, we further analyze the
sensitivity of the threshold parameter k. To comprehensively measure
the performances of cloud masks under different values of k, we choose
metrics for classification including OA and F;_score. The average values
of these evaluation metrics on the validation dataset are utilized to
analyze the cloud detection performance under different k. As illu-
strated in Table 7, the best performance is obtained when k = 0.6. It is
noted that the performance would be improved if we further tune the
parameters d and k. We do not do so because the process is quite time-
consuming. It can be evaluated in future work when more computa-
tional resources are available.

6.2. Limitations and future perspectives

Since the distributions of shadows are often around the cloud
boundary, it is very hard to find an image block covered with shadows
only, which results in a lack of training samples and an inability to
detect shadows. Nevertheless, based on the cloud detection results, the
existing cloud and shadow detection method (Li et al., 2017) can be
used to solve the shadow detection problem. As shown in our experi-
ments, it is worth noting that the existence of shadow does not influ-
ence the cloud detection performance of our proposed WDCD method.

Although our proposed WDCD method only requires block-level
binary labels to address cloud detection, the performance of the method
highly depends on the classification accuracy of the backbone deep
networks in the training phase. Moreover, the ability of the feature map
to represent useful information also matters significantly. In fact,
compared with the VGG-16 net (Simonyan and Zisserman, 2014) used
in our implementation, more advanced backbone deep networks have
been proposed. For example, ResNet (He et al., 2016), which applies a
deep residual network with a greatly increased depth to easily achieve
higher accuracy than previous networks; and DenseNet (Huang et al.,
2017), which connects each layer to every other layer in a feed-forward
fashion to strengthen feature propagation and encourage feature reuse.
Such backbone deep networks possess better abilities in terms of feature
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Fig. 15. The cloud masks of testing images where the red color regions stand for the cloud masks. (a) The original large testing images, (b) the corresponding GT of
(a), (c) the cloud masks of GCM, (d) the cloud masks of PRS, (e) the cloud masks of CAA, (f) the cloud masks of CAM with GAP, (g) the cloud masks of CAM with TSL,
(h) the cloud masks of our proposed WDCD method based on CAM with GCP, (i) the cloud masks of our proposed WDCD method based on CAM with GCP + LPP, (j)
the cloud masks of our proposed WDCD method based on CAM with GCP + LPP*. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Table 5

Comparison results between our proposed method and the existing methods.

Table 6
The average running time of methods in generating the cloud mask.

Methods OA F,_score Methods Running time (Second)
GCM (Zou et al., 2019) 0.7906 0.3267 GCM (Zou et al., 2019) 32.6

PRS (Zhang and Xiao, 2014) 0.8789 0.6137 PRS (Zhang and Xiao, 2014) 22.1

CAA (Simonyan and Zisserman, 2014) 0.9172 0.7701 CAA (Simonyan and Zisserman, 2014) 24.2

CAM with GAP (Zhou et al., 2016a) 0.9410 0.7961 CAM with GAP (Zhou et al., 2016a) 24.4

CAM with TSL (Li et al., 2018a) 0.9335 0.8034 CAM with TSL (Li et al., 2018a) 24.3

Our proposed WDCD method based on CAM with GCP 0.9569 0.8421 Our proposed WDCD method based on CAM with GCP 25.7

Our proposed WDCD method based on CAM with GCP + LPP 0.9596 0.8504 Our proposed WDCD method based on CAM with 91.2

Our proposed WDCD method based on CAM with 0.9666  0.8855 GCP + LPP

GCP + LPP* Our proposed WDCD method based on CAM with 145.0

GCP + LPP*
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Fig. 16. The quantitative curves of our proposed method under different d (i.e., depths of GCP). (a) Shows the UA-PA curves and (b) illustrates the TPR-FPR curves.

Table 7
Performance of our proposed WDCD method under different k.
k=02 k=04 k = 0.6 k=108 k =1.0
OA 0.9327 0.9331 0.9344 0.9333 0.9325
F1_score 0.9219 0.9223 0.9234 0.9224 0.9216

representation and may be employed to enhance the performance of
our proposed WDCD method in future work. Additionally, it is worth-
while to further boost cloud detection performance under different
conditions (e.g., different cloud types and different underlying ter-
rains).

7. Conclusion

This paper proposes a new learning framework that can train deep
networks with only block-level binary labels, which indicates whether
the image block contains cloud or not, and the trained deep networks
can detect the pixel-level cloud mask. To improve the ability of the
feature map to represent the spatial context and textural and semantic
information, we propose a new global pooling operation called GCP,
which can learn the channel-independent convolutional weights of each
channel of the feature map. After the iterative backward propagations,
the feature map possesses the ability to represent the region of the
cloud, which is used to compute the CAM. Furthermore, we propose the
LPP to improve the quality and spatial resolution of the feature map,
which is used to compute the CAM. After adaptively segmenting the
CAM, the pixel-level cloud mask is obtained. Even under this extremely
weak supervision, the proposed WDCD approach achieves promising
cloud detection results and outperforms the state-of-the-art approaches.
We released a new cloud detection dataset, which may benefit the rapid
advance of the cloud detection direction. As a whole, the cloud detec-
tion results can be utilized in many tasks such as shadow detection (Li
et al., 2017) and cloud removal (Schmitt et al., 2019), and further
support continuous cartography and wide-range environmental eva-
luation. In future work, we will exploit more advanced deep network
architectures to improve the performance of our proposed WDCD
method under different conditions and explore the joint detection of
cloud and shadow.

17

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

This work was supported by the National Key Research and
Development Program of China under grant 2018YFB0505003; the
National Natural Science Foundation of China under grant 41971284;
the China Postdoctoral Science Foundation under grant 2016M590716
and 2017T100581; the Hubei Provincial Natural Science Foundation of
China under grant 2018CFB501; and the Fundamental Research Funds
for the Central Universities under grant 2042020kf0218.

References

Bilen, H., Vedaldi, A., 2016. Weakly supervised deep detection networks. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2846-2854.

Chai, D., Newsam, S., Zhang, H.K., Qiu, Y., Huang, J., 2019. Cloud and cloud shadow
detection in Landsat imagery based on deep convolutional neural networks. Remote
Sens. Environ. 225, 307-316.

Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A., 2018. DeepLab: semantic
image segmentation with deep convolutional nets, atrous convolution, and fully
connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834-848.

Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
1251-1258.

Cinbis, R., Verbeek, J., Schmid, C., 2017. Weakly supervised object localization with
multi-fold multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 39,
189-203.

Francis, A., Sidiropoulos, P., Muller, J.P., 2019. CloudFCN: accurate and robust cloud
detection for satellite imagery with deep learning. Remote Sens. 11 (19), 2312.
Gao, M., Li, A., Yu, R., Morariu, V.I., Davis, L.S., 2018. C-wsl: Count-guided weakly su-
pervised localization. In: Proceedings of the European Conference on Computer

Vision, pp. 152-168.

Goodfellow, ., Bengio, Y., Courville, A., 2016. Deep Learning. MIT press.

Hanley, J.A., 1989. Receiver operating characteristic (ROC) methodology: the state of the
art. Crit. Rev. Diagn. Imaging 29 (3), 307-335.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In:
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 770-778.

Hollstein, A., Segl, K., Guanter, L., Brell, M., Enesco, M., 2016. Ready-to-use methods for
the detection of clouds, cirrus, snow, shadow, water and clear sky pixels in Sentinel-2
MSI images. Remote Sens. 8 (8), 666.

Hsu, K.J., Lin, Y.Y., Chuang, Y.Y., 2019. Weakly supervised salient object detection by
learning a classifier-driven map generator. IEEE Trans. Image Process. 28,
5435-5449.

Huang, C., Thomas, N., Goward, S.N., Masek, J.G., Zhu, Z., Townshend, J.R., Vogelmann,


http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0005
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0005
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0010
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0010
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0010
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0015
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0015
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0015
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0020
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0020
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0020
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0025
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0025
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0025
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0030
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0030
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0035
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0035
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0035
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0040
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0045
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0045
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0050
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0050
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0050
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0055
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0055
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0055
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0060
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0060
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0060
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0065

Y. Li, et al.

J.E., 2010. Automated masking of cloud and cloud shadow for forest change analysis
using Landsat images. Int. J. Remote Sens. 31 (20), 5449-5464.

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4700-4708.

Ishida, H., Oishi, Y., Morita, K., Moriwaki, K., Nakajima, T.Y., 2018. Development of a
support vector machine based cloud detection method for MODIS with the adjust-
ability to various conditions. Remote Sens. Environ. 205, 390-407.

Jeppesen, J.H., Jacobsen, R.H., Inceoglu, F., Toftegaard, T.S., 2019. A cloud detection
algorithm for satellite imagery based on deep learning. Remote Sens. Environ. 229,
247-259.

King, M.D., Platnick, S., Menzel, W.P., Ackerman, S.A., Hubanks, P.A., 2013. Spatial and
temporal distribution of clouds observed by MODIS onboard the Terra and Aqua
satellites. IEEE Trans. Geosci. Remote Sens. 51 (7), 3826-3852.

Kingma, D.P., Ba, J.L., 2015. Adam: A method for stochastic optimization. In: Proceedings
of International Conference on Learning Representations, pp. 1-13.

Kolesnikow, A., Lampert, C., 2016. Seed, expand and constrain: three principles for
weakly-supervised image segmentation. In: Proceedings of the 14th European
Conference on Computer Vision. Springer, pp. 695-711.

Krizhevsky, A., Sutskever, L., Hinton, G., 2012. Imagenet classification with deep con-
volutional neural networks. In: Proceedings of the 26th Annual Conference on Neural
Information Processing Systems, pp. 1097-1105.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature. 521, 436-444.

Li, Z., Shen, H., Li, H,, Xia, G., Gamba, P., Zhang, L., 2017. Multi-feature combined cloud
and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sens.
Environ. 191, 342-358.

Li, Y., Zhang, Y., Huang, X., Yuille, A.L., 2018a. Deep networks under scene-level su-
pervision for multi-class geospatial object detection from remote sensing images.
ISPRS J. Photogramm. Remote Sens. 146, 182-196.

Li, Y., Zhang, Y., Huang, X., Zhu, H., Ma, J., 2018b. Large-scale remote sensing image
retrieval by deep hashing neural networks. IEEE Trans. Geosci. Remote Sens. 56 (2),
950-965.

Li, Y., Zhang, Y., Huang, X., Ma, J., 2018c. Learning source-invariant deep hashing
convolutional neural networks for cross-source remote sensing image retrieval. IEEE
Trans. Geosci. Remote Sens. 56 (11), 6521-6536.

Li, Y., Zhang, Y., Zhu, Z., 2020. Error-tolerant deep learning for remote sensing image
scene classification. In: IEEE Transactions on Cybernetics, (in press).

Mohajerani, S., Saeedi, P., 2019. Cloud-net: an end-to-end cloud detection algorithm for
Landsat 8 imagery. arXiv arXiv: 1901.10077.

Oishi, Y., Ishida, H., Nakamura, R., 2018. A new Landsat 8 cloud discrimination algorithm
using thresholding tests. Int. J. Remote Sens. 39, 9113-9133.

Pathak, D., Krahenbuhl, P., Darrell, T., 2015. Constrained convolutional neural networks
for weakly supervised segmentation. In: Proceedings of IEEE International
Conference on Computer Vision, pp. 1796-1804.

Pinheiro, P., Collobert, R., 2015. From image-level to pixel-level labeling with convolu-
tional networks. In: Proceedings of IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 1713-1721.

Qiu, S., He, B., Zhu, Z., Liao, Z., Quan, X., 2017. Improving Fmask cloud and cloud
shadow detection in mountainous area for Landsats 4-8 images. Remote Sens.
Environ. 199, 107-119.

Qiu, S., Zhu, Z., He, B., 2019. Fmask 4.0: improved cloud and cloud shadow detection in
landsats 4-8 and Sentinel-2 imagery. Remote Sens. Environ. 231, 111205.

Ruderman, A., Rabinowitz, N.C., Morcos, A.S., 2018. Pooling is neither necessary nor
sufficient for appropriate deformation stability in CNNs. arXiv arXiv: 1804.04438.

Schmitt, M., Hughes, L., Qiu, C., Zhu, X., 2019. Aggregating cloud-free Sentinel-2 images
with Google earth engine. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.
145-152.

Segal-Rozenhaimer, M., Li, A., Das, K., Chirayath, V., 2020. Cloud detection algorithm for
multi-modal satellite imagery using convolutional neural-networks (CNN). Remote
Sens. Environ. 237, 111446.

Shan, N., Zheng, T.Y., Wang, Z.S., 2009. Onboard real-time cloud detection using re-
configurable FPGAs for remote sensing. In: Proceedings of International Conference
on Geoinformatics, pp. 1-5.

Shao, Z., Deng, J., Wang, L., Fan, Y., Sumari, N., Cheng, Q., 2017. Fuzzy autoencode
based cloud detection for remote sensing imagery. Remote Sens. 9, 311.

Shao, Z., Pan, Y., Diao, C., Cai, J., 2019. Cloud detection in remote sensing images based
on multiscale features-convolutional neural network. IEEE Trans. Geosci. Remote
Sens. 57, 4062-4076.

Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-scale
Image Recognition. arXiv preprint. arXiv. arXiv: 1409.1556.

Singh, K.K., Lee, Y.J., 2019. You reap what you sow: using videos to generate high pre-
cision object proposals for weakly-supervised object detection. In: Proceedings of the

18

Remote Sensing of Environment 250 (2020) 112045

IEEE Conference on Computer Vision and Pattern Recognition, pp. 9414-9422.

Tan, Y., Qi, J,, Ren, F., 2016. Real-time cloud detection in high resolution images using
maximum response filter and principle component analysis. In: Proceedings of IEEE
International Geoscience and Remote Sensing Symposium, pp. 6537-6540.

Tan, Y., Xiong, S., Li, Y., 2018. Automatic extractionof built-up areas from panchromatic
and multispectral remote sensing images using double-stream deep convolutional
neural networks. IEEE J. Select. Top. Appl. Earth Observ. Remote Sensing. 11 (11),
3988-4004.

Tang, P., Wang, X., Huang, Z., Bai, X., Liu, W., 2017. Deep patch learning for weakly
supervised object classification and discovery. Pattern Recogn. 71, 446-459.

Tang, M., Djelouah, A., Perazzi, F., Boykov, Y., Schroers, C., 2018a. Normalized cut loss
for weakly-supervised cnn segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1818-1827.

Tang, P., Wang, X., Wang, A., Yan, Y., Liu, W., Huang, J., Yuille, A., 2018b. Weakly
supervised region proposal network and object detection. In: Proceedings of the
European Conference on Computer Vision, pp. 352-368.

Tao, C., Mi, L., Li, Y., Qi, J., Xiao, Y., Zhang, J., 2019a. Scene context-driven vehicle
detection in high-resolution aerial images. IEEE Trans. Geosci. Remote Sensing. 57
(10), 7339-7351.

Tao, C., Qi, J., Li, Y., Wang, H., Li, H., 2019b. Spatial information inference net: road
extraction using road-specific contextual information. ISPRS J. Photogramm. Remote
Sens. 158, 155-166.

Wan, F., Wei, P., Jiao, J., Han, Z., Ye, Q., 2018. Min-entropy latent model for weakly
supervised object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1297-1306.

Wang, L., Lu, H., Wang, Y., Feng, M., 2017. Learning to detect salient objects with image-
level supervision. In: Proceedings of the 2017 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 136-145.

Wang, J., Liu, C., Yao, B., Min, M., Letu, H., Yin, Y., Yung, Y.L., 2019a. A multilayer cloud
detection algorithm for the Suomi-NPP visible infrared imager radiometer suite
(VIIRS). Remote Sens. Environ. 227, 1-11.

Wang, L., Li, Q., Zhou, Y., 2019b. Multiple-instance discriminant analysis for weakly
supervised segment annotation. IEEE Trans. Image Process. 28, 5716-5728.

Weli, Y., Liang, X., Chen, Y., Shen, X., Cheng, M., Feng, J., Zhao, Y., Yan, S., 2016. Stc: a
simple to complex framework for weakly-supervised semantic segmentation. IEEE
Trans. Pattern Anal. Mach. Intell. 39, 2314-2320.

Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., Huang, T.S., 2018. Revisiting dilated con-
volution: A simple approach for weakly-and semi-supervised semantic segmentation.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pPp. 7268-7277.

Wieland, M., Li, Y., Martinis, S., 2019. Multi-sensor cloud and cloud shadow segmentation
with a convolutional neural network. Remote Sens. Environ. 230, 111203.

Wilson, M.J., Oreopoulos, L., 2013. Enhancing a simple MODIS cloud mask algorithm for
the Landsat data continuity mission. IEEE Trans. Geosci. Remote Sens. 51, 723-731.

Xu, M., Jia, X., Pickering, M., Jia, S., 2019. Thin cloud removal from optical remote
sensing images using the noise-adjusted principal components transform. ISPRS J.
Photogramm. Remote Sens. 149, 215-225.

Yang, Z., Mahajan, D., Ghadiyaram, D., Nevatia, R., Ramanathan, V., 2019. Activity
driven weakly supervised object detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2917-2926.

Zhang, Q., Xiao, C., 2014. Cloud detection of RGB color aerial photographs by progressive
refinement scheme. IEEE Trans. Geosci. Remote Sens. 52 (11), 7264-7275.

Zhang, Y., Wen, F., Gao, Z., Ling, X., 2019. A coarse-to-fine framework for cloud removal
in remote sensing image sequence. IEEE Trans. Geosci. Remote Sens. 57, 5963-5974.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., 2014. Object detectors emerge
in deep scene cnns. arXiv. arXiv: 1412.6856.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., 2016a. Learning deep features
for discriminative localization. In: Proceedings of the 2016 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 2921-2929.

Zhou, G., Zhou, X., Yue, T., Liu, Y., 2016b. An optional threshold with SVM cloud de-
tection algorithm and DSP implementation. Int. Arch. Photogramm. Remote Sens.
Spat. Inf. Sci. - ISPRS Arch. 41, 771-777.

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A., 2018. Places: a 10 million
image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40,
1452-1464.

Zhu, Z., Wang, S., Woodcock, C.E., 2015. Improvement and expansion of the Fmask al-
gorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and sentinel 2
images. Remote Sens. Environ. 159, 269-277.

Zou, Z., Li, W., Shi, T., Shi, Z., Ye, J., 2019. Generative adversarial training for weakly
supervised cloud matting. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 201-210.


http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0065
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0065
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0070
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0070
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0070
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0075
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0075
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0075
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0080
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0080
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0080
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0085
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0085
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0085
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0090
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0090
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0095
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0095
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0095
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0100
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0100
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0100
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0105
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0110
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0110
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0110
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0115
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0115
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0115
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0120
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0120
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0120
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0125
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0125
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0125
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0130
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0130
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0135
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0135
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0140
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0140
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0145
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0145
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0145
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0150
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0150
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0150
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0155
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0155
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0155
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0160
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0160
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0165
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0165
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0170
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0170
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0170
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0175
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0175
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0175
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0180
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0180
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0180
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0185
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0185
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0190
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0190
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0190
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0195
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0195
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0200
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0200
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0200
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0205
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0205
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0205
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0210
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0210
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0210
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0210
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0215
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0215
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0220
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0220
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0220
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0225
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0225
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0225
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0230
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0230
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0230
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0235
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0235
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0235
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0240
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0240
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0240
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0245
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0245
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0245
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0250
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0250
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0250
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0255
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0255
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0260
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0260
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0260
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0265
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0265
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0265
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0265
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0270
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0270
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0275
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0275
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0280
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0280
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0280
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0285
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0285
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0285
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0290
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0290
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0300
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0300
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0305
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0305
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0310
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0310
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0310
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0315
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0315
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0315
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0320
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0320
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0320
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0325
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0325
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0325
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0330
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0330
http://refhub.elsevier.com/S0034-4257(20)30415-6/rf0330

	Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning
	1 Introduction
	2 Related work
	2.1 Weakly supervised deep learning
	2.2 Cloud detection in RS imagery

	3 Dataset description
	3.1 The training dataset with block-level labels
	3.2 The validation and testing dataset with pixel-level labels

	4 Methodology
	4.1 Learning deep networks under block-level supervision
	4.2 Pixel-level cloud detection using the trained deep networks
	4.2.1 Cloud activation maps for blocks via local pooling pruning
	4.2.2 Cloud activation maps for extended scenes using sliding windows
	4.2.3 Generating the cloud mask by segmenting the cloud activation map


	5 Experimental results
	5.1 Experimental setup
	5.2 Performance evaluation on cloud activation map
	5.2.1 Evaluation measures
	5.2.2 Analysis of the local pooling pruning strategy
	5.2.3 Comparison with the state-of-the-art methods

	5.3 Performance evaluation on cloud mask detection
	5.3.1 Evaluation measures
	5.3.2 Comparison with the state-of-the-art methods


	6 Discussion
	6.1 Sensitivity analysis of critical parameters
	6.2 Limitations and future perspectives

	7 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References




