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Attention boosted bilinear pooling for remote sensing image
retrieval
Yameng Wanga, Shunping Jia, Meng Lub and Yongjun Zhanga

aSchool of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China; bDepartment of
Physical Geography, Utrecht University, Utrecht, The Netherlands

ABSTRACT
Remote sensing image retrieval is to find the most identical or similar
images to a query image in the vast archive of remote sensing images.
A key process is to extract themost distinctive features. In this study,we
introduce a second-order pooling named compact bilinear pooling
(CBP) into convolutional neural networks (CNNs) for remote sensing
image retrieval. The retrieval algorithm has three stages, pretraining,
fine-tuning and retrieval. In the pretraining stage, two classic CNN
structures, VGG16 and ResNet34, are pretrained respectively with the
ImageNet consisting of close-range images. A CBP layer is introduced
before the fully connected layers in the two networks. To extract
globally consistent representations, a channel and spatial integrated
attention mechanism is proposed to refine features from the last
convolution layer and the features are used as the input of the CBP.
In the fine-tuning stage, the new network is fine-tuned on a remote
sensing dataset to train discriminable features. In the retrieval stage,
the network, with fully connected layers being replaced by a PCA
(principal component analysis) module, is applied to new remote
sensing datasets. Our retrieval algorithm with the combination of CBP
and PCA obtained the best performance and outperformed several
mainstreampoolingor encodingmethods such as full-connected layer,
IFK (Improved Fisher Kernel), BoW (Bag-of-Words) andmaxpooling, etc.
The channel and spatial attention mechanism contributes to the CBP
based retrieval method and obtained the best performance on all the
datasets, as well as outperformed several recent attention methods.
Source code is available at http://study.rsgis/whu.edu.cn/pages/
download.
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1. Introduction

Content-based image retrieval (CBIR) searches and retrieves the most similar images to
a query image from a large dataset. The key process of the CBIR is to extract distinctive
features to represent an image labelled with a category. The CBIR can be roughly classified
by the three levels of features, i.e. low, middle, and high, that are used.

A low-level representation describes features using the spectrum (Vellaikal, Kuo, and
Dao 1995; Bretschneider, Cavet, and Kao 2002), texture (Du Buf, Kardan, and Spann 1990;
Ma and Manjunath 1996), gradient, shape, or a combination of them. Edge histogram
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(Park, Jeon, and Won 2000), grey-level co-occurrence matrix (Haralick, Shanmugam, and
Dinstein 1973), Gabor wavelet (Rangayyan et al. 2000), local binary patterns (LBP) (Ojala,
Pietikainen, and Maenpaa 2002) and its variations (Zhao and Pietikäinen 2007; Zhang, Yao,
and Liu 2008; Jian et al. 2008) are common texture analysis methods used in remoting
sensing image retrieval. The scale-invariant feature transform (SIFT) feature (Lowe 2004) is
a gradient-based feature with scale, rotation, and partial illumination invariance, many
features have been developed upon it (Philbin et al. 2010; Arandjelović and Zisserman
2012). Speeded up robust features (SURF) (Bay, Tuytelaars, and Van Gool 2006), oriented
FAST and rotated BRIEF (ORB) (Rublee et al. 2011), histogram of oriented gradient (HOG)
(Dalal and Triggs 2005) and Haar (Papageorgiou, Oren, and Poggio 1998; Viola and Jones
2001; Lienhart and Maydt 2002) are all classic shape-based features. Shape features were
also used in hyperspectral remote sensing image retrieval (Du et al. 2006). Prasad, Gupta,
and Biswas (2001) proposed a combined index integrating colour and shape features,
whereas Choraś, Andrysiak, and Choraś (2007) integrated colour, texture and shape
information.

The mid-level representation in CBIR is typically generated from aggregating low-level
local features into a global representation. Compared to low-level features, mid-level
representations are commonly more robust to scale, rotation, and illumination changes.
Bag-of-visual-words (BoW) (Sivic and Zisserman 2003) uses a k-means algorithm to cluster
low-level feature vectors such as SIFT and SURF, to generate visual words that describe an
object or image. Spatial pyramid matching (Lazebnik, Schmid, and Ponce 2006) adds
a hierarchical pyramid structure to the BoW to utilize spatial information. The improved
fisher kernel (IFK) (Perronnin, Sánchez, and Mensink 2010aa) uses a gaussian mixture
model (GMM) to build a visual dictionary. Vector of locally aggregated descriptors (VLAD)
(Jégou et al. 2010), a simplified FK (Perronnin, et al. 2010b), considers the clustering centre
nearest to a feature to simplify the computation. Based on locally linear embedding (LLE)
(Roweis and Saul 2000), the locality-constrained linear coding (LLC) (Wang et al. 2010)
encoded SIFT features with maxpooling. Tolias, Furon, and Jégou (2014) proposed the
orientation covariant embedding without codebook to obtain a single vector representa-
tion. Jégou, Douze, and Schmid (2008) utilized hamming embedding to maintain the
discriminatory power of descriptors with lowmemory consumption. Jégou and Zisserman
(2014) employed a novel embedding method to combine local descriptors such as SIFT
and SURF and limited the interference between them by democratizing their contribu-
tions at the aggregation stage.

The high-level representation uses richer semantic information to identify the category
an image belongs to or to detect objects. Among the machine learning methods (Wan
et al. 2014; Babenko and Lempitsky 2015; Yue-Hei Ng, Yang, and Davis 2015; Gordo et al.
2016) that have been developed and applied to extract high-level features, deep learning
(Lecun, Bengio, and Hinton 2015) has shown its strength and attracted a lot of interests.
Convolutional neural network (CNN) is a representative architecture for image processing,
widely used CNNs are AlexNet (Krizhevsky, Sutskever, and Hinton 2012), GoogleNet
(Szegedy et al. 2015), VggNet (Simonyan and Zisserman 2015), and ResNet (He et al. 2016).

In CNN-based image classification or retrieval, the two-dimensional high-level features
learned by the convolutional layers are commonly converted to a global vector descriptor
through pooling or encoding methods for similarity measure. Compared with popular
encoding methods such as fully connected (FC) layers, studies of pooling methods are
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relatively few. The pooling methods can be divided into general pooling (such as the
widely used maxpooling and average pooling) and overlapping pooling where the stride
is smaller than the length of a sliding window. Unrestricted to the first-order pooling
method, Carreira et al. (2012) proposed a second-order pooling approach and applied it to
semantic segmentation. Though this approach has obtained improved results, it comes
with a notably high computational burden.

Inspired by the second-order pooling, Lin, RoyChowdhury, and Maji (2015) added
a bilinear pooling method to CNNs for fine-grained classification. The main idea of the
bilinear CNN is to use the matrix outer product to combine two 2D feature maps derived
from the CNN and output a 1D vector as a global representation. However, the outer
product operation in bilinear representation squares the dimension of feature maps,
which may cause huge computing and memory burden. The compact bilinear pooling
(CBP) method (Gao et al. 2016) reduced the dimension of features by two orders of
magnitude with little loss of precision by using a polynomial kernel function such as
random Maclaurin (Kar and Karnick 2012) or tensor sketch (Pham and Pagh 2013).

Bilinear pooling calculates the outer product of outputs from different feature extrac-
tors at the same spatial location and computes sum pooling to obtain bilinear features.
The outer product captures the pairwise correlation between the feature channels, which
is translation invariant. Bilinear combination, therefore, provides a stronger representa-
tion than a linear model and performs comparable to or higher than the output of either
of the CNN branch it encoded. The second-order pooling method may be more suitable
for the retrieval of optical remote sensing data, which is complex, variable and highly non-
linear due to the changes of atmospheric conditions, illumination, viewing angles, and soil
moisture. However, the bilinear pooling strategy has not yet been applied to the retrieval
of remote sensing images.

In recent years, attention mechanism, which is inspired by the visual mechanism of
human eyes, has boosted the performances of many CNN-based vision tasks (Shimaoka
et al. 2016; Fu, Zheng, and Mei 2017; Zhao et al. 2017). Wang et al. (2017) designed
a stackable module that merged a trunk-and-mask attention. Squeeze-and-excitation
networks (SENet) (Hu, Shen, and Sun 2018) proposed a squeeze-and-excitation operation
to realize feature recalibration and improved the classification accuracy. Convolutional
block attention module (CBAM) (Woo et al. 2018) conducted a spatial and a channel
attention successively. The most recent selective kernel networks (SKNet) (Li et al. 2019)
fused attention boosted multiple-scale features to realize the approximate adaptive
selection of receptive field.

Currently, the attention methods are mainly developed for refining a single feature
map. As the CBP requires two feature maps as input, special attention modules should be
developed to utilize the complementary advantages of two features.

In this paper, first, we extend the CBP designed for fine-grained segmentation and
object recognition to remote sensing image retrieval. We introduce a CBP layer to
translate the feature maps obtained by a CNN into a global vector representation,
followed by a PCA (principal component analysis) to reduce dimensionality and improve
the retrieval efficiency. It is found that our CBP and PCA combination outperforms all the
other pooling and encoding methods such as fully connected layer, IFK, BoW, and
maxpooling in various remote sensing datasets. Second, we develop a spatial-and-
channel joint attention mechanism to extract attention boosted CNN features for CBP.
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We utilize a spatial and a channel attention module to produce two branches of feature
maps in a ResNet backbone as the bivariate inputs of the CBP. This strategy, instead of
using two copies of CNN features as inputs as most related studies have done, compre-
hensively improves the CBP’s global consistent representation capacity and obtained the
best performance on all the test datasets.

In section 2, we introduce the compact bilinear pooling, the network structure, and the
attention modules designed for CBP. Results of the experiments are presented in section 3
and discussed in section 4. In section 5, we summarize the paper.

2. Methods

2.1. Compact bilinear pooling

The bilinear pooling is originally proposed in (Lin, RoyChowdhury, and Maji 2015). For the
feature f at the position l∈L of an image I∈I, a bilinear combination with an outer product is:

bilinearðl; I; fÞ ¼ fðl; IÞTfðl; IÞ (1)

If the number of channels of the original feature map is M, then the dimension of the
matrix obtained after the bilinear combination is M × M. A bilinear vector is obtained
through summing all the M × M matrixes at all locations:

BðIÞ ¼
X
l2L

bilinearðl; I; fÞ ¼
X
l2L

fðl; IÞTfðl; IÞ (2)

The bilinear vector B(I) is then transformed to the corresponding normalized vector z using
a signed square-root, i.e. y = sign(x)(x)°.5, following the L2 normalization, i.e. z = y/||y||2.

The fully bilinear pooling has shown advantages in fine-grained segmentation, but
with the problem of large memory consuming and computational overhead. The recent
compact bilinear pooling (CBP, Gao et al. 2016) remarkably reduces the parameters of the
bilinear pooling through a kernelized analysis. Let F and G represent two global descrip-
tors produced from CNNs, and f and g represent the local features at the position s∈S and
u∈U respectively. The inner product of the two bilinear features is:

BðFÞ;BðGÞh i ¼
X
s2S

f sf
T
s ;
X
u2U

gug
T
u

* +

¼
X
s2S

X
u2U

f sf
T
s ; gug

T
u

� �
¼

X
s2S

X
u2U

f s;guh i2

A kernel method attempts to represent <fs, gu>
2 with an approximate kernel function k(f, g),

where a mapping Φ(·) with much smaller dimension than M × M meets the requirement of
<Φ(f), Φ(g)> ≈ k(f, g). Thus,

INTERNATIONAL JOURNAL OF REMOTE SENSING 2707



BðFÞ;BðGÞh i ¼
X
s2S

X
u2U

f s;guh i2

�
X
s2S

X
u2U

ΦðfÞ;ΦðgÞh i

¼ CðFÞ; CðGÞh i;

where

CðFÞ :¼
X
s2S

Φðf sÞ

In this paper, the Tensor Sketch (TS) (Pham and Pagh 2013) is chosen for the low
dimension mapping Φ(f).

Figure 1 shows a typical process using a CBP for pooling CNN features, where the CBP
takes the last features of two CNN branches as input and outputs a 1D vector
representation.

2.2. Network structure

We designed a three-stage remote sensing image retrieval network based on CBP. To
achieve efficient image retrieval, we use two representative light CNN structures, VGG16
and ResNet34, for feature map extraction. In the first stage, the parameters are pretrained
on the ImageNet dataset (Deng et al. 2009), and the lower level features, i.e. the first
fourth convolutional layers in the VGG (Figure 2(a)) and the first three building blocks in
the ResNet34 (Figure 2(b)), are kept fixed.

The second stage fine-tunes the unfixed parameters in the networks with a remote
sensing dataset, which translates the high semantic representations of close-range object
or scenes learned from the ImageNet to the representations of specific remote sensing
objects or land covers. In Figure 2, the CBP layer is right after the last convolution layer of
the VGG or ResNet to obtain translation-invariant global representations. Translation
invariance is helpful for remote sensing data retrieval as instances of an object usually
lie in different locations in the same dataset or between training and retrieval datasets.
Two fully connected layers (FCs) follow the CBP to obtain more compact features and the
last FC has the dimension equal to the number of categories of the image dataset.

Figure 1. Compact bilinear pooling for CNN features.
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The third stage is to search a query image in a new dataset to retrieve similar images
with the fine-tuned model at the second stage. We replace the FCs with a PCA module.
The reason is the FC layers are heavily impacted by the original training dataset and
cannot be generalized to a target dataset. PCA, which maps n-dimension features from
the CBP to orthogonal k-dimension features, depends only on the more general CBP
descriptors and has a better generalization ability.

2.3. Attention modules for CBP

A high-quality remote sensing image retrieval is required to recognize foreground objects
from complicated and variable backgrounds of a search image. We develop an integrated
spatial and channel attention mechanism to extract global consistent features of foreground
objects and suppress the disturbance of backgrounds. Different from the concatenated
spatial and channel attention structure (Woo et al. 2018), we perform a spatial and a channel
attention module on the feature map extracted by ResNet34. The attention boosted
features, namely the spatial attention boosted feature and the channel attention boosted

Figure 2. Three stages of remote sensing retrieval based on VGG16 (a) and ResNet34 (b) The lower
level features pretrained on the ImageNet are kept fixed. In the fine-tuning stage, the rest parameters
of the networks are adjusted on a remote sensing training dataset. In the retrieval stage, the FCs are
replaced with PCA and the networks return the most similar images to a query image from a new
dataset.
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feature, are the bivariate inputs of the CBP. Through the CBP, a global spatial/channel
consistent representation is obtained to achieve better image retrieval performance.

Figure 3 illustrates the process of using the attention modules for boosting CBP.
The last feature map of the ResNet is w × h × c dimensional, where w, h, and c are
width, height and channel number, which are separately processed by a channel
attention module (CAM) and a spatial attention module (SAM). In the CAM, the input
feature map is respectively processed by a maxpooling and an average pooling,
followed by a multi-layer perceptron (MLP). The feature dimension after pooling is
1 × 1 × c, the lengths of the first and the second MLP layers are 1/16 × c and
c respectively. The two pooled featuresprocessed by the shared MLP are summed,
followed by a sigmoid function to compute the weight vector of channel attention.
The weight vector is then channel-wise multiplied with the input feature map to
produce channel attention boosted feature. In the SAM, the concatenated w × h × 2
features after maxpooling and average pooling are processed with a 7 × 7 convolu-
tion, followed by a sigmoid to produce the weight matrix of spatial attention. The
weight matrix is feature-wise multiplied by the original input to produce spatial
attention boosted feature. Finally, the two boosted features are pooled by the CBP
to form a bilinear vector with global spatial and channel consistent representation.

3. Experiments and results

3.1. Datasets

The experiments are carried out on four remote sensing data sets, namely PatternNet
(Zhou et al. 2018), UCM (Yang and Newsam 2010), RSSCN (Zou et al. 2015), and RS-19 (Xia
et al. 2010) (see Table 1). We use the PatternNet dataset to fine-tune the VGG16 and
ResNet34 networks pretrained on the ImageNet dataset, and test the image retrieval
performance on the other datasets.

Figure 3. Attention modules for CBP. The last feature map of a CNN is processed separately by channel
attention and spatial attention modules. The two attentions are each multiplied by the original feature
map and the results are the input of bilinear pooling. The circled ‘C’ and ‘S’ denote the channel-wise
and feature-wise multiplication of the channel attention and the spatial attention respectively. The
circled ‘+’ indicates pixel-wise addition of weight vectors. The circled curve denotes a sigmoid
operation, and the circled ‘×’ denotes compact bilinear pooling.
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PatternNet (Zhou et al. 2018): This large-scale remote sensing dataset consists of 38
classes and each class contains 800 images of a size of 256 × 256 pixels. The images were
collected from Google Earth imagery or via a Google Map API with 0.6–4.7 m ground
resolutions.

WHU-RS19 (Xia et al. 2010): The RS19 data set was captured from Google Earth
imagery with various illuminations, orientations and ground sampling distance (GSD). It
contains 19 types of landforms.

UC Merced Land-Use Dataset (Yang and Newsam 2010): The UCM dataset contains
2100 remote sensing images from USGS (United States geological survey). There are 21
categories and each category consists of 100 images with a GSD of 1 foot.

RSSCN7 (Zou et al. 2015): The RSSCN7 dataset contains 2,800 remote sensing images
and seven scene categories. For each category, 400 images were collected from Google
Earth, and every 100 images have a different scale. This is a challenging dataset with
diverse scenes, scales, seasons and weather.

3.2. Compared methods

In order to explore the effectiveness and advantages of the bilinear pooling method in
remote sensing image retrieval, we compare it to several other encoding and pooling
methods which are applied to the features extracted from a series of convolution layers.

Bag-of-Visual-Words (BoW) (Sivic and Zisserman 2003): BoW was originally used in
the field of text information retrieval. BoW can be combined with the most feature
extraction methods to cluster extracted features into given groups. The centres of these
groups can be regarded as ‘words’, all of which compose a ‘dictionary’. In the end, the
frequency of the ‘words’ in the ‘dictionary’ appeared in each image can be used as output
vectors for subsequent classification or retrieval operations. Specifically, we compare our
methods with Xia et al. (2017) who combined BoW and PCA to retrieve remote sensing
images.

Improved Fisher Kernel (IFK) (Perronnin, Sánchez, and Mensink 2010a): Fisher Kernel
(FK) method is another classic feature encoding method. Fisher vector is essentially
a gradient vector of likelihood function to express an image. First, the method uses the
Gaussian Mixture Model (GMM) to obtain the probability distribution of the entire feature
space. The obtained Gaussian mixture model can be regarded as a codebook. Then for
each feature, the partial derivatives with respective to the parameters (i.e. the coefficients,
mean, and standard deviation vectors) of every Gaussian distribution are obtained. The
obtained gradient vectors are connected in series as the feature descriptor of the image.
The Improved Fisher Kernel (IFK) imposes the L2 normalization, power normalization, and
spatial pyramids operations on the FK. We compare our methods with Perronnin et al.
(2010a) who used the IFK for large-scale image retrieval.

Table 1. Attributes of the datasets.
Dataset Size (pixels) No. classes No. images per class No. total images Usage

PatternNet 256 × 256 38 800 30400 training
WHU-RS19 600 × 600 19 around 50 1005 test
UCM 256 × 256 21 100 2100 test
RSSCN7 400 × 400 7 400 2800 test
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Maxpooling (Krizhevsky, Sutskever, and Hinton 2012): Maxpooling down-samples
a feature map and takes the maximum value of the pixels in the specified area. For the
retrieval work, the maxpooling method down-samples the entire feature maps in order to
obtain a one-dimensional vector, the length of which is the same as the number of the
feature maps. In this study, we compare our CBP methods with Razavian et al. (2016) who
used the maxpooling for visual instance retrieval.

Fully connected layer (Ge et al. 2018): The FC flattens high-dimensional feature maps
obtained from the convolutional layer. Each node of the fully connected layer is con-
nected to all nodes of the previous layer. Many studies have employed FCs for image
retrieval (Babenko et al. 2014; Zhou et al. 2017).

3.3. Implementation details

In the training stage, the VGG16 and ResNet34 are pre-trained on the ImageNet dataset
respectively. Then the last convolutional blocks and FCs (Figure 2) are fine-tuned on the
PatternNet. The dimension of the first FC (FC1) is 4096 and the dimension of the second
FC (FC2) is 38, which is the number of categories of the PatternNet dataset.

In the VGG16-based network, the training learning rate is set to 10−4 and the number of
iterations is set to 20 epochs. The number of iterations in the ResNet34-based network is
also set to 20 epochs, the learning rate of the first 15 epochs is set to 10−3, and the rest is
set to 10−4. In all the experiments, the input images have been resized to 224 × 224 pixels,
the batch size is set to 64 and the Adam optimizer is utilized. The graphics card used in the
experiment is NVIDIA GeForce GTX 1060 with 6 GB memory.

In the channel attention module, the size of the first MLP layer is set to 1/16 of the input
size. In the spatial attention module, the size of the convolution kernel is 7 × 7. In the BoW,
the early stopping threshold is set to1 × 10−5. The number of kernels in the IFK algorithm
will affect the accuracy of the results. To optimize the performance of the hardware
device, different numbers of kernels are set in each test (Table 2).

In order to maintain the uniformity of output dimension after dimension reduction, the
output dimension of the PCA is set to 38. This setting is consistent to the recommendation
of Xia et al. (2017) who concluded that the output dimension with the highest retrieval
accuracy is between 16 and 64.

3.4. Evaluation measure

We use Precision at k (P@k) where k is the position in the list of retrieval result and mean
Average Precision (mAP) to evaluate the retrieval accuracy.

The P@k is defined as,

P@k ¼ number of relevant images
k

(5)

Table 2. The number of kernels set in each test.
Network RS19 UCM RSSCN

VGG16 3 1 1
ResNet34 13 8 6
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The P@k only considers the number of relevant images in the retrieval results and ignores
their order. The mAP is a complementarity indicator where the more relevant an image is
to the query image, the higher it ranks.

Average precision (AP) is the average of the precision of the top N positions returned
for a query, which is defined as:

AP ¼
PN

k¼1 ðP@k� relðkÞÞ
number of relevant images

(6)

where a binary function rel(k) is defined as,

relðkÞ ¼ 1 the k�th image is a relevant image
0 the k�th image is a irrelevant image

�
(7)

The mean Average Precision (mAP) is defined as,

mAP ¼
PQ

q¼1 APðqÞ
Q

(8)

where Q indicates the total number of queries.
In the experiment, we set k = 5, 10, 50, and 100, and N = 10. For every dataset, i.e. RS19,

UCM, RSSCN, we randomly select one image as query image and the rest for retrieving.
The process is repeated Q times, Q equals one-fifth of the total image number of the
dataset. Large Q reduces the uncertainty from random sampling and makes our query
results more conclusive.

3.5. Experimental results

We compare our method to several recent retrieval methods and strategies, including the
FC layers with fine-tuning (Babenko et al. 2014; Zhou et al. 2017); the maxpooling right
after convolutional layers (Razavian et al. 2016); the Bow and PCA (Xia et al. 2017); the IFK
(Perronnin et al. 2010a). We use two identical CNN backbones, i.e. the VGG16 and the
ResNet34, to assess the performances of different pooling or encoding algorithms at the
same baseline.

Tables 3, 4 and 5 show the results of different remote sensing image retrieval methods
based on the VGG16. The combination of CBP and PCA shows a higher mAP score than
the other methods on the UCM and RSSCN datasets; on the RS-19 dataset, the FC1 + PCA
and CBP + PCA performed almost the same. This indicates the advantage of our proposed

Table 3. The performances of different pooling and encoding methods based on the VGG16 on the RS-
19 dataset.
Method mAP P@5 P@10 P@50 P@100

VGG16(FC1 + FC2) 0.6887 0.5980 0.5515 0.3959 0.2678
VGG16(FC1 + PCA) 0.7074 0.6082 0.5638 0.4061 0.2763
VGG16(IFK + PCA) 0.6925 0.5929 0.5301 0.3727 0.2609
VGG16(BoW + PCA) 0.6804 0.5898 0.5398 0.4019 0.2788
VGG16(maxpooling) 0.6721 0.5500 0.5010 0.3583 0.2537
VGG16(CBP + FC1 + FC2) 0.6719 0.5490 0.4969 0.3501 0.2563
VGG16(CBP + FC1 + PCA) 0.6928 0.5776 0.5240 0.3654 0.2657
VGG16(CBP + PCA) 0.7054 0.5990 0.5362 0.3670 0.2639
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CBP and PCA combination. The second-best combination is FC1 + PCA. However, it only
slightly exceeds the combination of CBP + FC1 + PCA. The experimental results using FC2
(FC1 + FC2 and CBP + FC1 + FC2) are worse than only using FC1, which indicates FC1 has
better generalization ability and F2 is not very suitable for retrieving images across
different datasets. The combination of IFK and PCA shows better results than
BoW + PCA and the maxpooling, and is approaching the second-best FC1 + PCA.

Figure 4 shows three query examples each on a dataset using the top two combina-
tions, i.e. CBA + PCA and FC1 + PCA respectively. In the RS19, the first three retrievals with
both combinations are correct. However, in the UCM, FC1 + PCA exhibits obvious errors
where many structures (buildings, roads and courts) are mistaken with the queried golf
course. Figure 3(c) is a challenging case where the query image labelled parking areas
should be discriminated from similar images containing industrial and residential area.
The CBP + PCA confused it with three industrial areas and one residential area. The
FC1 + PCA made more serious mistakes where the first two retrieved images are incorrect.

Tables 6, 7 and 8 show the results of different retrieval methods based on the ResNet34
backbone on the three test datasets. First, the overall retrieval accuracy of the ResNet34 is
better than the VGG16. Using CBP + PCA, the mAP on the RS-19 and UCM both improved
15%; on the RSSCN the two networks performed almost the same. This performance
improvement may be due to the ResNet34 has more parameters and more suitable
structures for image retrieval. Second, similar to the results of the VGG16 backbone, our
CBP + PCA combination outperformed all the other pooling and encoding methods.
When the attention mechanism (ATT) is introduced, the performance is comprehensively
improved in terms of all indices. For example, using the ATT + CBP + PCA, the mAP
improved 4% and P@5 improved 5% compared to using the CBP + PCA on the RS-19
dataset. This shows the effectiveness of the integrated spatial and channel attention

Table 4. The performances of different pooling and encoding methods based on the VGG16 on the
UCM dataset.
Method mAP P@5 P@10 P@50 P@100

VGG16(FC1 + FC2) 0.7178 0.6171 0.5598 0.3885 0.3073
VGG16(FC1 + PCA) 0.7315 0.6257 0.5662 0.4020 0.3145
VGG16(IFK + PCA) 0.7204 0.6138 0.5417 0.3601 0.2714
VGG16(BoW + PCA) 0.6927 0.5886 0.5317 0.3716 0.2840
VGG16(maxpooling) 0.7001 0.5952 0.5364 0.3656 0.2836
VGG16(CBP + FC1 + FC2) 0.7106 0.6024 0.5395 0.3844 0.3024
VGG16(CBP + FC1 + PCA) 0.7356 0.6357 0.5731 0.3980 0.3070
VGG16(CBP + PCA) 0.7463 0.6319 0.5707 0.3860 0.2910

Table 5. The performances of different pooling and encoding methods based on the VGG16 on the
RSSCN dataset.
Method mAP P@5 P@10 P@50 P@100

VGG16(FC1 + FC2) 0.7405 0.6725 0.6486 0.5731 0.5317
VGG16(FC1 + PCA) 0.7573 0.6818 0.6648 0.5868 0.5854
VGG16(IFK + PCA) 0.7598 0.6850 0.6586 0.5735 0.5272
VGG16(BoW + PCA) 0.7420 0.6696 0.6514 0.5881 0.5481
VGG16(maxpooling) 0.7309 0.6586 0.6359 0.5664 0.5217
VGG16(CBP + FC1 + FC2) 0.7329 0.6525 0.6368 0.5729 0.5332
VGG16(CBP + FC1 + PCA) 0.7509 0.6807 0.6630 0.5950 0.5535
VGG16(CBP + PCA) 0.7841 0.7264 0.6987 0.6196 0.5754
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Figure 4. Image retrieval samples using VGG16-based networks. Images with green boxes are correctly
retrieved images, while red boxes are incorrectly retrieved images. The first column is the query
images. (a) shows the results from the RS19 dataset, and the query image is labelled with mountains.
(b) shows the results from the UCM dataset, and the query images are labelled with a golf course. (c)
shows the results from the RSSCN dataset, and the query image belongs to parking category.

Table 6. The performances of different pooling and encoding methods based on the ResNet34 on the
RS-19 dataset.
Method mAP P@5 P@10 P@50 P@100

ResNet34(FC1 + FC2) 0.8101 0.7337 0.6786 0.4878 0.3277
ResNet34(FC1 + PCA) 0.8342 0.7714 0.7219 0.5113 0.3333
ResNet34(IFK + PCA) 0.7978 0.7214 0.6612 0.4091 0.2669
ResNet34(BoW + PCA) 0.7578 0.6765 0.6337 0.4811 0.3294
ResNet(maxpooling) 0.8551 0.8071 0.7628 0.5313 0.3533
ResNet34(CBP + FC1 + FC2) 0.7905 0.6980 0.6429 0.4440 0.3049
ResNet34(CBP + FC1 + PCA) 0.8010 0.7296 0.6847 0.5071 0.3405
ResNet34(CBP + PCA) 0.8568 0.8000 0.7362 0.5403 0.3534
ResNet34(ATT + CBP + PCA) 0.8951 0.8490 0.7974 0.6026 0.3901
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mechanism. Third, the FC layers performed relatively worse for cross-dataset image
retrieval. For example, the CBP + PCA outperformed the CBP + FC1 + FC2 and the
CBP + FC1 + PCA more than 5% on mAP on the RS-19. Maxpooling performed worse
than the FC1 + PCA but exceeded the IFK and BoW on all the datasets.

Figure 5 shows three query examples using the ResNet34 with the CBA + PCA, the
FC1 + PCA, and the ATT + CBP + PCA respectively. The query images are the same as in
Figure 4. In the RS19, rivers are mistaken with mountains. This phenomenon is the same as
using the VGG16 but the first retrieval image is wrong using the FC1 + PCA. However, the
results of the ATT + CBP + PCA is much better than the others, indicating the contribution
of our specific attention mechanism. In the UCM, the CBP + PCA performed the same as in
Figure 4(b) where three river images were classified to a golf course. But the FC1 + PCA
performed much better than with the VGG16 building blocks, the latter mistook seven
manmade constructions as a golf course. It is also observed that the last three retrieved
images using the FC1 + PCA as well as the three wrongly labelled images using the
CBP + PCA are very similar (covered with the river). This is also ambiguous to human vision
as whether a river locates within a golf course or not determines its label. The method
based on the ATT + CBP + PCA confused beach texture with grassland.

In the challenging case of Figure 5(c), the errors are caused by similar scenes, i.e.
industrial areas and residential areas. The results of ATT + CBP + PCA is better than the
others and the result of the FC1 + PCA is the worst.

The last experiment is designed to evaluate the performance of recent attention
methods. In Tables 9, 10 and 11, the ‘SE’ or ‘SK’ indicates an SE (Hu, Shen, and Sun
2018) or SK (Li et al. 2019) module is added behind the convolution encoder as ours. ‘SE-

Table 7. The performances of different pooling and encoding methods based on the ResNet34 on the
UCM dataset.
Method mAP P@5 P@10 P@50 P@100

ResNet34(FC1 + FC2) 0.8714 0.8195 0.7769 0.6292 0.5032
ResNet34(FC1 + PCA) 0.8859 0.8390 0.7983 0.6466 0.5097
ResNet34(IFK + PCA) 0.8232 0.7510 0.7126 0.5266 0.3839
ResNet34(BoW + PCA) 0.7716 0.7014 0.6664 0.5361 0.4303
ResNet(maxpooling) 0.8498 0.8033 0.7738 0.6047 0.4677
ResNet34(CBP + FC1 + FC2) 0.8504 0.7995 0.7733 0.6591 0.5435
ResNet34(CBP + FC1 + PCA) 0.8739 0.8129 0.7860 0.6816 0.5719
ResNet34(CBP + PCA) 0.8890 0.8362 0.8040 0.6761 0.5484
ResNet34(ATT + CBP + PCA) 0.9056 0.8638 0.8367 0.7227 0.5939

Table 8. The performances of different pooling and encoding methods based on the ResNet34 on the
RSSCN dataset.
Method mAP P@5 P@10 P@50 P@100

ResNet34(FC1 + FC2) 0.7585 0.6829 0.6588 0.5814 0.5403
ResNet34(FC1 + PCA) 0.7811 0.7136 0.6877 0.6016 0.5529
ResNet34(IFK + PCA) 0.7467 0.6693 0.6409 0.5320 0.4654
ResNet34(BoW + PCA) 0.6955 0.6154 0.6020 0.5569 0.5203
ResNet34(maxpooling) 0.7578 0.6907 0.6805 0.6001 0.5544
ResNet34(CBP + FC1 + FC2) 0.7508 0.6729 0.6346 0.5501 0.5050
ResNet34(CBP + FC1 + PCA) 0.7524 0.6796 0.6441 0.5651 0.5217
ResNet34(CBP + PCA) 0.7777 0.7118 0.6850 0.5990 0.5464
ResNet34(ATT + CBP + PCA) 0.8132 0.7550 0.7312 0.6542 0.6045
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boosted’ or ‘SK-boosted’ indicates the SE or SK module is added in every residual block, as
has been used in the original SENet (Hu, Shen, and Sun 2018) and SKNet (Li et al. 2019).

Figure 5. Examples of remote sensing image retrieval using ResNet-based networks. Images with
green boxes are correctly retrieved images, while red boxes are incorrectly retrieved images. The first
column is the query images. (a) shows the results on the RS19 dataset, and the query image belongs
to the mountain category. (b) shows the results retrieved from the UCM dataset, and the query images
belong to the golfcourse category. (c) shows the results of retrieval on the RSSCN dataset, and the
query image belongs to the parking category.
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From Table 9–11, it is observed that our attention module (ATT) is obviously better than
the SE and SK modules on all the indicators. It is due to that we designed a specific
attention structure for the bivariate inputs of the CBP, on the contrary, both the SE and SK
modules were developed for boosting unary input. It is also observed that putting the
attention module on the last features of a CNN is better than placing it at every residual
block.

From the above experiments, four main conclusions can be drawn. First, CBP, as
a powerful pooling method, performed better than FC, IFK, BoW and maxpooling on
the different convolutional building blocks. Second, with the integrated spatial and
channel mechanism, the performance of the CBP is boosted. The combination of the
ATT + CBP + PCA based on the ResNet34 backbone performed the best in all tests. Third,
FC is a good pooling method but only the FC1 has enough generalization ability and the
FC2 should be replaced with PCA. Finally, our spatial-channel attention mechanism
designed for CBP is better than other attention methods.

4. Discussion

In this section, we discuss why the attention mechanism is particularly effective on the
ResNet building block. We have applied the attention module (Section 2.3) to the VGG16
structure, but the improvement is not significant.

The difference in performance mainly comes from the specific shortcut connection in
the ResNet. In each shortcut block the relationship between the output y of an input x is
denoted as y = F(x) + x, where F(x) represents a series of convolutions and activations. The
summation operator implies the weights of x and F(x) are equal in the spatial and channel

Table 9. The performance of different attention modules on RS19.
Method mAP P@5 P@10 P@50 P@100

ResNet34(ATT+CBP+PCA) 0.8951 0.8490 0.7974 0.6026 0.3901
ResNet34(SE+CBP+PCA) 0.8472 0.7980 0.7592 0.5473 0.3628
ResNet34(SK+CBP+PCA) 0.8299 0.7704 0.7143 0.5368 0.3610
SE-boosted ResNet34 (CBP+PCA) 0.7961 0.7133 0.6684 0.4573 0.3113
SK-boosted ResNet34 (CBP+PCA) 0.7773 0.6959 0.6362 0.4350 0.3006

Table 10. The performance of different attention modules on UCM.
Method mAP P@5 P@10 P@50 P@100

ResNet34(ATT+CBP+PCA) 0.9056 0.8638 0.8367 0.7227 0.5939
ResNet34(SE+CBP+PCA) 0.8987 0.8567 0.8143 0.6923 0.5592
ResNet34(SK+CBP+PCA) 0.8768 0.8357 0.7988 0.6925 0.5844
SE-boosted ResNet34 (CBP+PCA) 0.8707 0.8148 0.7660 0.5948 0.4536
SK-boosted ResNet34 (CBP+PCA) 0.8108 0.7338 0.6724 0.4720 0.3593

Table 11. The performance of different attention modules on RSSCN.
Method mAP P@5 P@10 P@50 P@100

ResNet34(ATT+CBP+PCA) 0.8132 0.7550 0.7312 0.6542 0.6045
ResNet34(SE+CBP+PCA) 0.7845 0.7132 0.6902 0.6179 0.5700
ResNet34(SK+CBP+PCA) 0.7674 0.7064 0.6845 0.6134 0.5630
SE-boosted ResNet34 (CBP+PCA) 0.7868 0.7193 0.6818 0.5818 0.5350
SK-boosted ResNet34 (CBP+PCA) 0.7829 0.7132 0.6787 0.6002 0.5496
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dimensions. However, this is usually not true and may cause an imbalance between
channels and spatial locations. The channel and spatial attention module after the last
residual module achieved a global consistent representation and improved the retrieval
results remarkably.

We visualized the improvement of representation ability from the attention modules
with the tool of Grad-CAM (Selvaraju et al. 2017). Figure 6 shows the heat maps of the last
feature maps of ResNet34 with and without the attention module on the PatternNet
dataset. Without the attention module (original heat map), the heat maps failed to cover
the entire target regions. For example, in the first column, the hot spots only cover a wing
of a plane, and in the second column, the location of hot spots is biased from the baseball
field. Using this kind of feature map (and its copy) as the input of the CBP cannot reach
a global optimal representation. In contrast, the heat maps after the adjustment of the
channel (channel-wise refined heat map) and spatial attention (spatial-wise refined heat
map) can cover the entire target regions, which makes their corresponding feature maps
ideal bivariate inputs of the CBP to produce a global optimal representation.

We have carried out additional experiments. Some observations are summarized
below:

The number of fully connected layers. We compared the impact of a different
number of fully connected layers in the fine-tuning stage on the retrieval results. It was
observed that two fully connected layers can achieve the best performance while increas-
ing or decreasing them decreases the accuracy.

Dropout operation. We attempted to add a dropout operation between the fully
connected layers (remove 50% connections), but the retrieval accuracy decreased.

Memory limits for aggregation approach. The retrieval accuracy based on the BoW
and IFK methods may be limited by available memory. However, in practice, the demand
for resource and efficiency is also crucial. With the same resource, the CBP- based method
exceeds both of them.

Figure 6. Heat map visualization of the last ResNet34 feature map on the PatternNet dataset. Original
heat map means the results without attention mechanism.
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Triplet network. We assessed alternative network structures, for example, the triplet
network (Hoffer and Ailon 2015). In this structure, three images (anchor, positive, nega-
tive) are input into the triplet network at the same time, and the corresponding features
are extracted by using a three-branch CNN with shared weights. The triplet loss (Schroff,
Kalenichenko, and Philbin 2015) is defined to minimize the differences between relevant
images as well as to maximize the distance between the anchor and negative images.
However, the triplet network fine-tuned on the PatternNet did not perform as good as the
single network on the three test datasets. This may be due to the differences between our
datasets and the datasets used in Hoffer and Ailon (2015), the latter is much smaller.
Moreover, the complexity of the network will lead to difficulties in parameter adjustment,
which may cause the network to become unstable.

5. Conclusion

In this work, we integrated compact bilinear pooling into the CNN based remote sensing
image retrieval. The results on various datasets have proved that the CBP is better than
the fully connected layer, BoW, IFK and maxpooling, indicating the potential of CBP in
remote sensing image retrieval. Using PCA has shown to be better than using FC layer as
the former is only related to the more general features and the latter is more sensitive to
the training samples. We also developed two attention modules in the ResNet to produce
spatial boosting and channel boosting feature maps, from which the CBP learns global
consistent representations and achieved comprehensive improvement in all image retrie-
val indices.
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