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Pan-Sharpening Using an Efficient
Bidirectional Pyramid Network

Yongjun Zhang , Chi Liu, Mingwei Sun , and Yangjun Ou

Abstract— Pan-sharpening is an important preprocessing step
for remote sensing image processing tasks; it fuses a low-
resolution multispectral image and a high-resolution (HR)
panchromatic (PAN) image to reconstruct a HR multispec-
tral (MS) image. This paper introduces a new end-to-end
bidirectional pyramid network for pan-sharpening. The overall
structure of the proposed network is a bidirectional pyramid,
which permits the network to process MS and PAN images in
two separate branches level by level. At each level of the network,
spatial details extracted from the PAN image are injected into
the upsampled MS image to reconstruct the pan-sharpened image
from coarse resolution to fine resolution. Subpixel convolutional
layers and the enhanced residual blocks are used to make the
network efficient. Comparison of the results obtained with our
proposed method and the results using other widely used state-
of-the-art approaches confirms that our proposed method out-
performs the others in visual appearance and objective indexes.

Index Terms— Bidirectional pyramid network (BDPN), deep
learning, image fusion, multilevel, pan-sharpening, remote
sensing.

I. INTRODUCTION

DUE to the hardware limitations of sensors, optical remote
sensing satellites can only provide a low-resolution

(LR) multispectral (LRMS) image and a high-resolution (HR)
panchromatic (PAN) image; pan-sharpening refers to the tech-
nique of fusing the two to reconstruct a HR multispectral
(HRMS). Pan-sharpening is very important for remote sensing
image processing tasks and is often used as a preprocessing
step for applications such as segmentation, classification, and
object detection [1], [2]. In the last few decades, various
pan-sharpening algorithms have been proposed to address this
problem.

Among the available pan-sharpening techniques, component
substitution (CS) methods are powerful approaches which are
fast and easy to implement. These approaches usually trans-
form the multispectral (MS) image into a suitable domain in
which one of the components I is replaced by the PAN image.
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Then, the new components are converted back into the original
domain using an inverse transformation. The representative
algorithms are principal component analysis [3], intensity hue
saturation transform [4], [5], and Gram–Schmidt (GS) sharp-
ening [6]. However, the spectral characteristics and spectral
range of the MS and PAN images differ from each other; the
PAN image and the substituted component I do not generally
have the same radiation characteristics. Therefore, the fusion
process not only injects spatial details, but also leads to
spectral distortions. Due to their efficiency and impressive spa-
tial quality, CS methods are still investigated by researchers,
concentrating on improving the spectral quality; strategies such
as partial replacement [7], local coefficient calculation [8],
and image classification [9] are used to reduce the spectral
distortions.

Another class of pan-sharpening algorithms is based on
multiresolution analysis (MRA). These approaches inject
high-frequency details extracted from the PAN image into
the upsampled MS image. The details are obtained through
a MRA such as Laplacian pyramid [10], wavelet trans-
form [11], [12], curvelets transform [13], and non-subsampled
contourlets transform [14]. In general, MRA-based methods
provide fused images with better spectral fidelity than those
based on CS. However, spatial distortions may occur because
of the aliasing effects and blurring of textures replacement [7].

The model-based optimization (MBO) approaches are
another series of methods that have drawn much attention.
The main idea of these methods is to build an energy function
based on some reasonable assumptions and to minimize the
energy to reconstruct the HRMS image [15]. Since recon-
structing an HRMS image from an LRMS image is an
ill-posed inverse problem, the MBO methods require appro-
priate regularizations to build an energy function, such as
sparsity regularization [16]–[19], variational models [20]–[22],
and Markov random fields [23], [24]. MBO methods make
a tradeoff between spectral quality and spatial quality and
generally achieve satisfying results. However, an appropriate
model is challenging to be built, and the time complexity of
the MBO methods is much higher than many other algorithms.

The complexity of ground objects and different spectral
responses of different sensors make it difficult to formulate the
relationship among the LRMS image, the PAN image, and the
desired HRMS image. Fortunately, the development of deep
learning offers new solutions to the abovementioned problem.
The high nonlinearity of the convolutional neural network
makes it effective to deal with the pan-sharpening problem.
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Existing deep learning-based pan-sharpening methods take the
idea of single image super-resolution (SISR) as a reference,
and network structures such as sparse denoising autoencoders
networks [25] and deep residual convolutional networks [26]
are often used. However, there is a significant difference
between pan-sharpening and SISR: the spatial details of SISR
are inferred from the LR image, whereas the pan-sharpening
details are extracted from the HR PAN image. Existing deep
learning-based approaches [1], [2], [27], [29] ignore this
difference and are thus unable to make full use of the high-
frequency information in PAN images.

In this paper, we propose a bidirectional pyramid net-
work (BDPN) for pan-sharpening. The proposed network is
superior to existing networks due to the following aspects.

1) The MS and the PAN images are processed separately,
which enables better spectral preservation and details extrac-
tion;

2) Following the general idea of MRA, multilevel details are
extracted from the PAN image and injected into the MS image
to reconstruct the pan-sharpened image from coarse resolution
to fine resolution.

3) The PAN image is downsampled while the MS image is
upsampled in the network, which reduces the computation.

4) The use of subpixel convolutional layers and residual
blocks (ResBlocks) makes the network more efficient.

The remainder of this paper is organized as follows.
Section II briefly reviews SISR and existing deep learning-
based pan-sharpening methods. Section III introduces our
proposed pan-sharpening network. The experimental results
of our proposed algorithm are presented and discussed in
Section IV. Finally, our conclusions and future work are
discussed in Section V.

II. RELATED WORK

A. Deep Learning-Based SISR

SISR is a technique that reconstructs a HR image from the
observed LR image. Due to the substantial loss of information
during the transformation from an HR image to an LR image,
the reconstruction process is a highly ill-posed problem. For-
tunately, the relationship between an HR image and an LR
image can be inferred based on the theory that most of the
high-frequency components in an image are redundant and can
be reconstructed from the low-frequency components. Among
the existing SISR methods, deep learning-based methods pro-
vide superior performance due to their nonlinearity and have
achieved state-of-the-art reconstruction accuracy.

Since Dong et al. [30] first proposed a deep learning-based
SISR method, various CNN networks have been proposed
for SISR. Another significant achievement in the evolution
of SISR was the residual network architecture proposed by
Xu et al. [23]. The input and output of the SISR network
are highly similar, and the network learns the sparse residual
between the two, so skip connection [31]–[33] and recursive
convolution [34] alleviate the burden of carrying identity
information in the super-resolution network and allow for
a network with more convolutional layers. To reduce the
computation time and memory required by the deep network

architecture, efficient upsample strategies such as the decon-
volution layer [35] and the subpixel convolutional layer [33]
are proposed to upsample images in the network.

Of particular relevance to our paper are the works of
Lai et al. [36]. The pyramid structure, which upsamples the
LR image level by level, inspired the design of our pan-
sharpening network.

B. Deep Learning-Based Pan-Sharpening

Pan-sharpening is a special form of super-resolution [1]; it
also reconstructs an HR image from an LR image, with the
difference that the spatial details are mainly learned from a
PAN image. Most existing deep learning-based pan-sharpening
methods are adapted from the SISR network, and can generally
be divided into two groups.

The first group [2], [24] assumes that the relationship
between the HR/LR PAN image patches is the same as that
between the HR/LR MS image patches. To train a model,
the downsampled PAN images and the original PAN images
are used as the inputs and outputs, respectively. The trained
model is then used to predict the HRMS images from the
LRMS images. The PAN images are used only in training and
not in the reconstruction, so the spatial quality of the results
is unsatisfactory. Moreover, the difference between the PAN
images and each band of the MS images, which is illustrated
by Li et al. [16], is ignored, so the results also suffer from
spectral distortion.

The other group of methods [1], [23], [25] takes the MS
image and the PAN image as the input and trains an end-to-
end network that directly outputs the pan-sharpened image.
In the preparation phase, the LRMS image is upsampled
to the scale of the PAN image using bicubic interpolation;
then, the PAN image is concatenated with the upsampled
LRMS image to comprise the five-band input. The output
of the CNN is a four-band MS image with the same spatial
resolution as the PAN image. However, the simplex CNN
structure processes each band of the input with no dis-
crimination, making it difficult to extract the spatial details
from the PAN image. In addition, the upsampling opera-
tion before the network makes the network computationally
complex.

III. METHODOLOGY

In this section, we describe the design methodology of the
proposed network. As illustrated in Fig. 1, the overall structure
of the proposed network is a bidirectional pyramid. Differ-
ent from the existing pan-sharpening networks, the proposed
network processes the MS and PAN images in two separate
branches. In the reconstruction branch (the part inside the
red dotted area), the LRMS image is upsampled level by
level, which effectively suppresses the reconstruction artifacts
caused by the bicubic interpolation and dramatically reduces
the computational complexity. In the details extraction branch
(the part inside the green dotted area), the spatial details of the
PAN image are extracted and injected into the corresponding
upsampled MS image.
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Fig. 1. Structure of the BDPN. The reconstruction branch is inside the red dotted area, the details extraction branch is in the green dotted area, the inputs
are shown with a blue border, and the output has an orange border.

A. Multilevel Structure

For most satellite sensors, the resolution of the desired
pan-sharpened MS image is four times that of the input MS
image. Directly upsampling the MS image by four times
definitely creates severe reconstruction artifacts. Inspired by
the work of Lai et al. [36], we propose a multilevel structure
to reconstruct the pan-sharpened image from coarse resolution
to fine resolution. The MS image is upsampled and the PAN
image is downsampled level by level. At each level, the spatial
details extracted from the PAN image are injected into the
corresponding MS image.

Each details extraction level can be formulated as

Pani+1 =
{

gnb(Pani ) if i = 0

gnb(maxpooling(Pani )) if i > 0
(1)

where i and i + 1 are the level index, Pani and Pani+1 are the
input and output of current level, respectively, g is a function
denoting the Resblock, nb is the number of Resblocks in each
level, gnb indicates that the input is processed by nb Resblocks.
For level 0, the details are directly extracted from the Pan
image by the Resblocks, while in other levels, the inputs are
downsampled and then processed by the Resblocks.

Each level of the reconstruction branch can be formulated as

MSi+1 = [ f (MSi )] ↑ +PanN−i 0 ≤ i < n (2)

where N is the number of levels, for MS and PAN images
whose resolutions differ by four times, n is set to 2. i , i + 1,
and N − i are the level index, MSi is the input MS image
of the current reconstruction level, PanN−i is the output of
the corresponding details extraction level, and MSi+1 is the
output of the current reconstruction level. f and ↑ are the
convolutional operation and upsampling operation in subpixel
convolution, respectively.

It should be noted that the parameters of Resblocks and
subpixel convolution are not shared, so for each Resblock
and subpixel convolution, g and f are different, and they
are learned automatically by the network to minimize the
difference between the output of each reconstruction level

Fig. 2. Single level of the reconstruction branch. The red dotted area indicates
the process of subpixel convolution.

and the corresponding reference image, which is acquired by
downsampling the original reference image.

B. Reconstruction Branch

The main task of the reconstruction branch is to upsample
the input MS image and inject the spatial details extracted from
the PAN image without changing the spectral characteristics
of the original MS image.

At each level of the reconstruction branch, the four-channel
map is fed into a convolutional layer and a 16-channel
feature map is generated. The feature map is realigned to
an upsampled feature map, which also has four channels but
is doubled in size. Then, the spatial details extracted from
the corresponding details extraction level are injected into the
upsampled MS image. The output of each reconstruction level
is an upsampled MS image that has twice the resolution of
the input.

The diagram of the subpixel convolutional layer is shown
below in Fig. 2, each pixel of the 16-band feature map forms
a 1 × 16 vector, and the vector is realigned into a 2 × 2 × 4
matrix. The subpixel convolution was first proposed by Shi
in 2016 [37]. Researches showed that a subpixel convolutional
layer with kernel (o × r×r, I, k, k) had the same effect as a
deconvolution layer with kernel (o, I, k × r, k × r), where I
is the input channels, r is the scale factor, k and k × r are
the kernel width, o × r × r , and o is the output channels.
By preshuffling the training data to match the output of the
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Fig. 3. Single level of the details extraction branch. The green dotted area
indicates the structure of a ResBlock.

layer, the subpixel convolutional layer is log2 r2 times faster
compared to the deconvolution layer in training and r2 times
faster compared to implementations using various forms of
upscaling before convolution [38].

C. Detailed Extraction Branch

The residual network (ResNet) solves the gradient vanishing
problem and allows for a deeper CNN with more filtering
layers to exploit high nonlinearities and extract more represen-
tative features. The idea of the ResNet structure is especially
suitable for solving the pan-sharpening problem because the
input MS image and output pan-sharpened image are highly
similar, enabling ResNet to produce a residual image in which
most of the values are likely to be zero or very small.
Therefore, most of the recently proposed deep learning-based
pan-sharpening methods are based on ResNet [26]–[29].

However, the original ResNet was proposed to solve higher
level computer vision problems such as image classification
and object detection, and applying it directly to pan-sharpening
may introduce unnecessary computational expenses. The Res-
Block structure that was proposed subsequently [38] is a
better choice for pan-sharpening. By removing all the batch
normalization layers and the rectified liner unit layers after the
shortcut connection of the original residual block, the model
convergence accelerated and its size decreased.

The diagram of details extraction branch is shown in Fig. 3.
First, a 64-channel feature map is extracted from the PAN
image by a convolutional layer. Then, the stacked ResBlocks
are used to extract the residual features. An additional con-
volutional layer is connected to the last ResBlock to convert
the feature map into a four-channel details map, which will
be injected into the reconstruction branch. At the end of each
detail extraction level, the size of the details map is reduced
by half by a max-pooling layer.

The number of ResBlocks determines the receptive field of
the network. In the case of pan-sharpening, local structures
receive more attention than global features, so there is no
need for an extra deep network structure. The same number
of ResBlocks is used in different levels, which allows for a
wider receptive field on the lower resolution feature maps to
catch the structural information, and a smaller receptive field

on the higher resolution feature maps to concentrate on local
spatial details.

D. Loss Function

The network predicts residual images at different levels and
produces multiscale output images. The corresponding ground
truth is obtained by downsampling the reference image. In this
way, loss at each level can be calculated. For a two-level
network, the total loss of the model is represented as

Loss = λloss1 + (1 − λ)loss2 (3)

where loss1 and loss2 are the losses of the first level and second
level, respectively, and λ weighs the importance between the
two losses. At the beginning of training, λ is set to 1 and the
total loss is equal to loss1 so only the reconstruction result of
the first level is supervised, allowing for the model to converge
quickly. As the training proceeds, λ decreases gradually and
the weight of loss2 becomes progressively heavier. Finally,
λ decreases to 0 and the final loss is equal to loss2, which
guarantees the accuracy of the final reconstruction results.

For each reconstruction level, the loss function is based on
the relative dimensionless global error in synthesis (ERGAS)
index [40], which is an overall assessment of pan-sharpening

lossi =
√√√√ 1

B

B∑
b=1

(RMSEi (b) × e−ui (b))2 (4)

where i is the level index, B is the number of bands labeled
with the b index, μi (b) is the mean of the bth band of the
current level reference image, and RMSEi (b) is the root-
mean-square error between current level prediction and the
corresponding reference image.

IV. EXPERIMENTS

Experiments were conducted to evaluate the performance of
the proposed network. Trained models with different network
parameters were evaluated and compared to select the best
one. Then, full-resolution and reduced-resolution experiments
were performed. Our best model was compared with other
seven existing methods based on visual appearance and the
widely accepted objective indexes.

A. Data Set and Model Training

To evaluate the performance of our newly presented archi-
tecture, the network was trained on a data set consisting of
GF2, IKONOS, QuickBird, and WorldView3 (bands 2, 3, 5,
and 7 were selected to comprise the four-band MS image)
images. To make the trained model more robust, images
covering different areas (including urban, rural, seaside, and
mountain areas) are used. The spatial resolution of the PAN
images are 1 m (GF2), 1 m (IKONOS), 0.7 m (QuickBird),
0.31 m (WorldView3), respectively. The 4000 image patches
were collected in total. For each sensor, 20 image patches
were randomly selected for testing, one-fifth of the rest were
used for validation, and others for training. Following Wald’s
protocol spatially degraded images were used as inputs, and
the original MS images were used as the reference images.
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Fig. 4. Losses of network with different structures or loss functions. (a) Networks with different numbers of ResBlocks. (b) Networks with and without
multilevel structure. (c) Networks with and without multilevel loss function.

The experiments were carried out on a desktop equipped
with an NVIDIA GeForce GT 1080Ti GPU. The patch size
of the MS images and PAN images for training were 64 × 64
and 256×256 pixels, respectively, the batch size was set to 8,
the initial learning rate was set to 1 × 10−4, the learning rate
descent factor was set to 0.8 every 100 epochs, and the max
iteration was set to 3000. The coefficient λ was decreased by
0.01 every five epochs.

B. Network Exploration

A critical structural parameter of the proposed network is
the ResBlocks number, which directly determines the depth
of the network. Generally, a network with more convolu-
tional layers extracts features at a higher level and per-
forms better. However, our pan-sharpening experiments show
different results. Networks with different numbers of Res-
Blocks were trained to explore the influence of the parameter.
Another structure to be explored is the multilevel structure.
By removing the second level of the details extraction branch,
the network was simplified to a single-level network. The
simplified network was also trained to explore the influence of
a multilevel structure. To verify the effectiveness of multilevel
loss function, model use only loss of the last construction
level was also trained and compared with the combination
loss function.

As mentioned earlier, in the proposed structure, losses of
different levels were calculated using the same loss function,
and their coefficients add up to 1. The networks with differ-
ent numbers of ResBlocks were trained with the same loss
function. For network without multilevel structure or without
multilevel loss, their losses can also be treated as combination
of multilevel, i.e., middle level loss whose coefficient is 0
and final reconstruction level loss whose coefficient is 1.
Especially, after 500 epochs, losses of all the networks contain
only loss of the final level. The loss of the validation could
be used as a quality index to evaluate the trained model.

As shown in Fig. 4(a), nb-nb indicates that there are two
levels, and each level has nb ResBlocks. When the number of
ResBlocks is 6-6, the model converges quickly but has the
largest final loss because the receptive field of the feature
map is too small to catch the local structural information.
As the number of ResBlocks increases, the number of para-
meters increases and the model converges more slowly. When

the number of ResBlocks is 10-10, the network achieves
its minimum loss and best performance. When the number
of ResBlocks continues to increase, the convergence rate
declines, and the final loss increases. The reason is that
pan-sharpening concentrates on extracting low-level features
from the local area, so there is no need for such a wide-ranging
receptive field, and the deep network structure makes the
training inefficient.

In Fig. 4(b), the superiority of the multilevel structure is
verified. Both networks are equipped with 20 ResBlocks, the
single-level structure converges slower, and the final loss is
heavier. It can be concluded that the multilevel structure speeds
up the convergence and improves the performance.

In Fig. 4(c), the loss of network with l1 + l2 loss decreases
much quicker than the single-level loss one in the beginning
500 epochs, which verifies the effectiveness of taking con-
sideration of middle-level loss. In later epochs, the difference
between the two decreases gradually and finally, the losses are
very close. It can be concluded that network use only loss of
the final level can achieve similar performance to the proposed
combination loss, at the cost of more training time.

C. Evaluation Indexes

The quality of the fusion results can be evaluated using
two strategies. The first one is conducted on full-resolution
image data, which is known as “quality with no reference”
(QNR) [41]. The other one is conducted on reduced-resolution
image data according to the Wald protocol [42].

The QNR indexes are calculated by exploiting the relation-
ship between the pan-sharpened image and the original MS
image and the relationship between the pan-sharpened image
and the original PAN image. The QNR indexes are based on
the Q index [43], which is defined as

Q = σxy

σx × σy
× 2σx × σy

σ 2
x + σ 2

y
× 2x̄ × ȳ

x̄2 + ȳ2 (5)

where x and y are the test image and the reference image,
respectively, x̄ and ȳ are the means of x and y, respectively,
and σx and σy are the variances of x and y, respectively.
Q is comprised of three different factors that account for
the correlation, mean bias, and contrast variation of the test
spectral bands with respect to their references.
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1) Spectral Distortion Index (Dλ) [41]:

Dλ = 1

B(B − 1)

B∑
b=1

B∑
l=1(b �=l)

|Q(xb, xl) − Q(x̃b, x̃l)| (6)

where xb, xl denote the bth and lth band of the pan-sharpened
image, respectively, x̃b, x̃l denote the bth and lth band of the
LRMS image, respectively, and B is the number of bands.
The spectral distortion index measures the relative relationship
between the interband Q indexes of the fused and original
images.

2) Spatial Distortion Index(Ds) [41]:

Ds = 1

B

B∑
b=1

|Q(xb, P) − Q(x̃b, P̃)| (7)

where P and P̃ are the PAN image and degraded PAN
image, respectively. The spatial distortion index measures the
interband relationship between the Q indexes of the fused and
PAN.

3) QNR:

QNR = (1 − Dλ) × (1 − Ds). (8)

The QNR is composed of the spectral distortion index Dλ

and the spatial distortion index Ds . The best value of QNR
is 1.

The quality indexes with reference are based on the assump-
tion of scale invariance, the MS, and PAN images are degraded
at a certain scale and fused to generate the pan-sharpened
image, and the original MS image is used as the reference.
The following indexes are chosen for reference evaluation.

4) Correlation Coefficient (CC) [44]:

CC =
∑M

m=1(Pm − p̄m) × (Rm − R̄m)√∑M
m=1 (Pm − p̄m)2 × ∑M

m=1(Rm − R̄m)2
(9)

where m refers to the mth pixel, M is the total number of
pixels, R is the reference HR MS image, and P is the pan-
sharpened image. R̄ and P̄ are the mean values of R and P ,
respectively. CC evaluates the correlation degree between the
two.

5) RMSE [45]:

RMSE =
√∑M

m=1 (Pm − Rm)2

M
. (10)

The RMSE measures the standard difference between two.
6) ERGAS:

ERGAS100 � dh

dl

√√√√ 1

B

B∑
b=1

(
RMSE(b)

μ(b)

)2

(11)

where RMSE(b) is the RMSE between the bth fused band
and the reference band, dh/dl is the scale ratio between the
PAN image and the MS image, μ(k) is the mean of the bth
band, and B is the number of bands. ERGAS accounts for the
spatial distortion; the closer the value is to 0, the better the
quality of the pan-sharpened MS.

7) Spectral Angle Mapper [46]:

SAM(v, v̂) � arccos

( 〈v, v̂〉
||v||2 × ||v̂ ||2

)
(12)

where v and v̂ are the pixel vector of the pan-sharpened image
and the reference, respectively, and SAM is averaged on the
whole image and reflects the spectral distortion between the
fused image and the reference image.

8) Universal Image Quality Index (Q4) [47]:

Q4 = |σz1z2 |
σz1 · σz2

× 2σz1 × σz2

σ 2
z1

+ σ 2
z2

× 2|z̄1| × |z̄2|
|z̄1|2 + |z̄2|2 (13)

where z1 = x1 + i x2 + j x3 + lx4, z2 = x̂1 + i x̂2 + j x̂3 + l x̂4, xb

and x̂b are the bth band of the fused MS image and reference,
respectively. Here, i , j , and l are imaginary units, z and σz are
the mean and variance of variable z, respectively, and σz1z2 is
the covariance between z1 and z2. Q4 is an improved version
of Q for MS images with four spectral bands.

D. Results and Comparison

We compared the performance of the trained model on
test data set against seven widely accepted pan-sharpening
methods: the GS method [48], guided filter-based pan-
sharpening (GFP) method [49], matting model-based pan-
sharpening (MMP) method [50], l1/2 gradient prior-based
pan-sharpening (L12) method [21], pan-sharpening based on
image segmentation(Seg_GLP)[48], deep residual network for
pan-sharpening (DRPNN) [28], and target-adaptive CNN-
based pan-sharpening (PNN) [26]. The GS method and GFP
method are two typical CS-based methods. MMP and L12 are
two state-of-the-art MBO methods. (In some papers, MMP is
considered a CS-based method; in this paper, MMP is con-
sidered an MBO method because it separates the foreground
and background based on the matting model.) The Seg_GLP
method is an MRA method based on image segmentation.
DRPNN and PNN are two recently proposed deep convo-
lutional networks for pan-sharpening. The implementations
of the compared algorithms are available online,1–6 trained
models of DRPNN and PNN are also provided by the authors.
The default parameters given in their implementations are
adopted.

Fig. 5 shows an example of the full-resolution experiment
performed on the GF2 image. For visualization, all the images
were rendered by ArcGIS Desktop [52] with default para-
meters; for the MS images, the red, green, and blue bands
were chosen for display. Fig. 5(a) and (b) shows the original
MS and PAN images, respectively, Fig. 5(c)–(k) shows the
pan-sharpened MS images obtained by different methods. The
two CS-based methods work well for enhancing the spatial
details but produce severe spectral distortions, especially in
the vegetation region. The MMP, L12, Seg_GLP, PNN, and

1https://github.com/mustafateke/Pansharp
2https://github.com/sjtrny/FuseBox
3http://smartdsp.xmu.edu.cn/PansharpeningStructure.html
4http://openremotesensing.net/kb/codes/pansharpening
5https://github.com/Decri/DRPNN-Deep-Residual-Pan-sharpening-Neural-

Network
6https://github.com/sergiovitale/pansharpening-cnn
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Fig. 5. Comparison of pan-sharpening results obtained by different methods (GF2 image). (a) LR MS image. (b) PAN image. (c)–(j) Pan-sharpening results
of GS, GFP, MMP, L12, Seg_GLP, DRPNN, PNN, and the proposed method.

TABLE I

OBJECTIVE PERFORMANCE OF THE PAN-SHARPENING METHODS IN FIG. 5

DRPNN methods preserve the spectral information well but
produce different levels of blurring artifacts. The proposed
method produces pan-sharpened images with the best visual
quality. Table I shows the objective performance of different
methods. The PNN method achieves the best Dλ and the
proposed method achieves the best Ds and QNR.

Fig. 6 shows another GF2 experiment performed on the
downsampled version. Generally, all the pan-sharpened images
are of good spectral quality. Regarding spatial quality, GS and
GFP show the best performance, followed by the proposed
method and PNN. The holes in the roof are hard to recognize
in the Seg_GLP, MMP, L12, and DRPNN results, which
suggests that these methods suffer from blurring artifacts in the
object boundaries. Table II shows the objective performance
of different methods. The proposed method shows the best
pan-sharpening results based on most of the image quality
indexes, i.e., CC, Q4, and RMSE.

Fig. 7 illustrates the full-resolution experiment performed
on the IKONOS image. The L12, PNN, and DRPNN results
are blurry and single trees are not recognizable in the enlarged
view. GS, GFP, and MMP preserve the spatial details well in
most regions but suffer from artifacts in local areas such as
vegetation in the center, which is due to the complex textures
and numerous spatial details in vegetation regions. Seg_GLP
suffers slight spectral distortions in vegetation regions. Regard-
ing visual effects, the proposed method produces the high-
est quality image. The objective evaluation in Table III is

consistent with the visual comparison, the proposed method
gets the best Dλ, Ds , and QNR, indicating that the proposed
method performs the best in both enhancing spatial details and
preserving the spectral information.

Fig. 8 shows the results of the downsampled experiment
on the IKONOS image. The GS, GFP, and Seg_GLP methods
produce artifacts in the vegetation regions. Two model-based
methods, MMP and L12, fail to restore the spatial details
properly; they suffer from artifacts in the texture-complex
regions and blur in weakly textured regions. The result of the
PNN, DRPNN, and proposed methods are more similar to the
reference image. The objective quality indexes comparison is
shown in Table IV which indicates that the proposed method
performs the best for the ERGAS, CC, and RMSE indexes

Fig. 9 shows an experiment performed on a QuickBird
seaside image. It can be seen that the GS, GFP, and PNN
results suffer from spectral distortion, as the color of the
vegetation is different from that in the original MS image.
The results produced by MMP, L12, Seg_GLP, and DRPNN
are blurry and the houses in the enlarged view are not clear.
The Seg_GLP result also suffers from severe artifacts in
the vegetation regions. Only the proposed method produces
satisfactory results. The objective evaluation in Table V shows
that the GS and DWFT method get the best Ds and Dλ,
respectively, and the proposed method gets the best QNR.

Fig. 10 shows the downsampled experiment performed on
the QuickBird images. In this experiment, the results produced
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Fig. 6. Comparison of pan-sharpening results obtained by different methods (downsampled GF2 image). (a) LR MS image. (b) PAN image.
(c)–(j) Pan-sharpening results of GS, GFP, MMP, L12, Seg_GLP, DRPNN, PNN, and the proposed method. (k) Reference image

TABLE II

OBJECTIVE PERFORMANCE OF THE PAN-SHARPENING METHODS IN FIG. 6

TABLE III

OBJECTIVE PERFORMANCE OF THE PAN-SHARPENING METHODS IN FIG. 7

by GS and Seg_GLP are blurry and the road boundaries in
the enlarged view are not clear; the GS result also suffers
from spectral distortion in the vegetation regions. Similar to
previous experiments, the GFP method suffers from artifacts in
texturally complex regions and spectral distortion in bare land
areas. The MMP result suffers from slight spectral distortion

as indicated by the abnormal color of vegetation regions in the
enlarged view. L12, PNN, DRPNN, and the proposed methods
perform well in producing clear pan-sharpened images. The
objective evaluation results in Table VI show that the proposed
method performs best regarding ERGAS and Q4, and DRPNN
performs best regarding SAM, CC, and RMSE.
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Fig. 7. Comparison of pan-sharpening results obtained by different methods (IKONOS image). (a) LR MS image. (b) Pan image. (c)–(j) Pan-sharpening
results of GS, GFP, MMP, L12, Seg_GLP, DRPNN, PNN, and the proposed method.

Fig. 8. Comparison of pan-sharpening results obtained by different methods (downsampled IKONOS image). (a) LR MS image. (b) PAN image.
(c)–(j) Pan-sharpening results of GS, GFP, MMP, L12, Seg_GLP, DRPNN, PNN, and the proposed method. (k) Reference image.

The results of full-resolution WorldView3 data are shown
in Fig. 11; the spatial details in the GS result are well
reconstructed but apparent spectral distortion can be found in
areas such as roads, vegetation, roof, and water. The GFP result

also suffers from spectral distortion in vegetation regions. The
L12, and DRPNN methods fail to reconstruct the roof details.
The MMP, Seg_GLP, PNN, and proposed methods produce
results with good spectral and spatial quality. The objective
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TABLE IV

OBJECTIVE PERFORMANCE OF THE PAN-SHARPENING METHODS IN FIG. 8

Fig. 9. Comparison of pan-sharpening results obtained by different methods (QuickBird image). (a) LR MS image. (b) PAN image. (c)–(j) Pan-sharpening
results of GS, GFP, MMP, L12, Seg_GLP, DRPNN, PNN, and the proposed method.

TABLE V

OBJECTIVE PERFORMANCE OF THE PAN-SHARPENING METHODS IN FIG. 9

TABLE VI

OBJECTIVE PERFORMANCE OF THE PAN-SHARPENING METHODS IN FIG. 10

evaluation in Table VII is consistent with the visual assess-
ment that the proposed method performs best regarding
Ds and QNR.

Fig. 12 shows experiment performed on the downsampled
WorldView3 data. The GS and GFP method results suffer color
distortion in vegetation regions, and the GFP method also
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Fig. 10. Comparison of the pan-sharpening results obtained by different methods (downsampled QuickBird image). (a) LR MS image. (b) PAN image.
(c)–(j) Pan-sharpening results of GS, GFP, MMP, L12, Seg_GLP, DRPNN, PNN, and the proposed method. (k) Reference image.

Fig. 11. Comparison of the pan-sharpening results obtained by different methods (WorldView3 image). (a) LR MS image. (b) PAN image.
(c)–(j) pan-sharpening results of GS, GFP, MMP, L12, Seg_GLP, DRPNN, PNN, and the proposed method

suffers from artifacts in texture-complex regions. The MMP,
L12, and DRPNN method results are blurry. The results of the
Seg_GLP, PNN, and the proposed methods look more similar
to the ground truth. The objective evaluation in Table VIII

shows that the proposed method performs the best regarding
most indexes including ERGAS, CC, and RMSE. This exam-
ple shows that the proposed method also performs well on
WorldView3 images.
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TABLE VII

OBJECTIVE PERFORMANCE OF THE PAN-SHARPENING METHODS IN FIG. 11

Fig. 12. Comparison of pan-sharpening results obtained by different methods (downsampled WorldView3 image). (a) LR MS image. (b) PAN image.
(c)–(j) Pan-sharpening results of GS, GFP, MMP, L12, Seg_GLP, DRPNN, PNN, and the proposed method. (k) Reference image.

TABLE VIII

OBJECTIVE PERFORMANCE OF THE PAN-SHARPENING METHODS IN FIG. 12

Objective evaluation of the performance on the test data
set (80 image patches, 20 patches for each sensor) is shown
in Table IX, and the running time on CPU is shown in Table X.
It should be noted that PNN is fine-tuned on the test data
set for 50 epochs, which is a default parameter provided by
the authors in the source code. The running time of PNN

also includes the time for fine-tuning. It can be seen that
the proposed method performs the best for most indexes
with reference. As for full resolution indexes, the PNN
method performs the best for GF2 and IKONOS images, and
the proposed method perform the best for QuickBird and
WorldView3 images. As for time cost, for 100 × 100-pixel
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TABLE IX

OBJECTIVE PERFORMANCE OF THE PAN-SHARPENING METHODS ON TEST DATA SET

TABLE X

CPU TIME OF THE PAN-SHARPENING METHODS ON TEST DATA SET

image at MS resolution, each image takes less than 2 s,
which is faster than DRPNN and PNN, and acceptable
compared to traditional methods. When running on GPU,

the proposed method finishes the test data set in 5 s, which
verifies the efficiency and practicableness of the proposed
method.
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V. CONCLUSION

In this paper, an end-to-end deep learning network called
BDPN is introduced to solve the pan-sharpening problem in
producing high spatial and spectral resolution images. BDPN
automatically extracts multilevel spatial details from a PAN
image and injects them into an upsampled MS image, produc-
ing a pan-sharpened image with excellent spectral and spatial
quality. Our proposed method is compared with several widely
accepted pan-sharpening methods, and results on images from
different sensors verify the superiority of the proposed method.
However, limited by the structure, the proposed network
can only be used to process MS and PAN images whose
resolutions differ by 2n times. Our future work will explore
on extending the network to MS and PAN images with any
level of scaling factors.
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