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Abstract: Change detection (CD) is essential to the accurate understanding of land surface changes 
using available Earth observation data. Due to the great advantages in deep feature representation 
and nonlinear problem modeling, deep learning is becoming increasingly popular to solve CD tasks 
in remote-sensing community. However, most existing deep learning-based CD methods are 
implemented by either generating difference images using deep features or learning change 
relations between pixel patches, which leads to error accumulation problems since many 
intermediate processing steps are needed to obtain final change maps. To address the above-
mentioned issues, a novel end-to-end CD method is proposed based on an effective encoder-
decoder architecture for semantic segmentation named UNet++, where change maps could be 
learned from scratch using available annotated datasets. Firstly, co-registered image pairs are 
concatenated as an input for the improved UNet++ network, where both global and fine-grained 
information can be utilized to generate feature maps with high spatial accuracy. Then, the fusion 
strategy of multiple side outputs is adopted to combine change maps from different semantic levels, 
thereby generating a final change map with high accuracy. The effectiveness and reliability of our 
proposed CD method are verified on very-high-resolution (VHR) satellite image datasets. Extensive 
experimental results have shown that our proposed approach outperforms the other state-of-the-art 
CD methods.  

Keywords: change detection; deep learning; end-to-end; encoder-decoder architecture; feature 
maps; multiple side-outputs fusion 

 

1. Introduction  

With ever-increasing Earth observation data available from all kinds of satellite sensors, such as 
DeepGlobal, WorldView, QuickBird, ZY-3, GF1, GF2, Sentinel, and Landsat, it is easy to obtain multi-
temporal remote sensing (RS) data using the same or different sensors. Based on multi-temporal RS 
images acquired at the same geographical areas, the task of change detection (CD) is the process of 
identifying differences in the state of an object or natural phenomena by observing it at different 
times [1], which is a significant issue to accurately process and understand the changes of Earth 
surface. Generally, CD has been widely applied in numerous fields, such as land cover and land use 
mapping, natural resource investigation, urban expansion monitoring, environmental assessment, 
and rapid response to disaster events [2–5].   

In the past decades, a large number of CD methods have been developed. Based on the analysis 
unit, traditional CD methods can be divided into two categories: pixel-based CD (PBCD) and object-
based CD (OBCD) [6]. In the former case, a difference image (DI) is usually generated by directly 
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comparing pixel spectral or textual values, from which the final change map (CM) is obtained by 
threshold segmentation or cluster analysis. Numerous PBCD approaches have been proposed to 
exploit the spectral and textual features of pixels, such as image algebra-based methods [7], image 
transformation-based methods [8,9], image classification-based methods [10], and machine learning-
based methods [11–13]. However, contextual information neglected for pixels are treated 
independently, which leads to a great deal of “salt and pepper” noise. To overcome the drawbacks, 
spatial-contextual information has to be considered for delineating the spatial properties. To model 
spatial-contextual information, many methods have been introduced, such as simple neighboring 
windows [8], the Markov random field [14], conditional random fields [15,16],  hypergraph models 
[17], and level sets [18]. However, PBCD methods, which are mostly suitable for middle- and low-
resolution RS images, often fail to work in very-high-resolution (VHR) images for the increased 
variability within image objects [19]. OBCD methods are proposed for CD in VHR images particularly, 
where images are segmented into disjoint and homogeneous objects first, followed by comparison 
and analysis of bi-temporal objects. As abundant spectral, textual, structural, and geometric 
information can be extracted within image objects, similarity analysis of the bi-temporal objects using 
those features are mostly studied in OBCD [20,21]. The post-classification comparison strategy is also 
utilized in OBCD for certain CD tasks, especially when “from-to” change information has to be 
determined [22,23]. 

Recently, deep learning (DL) methods have achieved dominant advantages over traditional 
methods in the areas of image analysis, natural language processing, and 3D scene understanding. 
Due to their great success, the interest of the RS community towards DL methods is growing fast, for 
the benefits of human-like reasoning and robust features which embody the semantics of input 
images [24]. In the literature, a large amount of attempts have been made to solve CD problems using 
DL techniques. Basically, DL-based CD methods can be divided into three categories: (1) feature-
based deep learning change detection (FB-DLCD), (2) patch-based deep learning change detection 
(PB-DLCD), and (3) image-based deep learning change detection (IB-DLCD).  

● FB-DLCD 
Hand-crafted features are usually designed for particular tasks, which need a great deal of expert 

domain knowledge and possess poor generality, while deep features are learned hierarchically from 
available datasets, which are more abstract and robust [25]. In particular, deep features generated 
from the pre-trained convolutional neural network (CNN) models on natural images have been 
proven effective to the transferring to RS images, such as VGGNet and ResNet. Therefore, a large 
number of studies have been made to introduce deep features from pre-trained CNN for CD [26–28]. 
In order to exploit the statistical structure and relations of image regions at different resolutions, 
Amin et al. [29] utilized Zoom out CNNs features from VGG-16 for optical image CD.  

In some cases, more discriminative features can be learned by using designed DL models with 
available datasets, which is more beneficial for CD. Zhang et al. [30] utilized the deep belief network 
(DBN) to learn abstract and invariant features directly from raw images, and then two-dimensional 
(2-D) polar domain and clustering methods were adopted to generate a CD map. Nevertheless, DBN, 
unlike CNN, has weak feature learning abilities. Thus, Siamese CNN architectures with weighted 
contrastive loss [31] and improved triplet loss [32] were exploited to learn discriminative deep 
features between changed and unchanged pixels, then DIs were generated based on the Euclidean 
distances of deep features, and finally CM could be obtained by a simple threshold.  

Because transfer learning fails to work between heterogeneous images, it is impossible to obtain 
deep feature representation for multi-modality images using pre-trained CNN models. Hence, to 
extract deep features, some studies present complex DL models, such as the conditional generative 
adversarial network (cGAN) [33] and iterative feature mapping network (IFMN) [34]. 

● PB-DLCD 
Rather than using DIs directly for obtaining CD results in FB-DLCD, pixel patches (or 

superpixels) are constructed from raw images or DI, which are fed into an elaborate DL model to 
learn the change relation of the center pixels (or superpixels). Before training, DIs are usually 
generated using traditional methods for obtaining proper training samples and labels, namely 
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pseudo-training sets. In [35] and [36], shallow neural networks, such as DBN and sparse denoising 
autoencoder (SDAE), are employed to learn semantic differences between the bi-temporal patches or 
superpixels. In [37], a refined DI is obtained based on the generative adversarial network (GAN), 
where the joint distribution of the image patches and training data are fed into the network for 
training. Siamese CNN architectures are widely utilized in the PB-DLCD for its effective feature 
fusion and representation abilities [38,39]. In addition, such PB-DLCD strategy was also adopted for 
multi-modality images or incomplete images, such as heterogeneous Synthetic Aperture Radar (SAR) 
images [40], laser scanning point clouds and 2-D imagery [41], and incomplete satellite images [42]. 

In order to overcome the effect of DI, some attempts using an end-to-end manner have been 
made to solve CD tasks. Gong et al. [43] proposed a novel CD method for SAR images, where a CM 
is generated by using the trained Restricted Boltzmann Machine (RBM). Rodrigo et al. [44] firstly 
proposed two end-to-end PB-DLCD architectures, where the CNNs could be trained from scratch 
using only the provided datasets. Wang et al. [45] performed hyperspectral image CD by a general 
end-to-end 2-D CNN framework, where 2-D mixed-affinity matrices are generated and pixel change 
types are obtained by the CNN output. In [46] and [47], dual-dense convolution network (DCN) and 
Spectral-Spatial Joint Learning Network (SSJLN) were proposed to implement PB-DLCD, 
respectively. It is noteworthy that recurrent neural networks (RNNs) were firstly exploited to model 
temporal change relations in [48]. Mou et al. [49] further proposed an end-to-end CD network by 
combining the CNN with the RNN, where a joint spectral-spatial-temporal feature representation is 
learned. However, a large number of training samples are needed to train an end-to-end CNN. To 
overcome the drawbacks, Gong et al. [50] detected multispectral image changes by a generative 
discriminatory classified network (GDCN), where labeled data, unlabeled data, and new fake data 
generated by the GAN are used. The generator recovers the real data from input noises to provide 
additional training samples, which could boost the performance of the discriminatory classified 
network.  

● IB-DLCD 
In the field of semantic segmentation, a fully convolutional network (FCN) is widely used due 

to its high efficiency and accuracy. Segmentation results are generated from images to images 
through end-to-end training, which reduces the effect of pixel patches as much as possible. In the 
literature, some attempts have been made to include an FCN. UNet-based FCN architectures were 
employed successfully [51,52] in IB-DLCD, which were trained in an end-to-end manner from scratch 
using only available CD datasets. It is noteworthy that two fully convolutional Siamese architectures 
with skip connections were firstly proposed in [53]. Lebedev et al. [54] detected changes in high-
resolution satellite images by an end-to-end CD method based on GANs. However, the network is 
sensitive to small changes, and the GAN is very time-consuming and difficult to train. Moreover, 
other FCN-based end-to-end CD architectures were also proposed for natural images [55,56] and 
hyperspectral images [57]. 

To sum up, PB-DLCD generally consists of three steps: (1) deep feature representation, which 
uses either pre-trained CNN models or elaborately designed DL models; (2) DI generation by using 
the Euclidean distance; (3) CD result retrieval by threshold segmentation or cluster analysis. However, 
the errors will inevitably be propagated from the early stages to later steps. In addition to that, the 
number of changed pixels must be proportional to that of the unchanged pixels for threshold 
segmentation of DI. Unfortunately, that assumption does not scale well to complex and large datasets, 
where images may contain no changed or unchanged pixels. Although the effect of DI could be 
reduced in PB-DLCD, the following limitations still exist: (1) a proper size, which has great influence 
on the performance of CNNs, is difficult to define for the pixel patches; (2) pixel patches are randomly 
split into training and testing sets, which easily leads to overfitting since neighboring pixels carry 
redundant information. Nevertheless, the existing IB-DLCD methods still need to be improved to 
capture complex and small changes. For the benefit of retrieval, a summary of the above-mentioned 
methods is presented in Table 1. 

Table 1. Summary of contemporary CD methods. 
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Methods Category Example studies 

Traditional CD 
methods 

PBCD Bruzzone et al. [7], Celik [8], Deng et al. [9], Wu et al. [10], Huang 
et al. [11], Benedek et al. [14], and Bazi et al. [18]  

OBCD Ma et al. [20], Zhang et al. [21], Gil-Yepes et al. [22], Qin et al. [23] 

Deep learning 
CD methods 

FB-
DLCD 

Sakurada et al. [26], Saha et al. [27], Hou et al. [28], El Amin et al. 
[29], Zhan et al. [31], Zhang et al. [32], Niu et al. [33], and Zhan et 

al. [34] 

PB-
DLCD 

Gong et al. [36], Arabi et al. [38], Ma et al. [40], Zhang et al. [41], 
Khan et al. [42], Daudt et al. [44], Wang et al. [45], Wiratama et al. 

[46], Zhang et al. [47], Mou et al. [49], and Gong et al. [50]  

IB-DLCD 
Lei et al. [52], Daudy et al. [53], Lebedev et al. [54], and Guo et al. 

[55] 
To address the above-mentioned issues, we proposed a novel end-to-end method based on 

improved UNet++ [58], which is an effective encoder-decoder architecture for semantic segmentation. 
A novel loss function was designed and an effective deep supervision (DS) strategy was implemented, 
which are capable of capturing changes with varying sizes effectively in complex scenes. The main 
contributions of our article are three-fold: 

1) To the best of our knowledge, a comprehensive summary of DLCD techniques are firstly 
presented, which is useful for grasping the development process and tendency of DLCD. 

2) An end-to-end CNN architecture was proposed for CD of VHR satellite images, where an 
improved UNet++ model with novel DS is presented so as to capture subtle changes in 
challenging scenes. 

3) A comprehensive comparison of the existing FCN-based end-to-end CD methods was 
investigated. 

The reminder of this article is organized as follows. Section 2 illustrates the related work of 
semantic segmentation using FCNs. The proposed CD method is described in detail in Section 3. In 
Section 4, the effectiveness of our proposed method is investigated and compared with some state-
of-the-art (SOTA) IB-DLCD methods using real RS datasets. Discussion is presented in Section 5. 
Finally, Section 6 draws the concluding remarks. 

2. Background 

In classification tasks, the last few layers in standard CNN architectures are always several fully 
connected (FC) layers with a 1-D distribution over all classes as the output. However, a 2-D dense 
class prediction map is needed for semantic segmentation tasks. Based on a standard CNN, a patch-
based CNN approach [59] was proposed, where the label of each pixel is generated by the patch 
enclosing it. Nevertheless, the approach leads to great deficiency on both speed and accuracy for the 
correlations among patches ignored and many redundant computations on overlapped regions are 
introduced. Long et al. [60] first proposed FCN for semantic segmentation, where FC layers are 
removed and replaced by convolution layers. In an FCN, input images are down-sampled into small 
images after several convolution and pooling operations, then the down-sampled images are up-
sampled into the original size by bilinear interpolation or deconvolution. Since computations are 
shared across overlapping areas, FCN achieves great efficiency. In order to make finer predictions, 
some methods, such as atrous convolution [61], residual connections [62], and pyramid pooling 
modules [63], utilize intermediate layers to enhance the output feature maps, which contribute to 
expanding the receptive field and overcoming the vanishing gradient problems. 

It is noteworthy that an encoder-decoder architecture becomes increasingly popular in semantic 
segmentation due to its high flexibility and superiority. The illustration of such a CNN architecture 
is shown in Figure 1. An input image goes through the encoder part first to generate down-sampled 
feature maps, which consists of several convolution (Conv) layers and max-pooling layers in 
sequence. To obtain better convergence of deep networks, each Conv layer is followed by Batch 
Normalization (BN) and Rectified Linear Unit (ReLU) layers. Then, the decoder part is implemented 
for up-sampling the feature maps to the same size as the original image, where up-sampling layers 
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are followed by several Conv layers to produce dense features with finer resolution. Finally, a 
softmax layer is added to generate a final segmentation map. The structures of the encoder and 
decoder parts are symmetrical with skip connections between them, which proves to be effective to 
produce fine-grained segmentation results.  

The mostly used encoder-decoder example is SegNet [64], where unpooling operation is 
included for better up-sampling. However, skip connections are ignored, leading to poor spatial 
accuracy. UNet, an extension of SegNet by adding skip connections between the encoder and decoder 
layers, has better spatial accuracy and achieves great success in semantic segmentation on both 
medical images [65] and RS images [66]. Recently, Zhou et al. [58] proposed a novel medical image 
segmentation architecture named UNet++, which can be considered as an extension of UNet. To 
reduce the semantic gap between the feature maps from the encoder and decoder sub-networks, 
UNet++ uses a series of nested and dense skip pathways, rather than only connections between 
encoder and decoder networks. The UNet++ architecture possesses the advantages of capturing fine-
grained details, thereby generating better segmentation results than UNet. Therefore, it is promising 
to exploit the potential of UNet++ for semantic segmentation on RS images.  

 
Figure 1. An illustration of encoder-decoder-based FCN architecture for semantic segmentation. 

3. Methodology 

In this section, the proposed network architecture is illustrated in detail first. Then, the loss 
function formulation is discussed. Finally, we present detailed information on the training and 
prediction. 

3.1. Proposed Network Architecture 

Because CD can be treated as a problem of binary image segmentation, it is natural to introduce 
advanced semantic segmentation architectures to solve CD tasks. To perform CD on VHR images, 
we, inspired by UNet++, developed an end-to-end architecture. The flowchart of the proposed 
method is illustrated in Figure 2. Two periods of images are concatenated as the input of the network, 
which proves to be effective for learning bi-temporal changes through deep supervised training [53]. 
Then, the UNet++ model with dense skip connections is adopted as the backbone to learn multiscale 
and different semantic levels of visual features representations. To further improve the spatial details, 
DS is implemented by using multiple side-output fusion (MSOF). Finally, a sigmoid layer is followed 
to generate the final CM. 
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(a) 
 

 

(b) 
Figure 2. Flowchart of the proposed method: (a) illustration of the main flowchart; (b) illustration of 
the convolution unit. 

3.1.1. Backbone of UNet++ 

UNet++ with nested dense skip pathways has great benefits for extracting multi-scale feature 
maps from multi-level convolution pathways, which is similar to a UNet architecture, a normal 
UNet++ architecture consisting of convolution units, down-sampling and up-sampling modules, and 
skip connections between convolution units, as shown in Figure 2(a). The most significant difference 
between UNet++ and UNet is the re-designed skip pathways, which adopts the same dense 
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connection strategy as DenseNet [67]. Take node 𝑋 ,  as an example, where only one skip connection 
is applied from node 𝑋 ,  in the UNet architecture, while in UNet++, node 𝑋 ,  receives the skip 
connections from all previous convolution units at the same level, namely 𝑋 , , 𝑋 , , 𝑋 ,  and 𝑋 , . 
In such a way, the semantic levels of the encoder feature maps are closer to those in the corresponding 
decoder part, which facilitates the optimization of the optimizer. Assume 𝑥 ,  represents the output 
of node 𝑋 , , where 𝑖 denotes the ith down-sampling layer along the encoder way, 𝑗 denotes the jth 
convolution layer along the skip pathway. The accumulation of feature maps by 𝑥 ,  can be 
expressed as: 𝑥 , = ℋ(𝑥 , ),                      𝑗 = 0ℋ([[𝑥 , ] , ℧(𝑥 , )])       𝑗 > 0, (1) 

where ℋ(. ) represents a convolution operation followed by an activation function, ℧(. ) is an up-
sampling layer, and [. ] denotes the concatenation operation. In general, nodes at level j of =0 receive 
only one input from a previous down-sampling layer, while nodes at level j of >0 receive 𝑗 + 1 inputs 
from both the skip pathways and the up-sampling layer. For example, 𝑥 , =  ℋ(𝑥 , ) denotes 𝑥 ,  
receives the input from node 𝑥 , , and then a convolution operation and activation function are 
applied. 𝑥 , =  ℋ([𝑥 , , 𝑥 , , 𝑥 , , 𝑥 , , ℧(𝑥 , )])  denotes nodes 𝑥 , , 𝑥 , , 𝑥 , , 𝑥 , , the up-sampling 
results of node 𝑥 ,  are concatenated first, and then a convolution operation and an activation 
function are adopted to generate node 𝑥 , . It is noteworthy that residual modules are adopted in 
our convolution unit, which facilitates better convergence abilities for our deep networks. As seen in 
Figure 2b, a 2-D convolution layer (Conv2D) is implemented first, which is followed by a BN layer. 
Then, a further Conv2D and BN layer is applied. Finally, the output will be generated by adding the 
outputs from the second BN layer and the first Conv2D layer. It should be noted that scaled 
exponential linear units (SeLUs) is adopted as the activation function instead of ReLU, which allows 
for employing stronger regularization schemes and making learning highly robust [68].    

Another major difference is the multi-level full-resolution feature maps-generating strategy. 
Only a single-level feature map is generated in the UNet architecture through the pathway {𝑋 , →𝑋 , → 𝑋 , → 𝑋 , → 𝑋 , → 𝑋 , → 𝑋 , → 𝑋 , → 𝑋 , }, as illustrated in Figure 2a. While in UNet++, 
another three full-resolution feature maps are also obtained, through the pathways {𝑋 , → 𝑋 , →𝑋 , }, {𝑋 , → 𝑋 , → 𝑋 , → 𝑋 , → 𝑋 , }, and {𝑋 , → 𝑋 , → 𝑋 , → 𝑋 , → 𝑋 , → 𝑋 , → 𝑋 , }, 
respectively. Thus, the strengths of the four full-resolution feature maps could be combined, which 
is also beneficial for later DS.  

3.1.2. Deep Supervision by Multiple Side-Outputs Fusion 

DS is usually implemented by means of supervising side-output layers through auxiliary 
classifiers [69]. On the one hand, DS improves the convergence of deep networks by overcoming the 
vanishing gradient problems. On the other hand, more meaningful features ranging from low to high 
levels could be learned. In [57], DS is implemented by averaging the outputs from all segmentation 
branches, which fails to work for our CD task. Instead, an MSOF strategy is utilized, which is similar 
to the one proposed in [70].  

As shown in Figure 2a, for the four output nodes {𝑋 , , 𝑋 , , 𝑋 , , 𝑋 , } , a sigmoid layer is 
followed to obtain side output results {𝑌 , , 𝑌 , , 𝑌 , , 𝑌 , }. Then, a new output node 𝑌 ,  could be 
generated by concatenating the four side output results:  𝑋 , = 𝑌 , ⊕ 𝑌 , ⊕ 𝑌 , ⊕ 𝑌 , , (2) 

where ⊕ denotes the concatenation operation. Again, 𝑋 ,  is followed by a sigmoid layer, and the 
fusion output 𝑌 ,  could thus be generated. Therefore, five outputs are generated in our deep 
networks, namely {𝑌 , , 𝑌 , , 𝑌 , , 𝑌 , , 𝑌 , }, where 𝑌 ,  is the fusion output of {𝑌 , , 𝑌 , , 𝑌 , , 𝑌 , }. 
Through the MSOF operation, multi-level features information from all side-output layers are 
embedded in the final output 𝑌 , , which is capable of capturing finer spatial details. 

3.2. Loss Function Formulation 
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In our proposed FCN architecture, five output layers are generated after the classifiers of 
sigmoid layers. Suppose the corresponding weights are denoted as 𝜔 (𝑖 = 1,2,3,4,5) . Then, the 
overall loss function ℒ could be defined as: ℒ = ∑ 𝜔 ℒ , (3) 

where ℒ (𝑖 = 1,2,3,4,5) denotes the loss from the ith side output, which is employed by combining 
balanced binary cross-entropy and dice coefficient loss: ℒ = ℒ + 𝜆ℒ , (4) 

where ℒ  denotes the balanced binary cross-entropy loss, ℒ  is the dice coefficient loss, and 𝜆 
refers to the weight that balances the two losses.  

3.2.1. Balanced Binary Cross-Entropy Loss 

For CD tasks of satellite images, the distributions of changed/unchanged pixels are heavily 
biased. In particular, some areas are covered by only changed or unchanged pixels, which leads to 
serious class imbalance problems during deep neural network training. Hence, trade-off parameters 
have to be introduced for biased sampling. In our end-to-end training manner, the loss function is 
computed over all pixels in a training image pair 𝑋 = (𝑥 , 𝑗 = 1,2, … , |𝑋|)  and CM 𝑌 = (𝑦 , 𝑗 =1,2, … , |𝑌|), 𝑦 ∈ {0,1}. A simple automatically balancing strategy is adopted, and the class-balanced 
cross-entropy loss function can be defined as: ℒ = −𝛽 ∑ 𝑙𝑜𝑔𝑃𝑟 𝑦 = 1 − (1 − 𝛽) ∑ 𝑙𝑜𝑔𝑃𝑟 𝑦 = 0 , (5) 

where 𝛽 = |𝑌 |/(|𝑌 | + |𝑌 |) and 1 − 𝛽 = |𝑌 |/(|𝑌 | + |𝑌 |), |𝑌 | and |𝑌 | represent the numbers 
of changed and unchanged pixels in the ground truth label images, respectively, and 𝑃𝑟(. ) is the 
sigmoid output at pixel j.  

3.2.2. Dice Coefficient Loss  

To improve segmentation performance and weaken the effect of class imbalance problems, dice 
coefficient loss is usually applied in semantic segmentation tasks. In general, the similarity of two 
contour regions can be defined by dice coefficient. Moreover, the dice coefficient loss could be defined 
as: ℒ = 1 − , (6) 

where 𝑌 and 𝑌 denote the predicted probabilities and the ground truth labels of a training image 
pair, respectively. 

3.3. Training and Prediction 

The proposed method is implemented by Keras with TensorFlow as the backend, which is 
powered by a workstation with Intel Xeon CPU W-2123 (3.6 GHz, 8 cores, and 32GB RAM) and a 
single NVIDIA GTX 1080 Ti GPU. During the training process, Adam optimizer with a learning rate 
of 1 × 10–4 is applied. Based on the GPU memory, the batch size is set to 8 for 15 epochs, and the 
learning rate drops after every 5 epochs. As our proposed architecture is an FCN-based model, it is 
easy to train the model in an end-to-end manner for an arbitrary size of input images. After training, 
test images could be fed into the trained model to generate the prediction result. For a image patch 
with size of 256 × 256, it takes about 0.0447 s to predict the final CD map, which is of high efficiency.  

To contribute to the geoscience community, the implementation of our proposed method will be 
released through GitHub (https://github.com/daifeng2016/End-to-end-CD-for-VHR-satellite-image).  

4. Experiments and Results  

In this section, several experiments are carried out to verify the effectiveness of our proposed 
method. First, we present a description of the VHR image dataset, which is provided in [54]. 
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Evaluation metrics are also provided in detail for quantitative analysis of our method. Second, SOTA 
methods are presented for comparisons. Then, a sensitive analysis of the parameters and the 
experimental setups is described in detail. Finally, we give a comprehensive analysis of the 
experimental results.  

4.1. Datasets and Evaludation Metrics 

It has to be mentioned that CD tasks have long been hindered for the lack of open datasets, 
which are crucial for fair and effective comparisons of different algorithms. As a large amount of 
labeled data are needed for training deep neural networks, it is impossible to use only a small size of 
co-registered image pairs, which are adopted in most traditional CD tasks. Fortunately, a publicly 
available dataset of satellite image pairs are presented by Lebedev [54]. The datasets were obtained 
by Google Earth, covering season-varying RS images of the same region. There are 11 multi-spectral 
image pairs in the dataset, including 7 pairs of season-varying images with a size of 4725 × 2200 
pixels for creating manual reference maps and 4 pairs of images with a size of 1900 × 1000 pixels 
for adding additional objects manually. It is noteworthy that the dataset consists of multi-source 
remotely sensed imagery with resolutions varying from 3 cm to 100 cm per pixel, where the season 
changes between bi-temporal images vary largely. During the generation of reference maps, only the 
appearance and disappearance of objects were considered as image changes while ignoring changes 
due to season differences, brightness, and other factors. On the one hand, the dataset is very 
challenging for CD using traditional methods; on the other hand, different object changes (such as 
cars, buildings, and tanks) could be well considered, as illustrated in Figure 3. As it is impossible to 
train CNNs with large images due to the limitation of GPU, image patches have to be generated. We 
utilize the image patches generated in [54], which consist of 10,000 training sets and 3000 testing and 
validation sets, created by cropping a size of 256 × 256 randomly rotated fragments with at least a 
part of the target object.   

In order to verify the validity of our proposed method, four evaluation metrics are applied based 
on the comparisons between the prediction CMs and the ground truth maps, namely Precision (P), 
Recall (R), F1-score (F ), and Overall Accuracy (OA). In the CD task, a large value of P denotes a small 
number of false alarms, and a large value of R represents a small number of missed detections. 
Meanwhile, F1 and OA reveal the overall performance, where their larger values will lead to better 
performance. These four evaluation metrics are descried as: 𝑃 = , (7) 𝑅 = , (8) 𝐹 = , (9) 𝑂𝐴 = , (10) 

where TP, FP, TN, and FN denote the number of true positives, the number of false positives, the 
number of true negatives, and the number of false negatives, respectively.  
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Figure 3. An illustration of different object changes. 

4.2. Comparison Methods 

To verify the superiority and effectiveness of our proposed CD method, some SOTA IB-DLCD 
approaches are compared, which are described as follows: 

1) Change detection network (CDNet) [56] was proposed for pixel-wise CD in street view 
scenes, which consists of contraction blocks and expansion blocks, and the final CM is 
generated by a soft-max layer. 
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2) Fully convolutional-early fusion (FC-EF) [53] was proposed for CD of satellite images. 
Image pairs are stacked as the input images. Skip connections are utilized to complement 
the less localized information with spatial details, thereby producing CMs with precise 
boundaries.    

3) Fully convolutional Siamese-concatenation (FC-Siam-conc) [53] is a Siamese extension of 
FC-EF model. The encoding layers are separated into two streams of equal structure with 
shared weights. Then, the skip connections are concatenated in the decoder part.  

4) Fully convolutional Siamese-difference (FC-Siam-diff) [53] is another Siamese extension of 
FC-EF model. The skip connections from the encoding streams are concatenated by using 
the absolute value of their difference. 

5) FC-EF with residual blocks (FC-EF-Res) [51] is employed for CD in high-resolution satellite 
images. It is an extension of FC-EF architecture, where residual blocks with skip 
connections are used to improve the spatial accuracy of CM.  

6) Fully convolutional network with pyramid pooling (FCN-PP) [52] is applied for landslide 
inventory mapping. A U-shape architecture is used to construct the FCN. Additionally, 
pyramid pooling is utilized to capture wider receptive field and overcome the drawbacks 
of global pooling.  

4.3. Parameter Setting 

The size of convolution kernel is set to 3 × 3 pixels for all convolutional layers, which can 
maintain spatial information and increase the computation speed effectively. The number of 
convolutional filters in the encoder part is set to {32, 64, 128, 256, 512}. As two periods of RGB images 
with a size of 256 × 256 pixels are stacked to feed into the network, the input is a tensor with 256 × 256 × 6 pixels, while the output is a tensor with 256 × 256 × 1 pixels. For the proposed loss 
function, the weight of each side output 𝜔 (𝑖 = 1,2,3,4,5)  is set to 1.0, while 𝜆  is set to 0.5 for 
balancing the weight of binary cross-entropy loss and dice coefficient loss. The effect of loss function, 
data augmentation, and MSOF will be described in the following subsections. In addition, the 
parameters of the other competitors are set as illustrated in the literature [51–53,56]. 

4.3.1. Effect of Loss Function 

Loss function plays an important role in the final CD results. In particular, the parameter 𝜆, 
which balances the weight of binary cross-entropy loss and dice coefficient loss, is of great 
significance on our proposed loss function. To verify the sensitivity of parameter 𝜆, we varied 𝜆 
from 0 to 1.0, and the corresponding evaluation metrics were calculated, as illustrated in Figure 4. 
When 𝜆 is set to 0, only binary cross-entropy loss is utilized, where the values of P, R, F1, and OA 
remain at a low level. Then, the four quantitative evaluation metrics increase with the increase of 
parameter 𝜆 , which verifies the effectiveness of combining binary cross-entropy loss and dice 
coefficient loss. Note that P, R, F1, and OA achieve the maximum values when 𝜆 is 0.5, which means 
that the influence of binary cross-entropy loss and dice coefficient loss are well balanced. However, 
the values of the four quantitative evaluation metrics show a shock downward trend with the further 
increase of parameter 𝜆. Therefore, parameter 𝜆 is set to 0.5 for the sake of better CD performance.  
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Figure 4. The effects of parameter 𝜆 on the accuracy of our CD method: (a) the effect of parameter 𝜆 
on Precision; (b) the effect of parameter 𝜆 on Recall; (c) the effect of parameter 𝜆 on F1-score; (d) the 
effect of parameter 𝜆 on OA. 

4.3.2. Effect of Data Augmentation 

The raw datasets consist of 10,000 training sets and 3000 testing and validation sets, leading to 
an overfitting problem when training a large network. Because our proposed network contains more 
than 9 million parameters, it is critical to implement data augmentation to avoid overfitting, as well 
as improving the generalization ability. To augment the training sets, each image pair is shifted and 
scaled, rotated by 90° , 180° , and 270° , flipped in horizontal and vertical directions. Figure 5 
illustrates the effect of data augmentation by the four quantitative evaluation metrics. We can 
conclude that the P, R, F1, and OA values can increase by a large margin with data augmentation, 
which are increased by 40.13%, 57.95%, 58.34%, and 14.01%, respectively. The main reason lies in the 
fact that 70,000 training sets and 21,000 validation sets are employed after data augmentation, in 
which case the proposed network parameters can be better learned from more training sets. In 
addition to this, the overfitting effect can be reduced and the generalization ability of the proposed 
network can be improved to a large extent. Hence, it is of great significance to implement data 
augmentation so as to improve the CD accuracy.  
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Figure 5. The effect of data augmentation on the accuracy of our proposed CD method in terms of 
Precision, Recall, F1-score, and OA. 

4.3.3. Effect of MSOF 

In order to improve the convergence of the proposed deep networks and learn more meaningful 
features ranging from low to high levels, an MSOF strategy is utilized. Figure 6 presents the influence 
of MSOF in terms of four quantitative evaluation metrics, namely P, R, F1, and OA. As can be seen, 
the accuracy of CD can be further improved by the usage of MSOF strategy, where the increase of P, 
R, F1, and OA are 1.70%, 5.29%, 3.88%, and 1.36%, respectively. This is because feature maps from 
multiple semantic levels are combined, where more detailed information can be captured. Therefore, 
MSOF is effective to improve the CD accuracy in our proposed CD method.      

 
Figure 6. The effect of multiple side-outputs fusion (MSOF) strategy on the accuracy of our proposed 
CD method in terms of Precision, Recall, F1-score, and OA. 

4.4. Results Comparisons 
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In order to verify the effectiveness and superiority of our proposed CD method, six typical 
testing areas, which consist of complex changes such as cars, roads, and buildings, are presented for 
visual comparisons, as illustrated in Figures 7–12. It can be observed that the proposed CD method 
achieves the best CD performance (Figures 7–12j), where the CMs are closely consistent with the 
reference CMs (Figures 7–12c). In particular, compared with other methods, our approach generates 
the CMs with more accurate boundaries and less missed detections. As seen in Figures 7 and 8, the 
boundaries of building changes are clearer and the inner parts are more complete. Note that, 
compared to the other SOTA methods, our approach achieves the better detection performance for 
the changes of small objects, e.g., car changes in Figures 9 and 10. In addition, our CD method is also 
capable of capturing complex and obscure changes, such as long and narrow roads, as seen in Figures 
11 and 12. We can see that the road changes can only be partly or coarsely detected by the comparative 
SOTA methods (Figure 11d–i and Figure 12d–i), while the outlines and locations of the roads are 
better detected in Figure 11j and Figure 12j. 

Meanwhile, for quantitative comparisons, four quantitative evaluation metrics—P, R, F1, and 
OA—were calculated and are summarized in Table 2. We concluded that the CDNet method obtains 
the lowest F1 and OA values among all the seven SOTA methods. The reason lies in the fact that the 
network consists of only contraction and expansion blocks without skip connections between the 
encoder and decoder parts. Therefore, the detailed information from the low levels was missed in the 
expansion layers, as can be seen in Figures 7–12d. Based on the UNet backbone, the FC-EF method 
(Figures 7–12e) achieved better CD results than the CDNet because skip connections were 
implemented between the encoder blocks and the corresonding decoder blocks, with F1 and OA 
values increased by 12.05% and 3.88%, respectively. Rather than using traditional convolutional 
blocks, the FC-EF-Res method adopts residual connections, which greatly facilitates the training of 
very deep networks, as well as improving the spatial accuracy of the final CM. In order to overcome 
the drawbacks of global pooling, a pyramid pooling module was integrated into the FCN-PP, where 
multi-scale features from different convolutional layers were combined to obtain strong feature-
representation ability. Therefore, the FC-EF-Res (Figures 7–12h) and FCN-PP (Figures 7–12i) methods 
achieved better CD results than the FC-EF method, with F1 values increased by 1.95% and 4.36%, 
respectively, and OA values increased by 0.24% and 1.31%, respectively. Rather than using 
concatenated image pairs as the input, the Siamese architecture was employed in FC-Siam-conc and 
FC-Siam-diff, which are two kinds of Siamese extensions of FC-EF model. We concluded that FC-
Siam-conc (Figures 7–12f) and FC-Siam-diff (Figures 7–12g) obtained better CD results than FC-EF, 
with F1 increased by 6.99% and 8.59%, , respectively, and OA values increased by 1.69% and 1.72%, 
respectively. The reasons lie in the fact that the explicit comparisons between image pairs were 
integrated into Siamese-based skip connections. In particular, difference skip connections could act 
as the guidance of comparing the difference between image pairs in the architecture, which is the 
reason why the FC-Siam-diff method achieves even better CD performance than the FC-Siam-conc 
method.    
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Figure 7. Visual comparisons of change detection results using different approaches for area 1: (a) 
image 𝑇 , (b) image 𝑇 , (c) reference change map, (d) CDNet, (e) FC-EF, (f) FC-Siam-conc, (g) FC-
Siam-diff, (h) FC-EF-Res, (i) FCN-PP, and (j) proposed method. The changed parts are marked in 
white while the unchanged parts are in black. 

 

Figure 8. Visual comparisons of change detection results using different approaches for area 2: (a) 
image 𝑇 , (b) image 𝑇 , (c) reference change map, (d) CDNet, (e) FC-EF, (f) FC-Siam-conc, (g) FC-
Siam-diff, (h) FC-EF-Res, (i) FCN-PP, and (j) proposed method. The changed parts are marked in 
white while the unchanged parts are in black. 

 
Figure 9. Visual comparisons of change detection results using different approaches for area 3: (a) 
image 𝑇 , (b) image 𝑇 , (c) reference change map, (d) CDNet, (e) FC-EF, (f) FC-Siam-conc, (g) FC-
Siam-diff, (h) FC-EF-Res, (i) FCN-PP, and (j) proposed method. The changed parts are marked in 
white while the unchanged parts are in black. 
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Figure 10. Visual comparisons of change detection results using different approaches for area 4: (a) 
image 𝑇 , (b) image 𝑇 , (c) reference change map, (d) CDNet, (e) FC-EF, (f) FC-Siam-conc, (g) FC-
Siam-diff, (h) FC-EF-Res, (i) FCN-PP, and (j) proposed method. The changed parts are marked in 
white while the unchanged parts are in black. 

 
Figure 11. Visual comparisons of change detection results using different approaches for area 5: (a) 
image 𝑇 , (b) image 𝑇 , (c) reference change map, (d) CDNet, (e) FC-EF, (f) FC-Siam-conc, (g) FC-
Siam-diff, (h) FC-EF-Res, (i) FCN-PP, and (j) proposed method. The changed parts are marked in 
white while the unchanged part are in black. 
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Figure 12. Visual comparison of change detection results using different approaches for area 6: (a) 
image 𝑇 , (b) image 𝑇 , (c) reference change map, (d) CDNet, (e) FC-EF, (f) FC-Siam-conc, (g) FC-
Siam-diff, (h) FC-EF-Res, (i) FCN-PP, and (j) proposed method. The changed parts are marked in 
white while the unchanged are in black. 

Note that our CD method (Figures 7–12j) achieved the best performance among all the 
comparative SOTA methods, with P, R, F1, and OA values reaching 0.8954, 0.8711, 0.8756, and 0.9673, 
respectively. The reasons lie in the following aspects: (1) UNet++ is utilized as the backbone, where 
dense skip connections are adopted to learn more powerful multi-scale features from different 
semantic levels; (2) residual blocks are employed in the convolutional unit of the encoder-decoder 
architecture, which facilitates the gradient convergence in the proposed deep CNN network, as well 
as capturing more detailed information; (3) a novel DS method named MSOF is applied in our 
proposed CD method, which could effectively combine multi-scale feature maps from different 
semantic levels to generate the final CM; (4) a novel loss function is proposed for our CD task, which 
combines weighted binary cross-entropy and dice coefficient loss effectively, thereby reducing the 
class imbalance problem. Compared with CDNet, the proposed CD method achieves the F1 and OA 
values increased by 27.23% and 6.24%, respectively, which verifies its effectiveness and superiority.  

Table 2. Quantitative evaluation results of different approaches, where the best values are in bold. 

Methods Precision Recall F1-score OA 
CDNet 0.7395 0.6797 0.6882 0.9105 
FC-EF 0.8156 0.7613 0.7711 0.9413 

FC-Siam-conc 0.8441 0.8250 0.8250 0.9572 
FC-Siam-diff 0.8578 0.8364 0.8373 0.9575 

FC-EF-Res 0.8093 0.7881 0.7861 0.9436 
FCN-PP 0.8264 0.8060 0.8047 0.9536 

Proposed method 0.8954 0.8711 0.8756 0.9673 
Figure 13 illustrates the number of parameters in different comparative CD approaches. We 

concluded that CDNet possesses the least network parameters and the worst CD performance (as 
seen in Table 2). This is because the skip connections are ignored and the change relations between 
image pairs might not be modeled well using only the simple encoder-decoder architecture. 
Nevertheless, the skip connections were adopted in the FC-EF model, where the network parameters 
increase sharply from 1.13 M to 7.77 M, yielding average improvements of F1 and OA values of 0.08 
and 0.03, respectively. It should be mentioned that the residual connections might further improve 
the CD accuracy without any increase of network parameters. That is the reason why the FC-EF-Res 
method achieves higher F1 and OA values while sharing the same network parameters with the FC-
EF. In addition, the FCN-PP method obtains higher F1 and OA values at the cost of increasing 
network parameters, which are increased by 40.28% compared with the FC-EF method. Due to the 
additional inner skip connections in the FC-Siam-conc and FC-Siam-diff methods, both the network 
parameters exceed 10 M, thus increasing the GPU burdens during the training stage to a large extent. 
It is worth noting that our method achieves the best CD performance with only 9.06 M parameters, 
which strikes a better balance between CD performance and network parameters.   

5. Discussion 

Traditional CD methods generally consist of three stages: pre-processing (geometrical 
rectification, radiometric and atmospheric corrections, image registration, etc.), change information 
extraction, and accuracy assessment. However, the errors are propagated from the former stages to 
later stages, which inevitably reduce CD accuracy and reliability. In particular, threshold 
segmentation is generally utilized in traditional CD methods, which works on the assumptions that 
the number of changed pixels is proportional to that of the unchanged. However, this is not the real 
case in some complex scenes. Therefore, it is of great importance to solve CD tasks in an end-to-end 
manner, where the change relations are learned directly from image pairs. Inspired by the recently 
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developed DL techniques for semantic segmentation, a novel end-to-end CD method was proposed 
for performing CD tasks on VHR satellite images.  

 
Figure 13. A comparison of network parameter size for different methods. 

The effectiveness of the proposed CD method was comprehensively examined based on the 
VHR satellite image datasets. Additionally, the superiority of the proposed CD method was verified 
through the quantitative and qualitative analysis against several SOTA end-to-end CD methods. Our 
proposed end-to-end CD model is based on the appearance or disappearance of existing objects while 
ignoring seasonal changes, and there is no need to implement radiometric corrections, which is a 
necessary step in traditional CD methods. In addition, the inner change relations between multi-
temporal image pairs can be learned from manual interpretation CMs, thereby introducing human 
domain knowledge effectively. That is especially useful for detecting changes of interest in complex 
areas, when a large amount of non-interesting changes are unnecessarily detected by using 
traditional CD methods. It should be noted that, due to the usage of dense skip connections and 
MSOF strategy, the proposed CD approach is robust to object changes of different scales and sizes, 
ranging from small cars to large construction structures. This means that our CD method might 
capture multi-scale object changes, which is critical for detecting objects with sharp changes in sizes 
and scales on VHR satellite images. Particularly, in difficult areas, our deep neural network model is 
easily to be fine-tuned by introducing human domain knowledge and adding corresponding samples. 
In addition, as image pairs are concatenated as the input for our model, it is flexible to include 
temporal information from more than two periods of images, making it possible to extend the CD 
task from image pairs to image sequences. Note that our proposed CD model has low computational 
burden in terms of inference. For example, it takes less than 0.05 s to predict an image with a size of 256 × 256 pixels. Therefore, our FCN model provides a promising solution to implement real-time 
CD once the model is well-trained. As the change relations between multi-temporal images are 
learned from scratch using available training datasets, the CD results are mainly influenced by: 1) 
data distribution between the training sets and testing sets; and 2) the accuracy of ground truth maps. 
When the data distribution is consistent between training sets and testing sets, the trained model will 
be generalized well to the testing sets and accurate CMs can be produced, otherwise CD results will 
be greatly influenced. In terms of ground truth maps, only reasonable mapping functions can be 
learned with high-quality ground truth maps, thereby generating high-accuracy CMs. It is worth 
noting that although our proposed approach is verified on VHR satellite images, the improved 
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UNet++ itself is independent of raster data forms. This means other forms of 2-D raster data (such as 
hyperspectral images or multi-channel radar images) can also be applied for CD using our approach; 
the only difference is the data normalization method before the images are fed into the network. 

However, there exist several potential limitations to the proposed method. First, to enlarge the 
receptive field, the proposed UNet++ architecture utilizes the down-sampling and up-sampling 
strategy, where the size of feature maps will be half of the inputs after down-sampling while twice 
the inputs after up-sampling. As four max-pooling layers are applied in the down-sampling part, the 
size of the feature maps will be one-eighth of the original images size. Therefore, in order to resize 
the feature maps to the original size after up-sampling operations, the size of the input images should 
be a multiple of eight (such as 128, 256, and 512). Furthermore, because the proposed FCN 
architecture contains millions of parameters, a large number of training samples are needed. Due to 
different sizes and locations of the object changes, it is quite labor-intensive to obtain enough 
reference CMs with high accuracy. Thus, recently developed DL techniques, such as transfer learning, 
reinforcement learning, weakly supervised learning, should be exploited for our network to solve the 
issues of a limited number of training samples.  

6. Conclusions 

In this paper, an improved UNet++ architecture was proposed for end-to-end CD of VHR 
satellite images. The dense skip connections within the UNet++ architecture were utilized to learn 
multi-scale feature maps from different semantic levels. In order to facilitate gradient convergence of 
the deep FCN network, we adopted a residual block strategy, which was also helpful for capturing 
more detailed information. In addition to this, the MSOF strategy was adopted to combine multi-
scale side-output feature maps and then generate the final CM. To reduce the class imbalance effect, 
we combined the weighted binary cross-entropy loss and dice coefficient loss effectively. The 
effectiveness of the proposed method was elaborately examined through the experiments on the VHR 
satellite image datasets. Compared with other SOTA methods, the proposed approach obtained the 
best CD performance on both visual comparison and quantitative metrics evaluation. However, the 
proposed architecture requires a large number of true CMs, which limits the widespread use to a 
certain extent. In addition, our architecture focuses on only change/no-change information, which is 
not enough for some practical applications. In the future, we will exploit the potentials of weakly 
supervised learning and samples generation techniques, as well as investigating the means to build 
the semantic relations for the changed areas.     
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Abbreviations 

The following abbreviations are used in this manuscript 
CD change detection 
PBCD pixel-based change detection 
OBCD object-based change detection 
DI difference image 
CM change map 
VHR very-high-resolution 
DL deep learning 
RS remote sensing 
FB-DLCD feature-based deep learning change detection 
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PB-DLCD patch-based deep learning change detection 
IB-DLCD image-based deep learning change detection 
CNN convolutional neural network 
DBN deep belief network 
GAN generative adversarial network 
cGAN conditional generative adversarial network 
IFMN iterative feature mapping network 
SDAE sparse denoising autoencoder 
RNN recurrent neural network 
GDCN generative discriminatory classified network 
FCN fully convolutional network 
BN Batch Normalization 
DS deep supervision 
MSOF multiple side-outputs fusion 
SOTA state-of-the-art 
OA Overall Accuracy 
FC-EF fully convolutional-early fusion 
FC-Siam-conc fully convolutional Siamese-concatenation 
FC-Siam-diff fully convolutional Siamese-difference 
FC-EF-Res fC-EF with residual blocks 
FCN-PP fully convolutional network with pyramid pooling 
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