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Abstract— Water body extraction from remote sensing imagery
is an essential and nontrivial issue due to the complexity of the
spectral characteristics of various kinds of water bodies and the
redundant background information. An automatic multifeature
water body extraction (MFWE) method integrating spectral and
spatial features is proposed in this letter for water body extraction
from GF-1 multispectral imagery in an unsupervised way. This
letter first discusses a spatial feature index, called the pixel region
index (PRI), to describe the smoothness in a local area surround-
ing a pixel. PRI is advantageous for assisting the normalized
difference water index (NDWI) in detecting major water bodies,
especially in urban areas. On the other hand, part of the water
pixels near the borders may not be included in major water
bodies, k-means clustering is subsequently conducted to cluster
all the water pixels into the same group as a guide map. Finally,
the major water bodies and the guide map are merged to obtain
the final water mask. OQur experimental results demonstrate that
accurate water masks were achieved for all seven GF-1 imagery
scenes examined. Three images with a complex background
and water conditions were used to quantitatively compare the
proposed method to NDWI thresholding and support vector
machine classification, which verified the higher accuracy and
effectiveness of the proposed method.

Index Terms— GF-1 imagery, image classification, spectral-
spatial feature, water body extraction.

I. INTRODUCTION
URFACE waters, such as oceans, lakes, rivers, streams,
and reservoirs, are vitally important for both the ecosystem
and socioeconomic development; and accurate mapping of
surface water is, therefore, essential for various hydrological
research activities and for water source management, flood sur-
veillance, and policy construction applications. Unfortunately,
traditional surveying methods like in situ investigation are
often time-consuming and cost-prohibitive for this purpose.
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Satellite remote sensing imagery is of increasing interest
as a plausible alternative for delineating surface water effi-
ciently. Due to the complexity of the atmospheric environment,
background, and water quality, it is, therefore, imperative
to investigate the automatic extraction of water bodies from
remote sensing imagery.

A series of water body extraction approaches has been
proposed to date, which can be divided into the following
three categories.

1) Spectral Features: The normalized difference water
index (NDWI) [1] is frequently used in water body
extraction. In some applications, the modified NDWI [2]
is used since NDWI has been proven to fail in some of
the built-up scenes. More complex water indexes [3]-[5]
have been proposed in recent years to compensate for
this shortcoming, which either have specific require-
ments for bands like middle infrared or introduce higher
computational complexity compared to NDWL

2) Spatial Features: The different reflection properties of
spectral features, which are caused by water pollu-
tion and confusion with similar objects, such as dark
buildings and shadows, make them unsuitable for water
body mapping from satellite imagery. Thus, the neigh-
borhood features of the pixels are applied to extract
water bodies from remote sensing imagery, such as
texture [6], morphological profiles [7], homogeneity [8],
and so on.

3) Spectral-Spatial Features: Techniques in this category
integrate both spectral features and spatial features in
one framework [9], [10]. However, a proper combination
strategy is essential to avoid information loss or impre-
cise classification.

Increasingly, more water body extraction algorithms based
on deep learning have been proposed in the literature in recent
years and rather high accuracy has been reported in most
cases [11]-[13]. However, these algorithms have not been
widely used in practical applications, mainly because of their
strict requirements: 1) a considerable number of training
samples to handle the complexity of various kinds of water
bodies and it is costly to build such data set [12] and 2) high-
performance professional graphics cards and redundant time
to accomplish the training.

Based on the aforementioned past research, this letter dis-
cusses the following two common issues in water mapping
and remedies for them.

1) Although NDWI is a common and efficient method in
water mapping for multispectral remote sensing imagery,
it fails to distinguish water and built-up lands, leading to
false water extraction results in urban areas. This letter,

1545-598X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0001-9845-4251
https://orcid.org/0000-0001-5890-0691

928

(2) (b)

(d) ©)

Fig. 1. Experiment images and their corresponding references. (a) Bohai.
(b) Qiantang River. (c) Yangtze River. (d)—(f) Reference maps of (a)—(c),
respectively. (Top) Color infrared composites of experiment image 1 ~ 3, with
R = NIR band, G = red band, and B = green band. (Bottom) Corresponding
references. Bright color: water.

therefore, proposes the pixel region index (PRI) which
describes the smoothness around the central pixel to
assist NDWI to rule out build-up pixels.

2) Removal of the border pixels from water extraction
results is essential for improving the mapping accuracy.

Most water extraction methods only depend on spectral fea-
tures, which can cause disconnection and noises along the
water border due to complex intensity variations. Spatial
features (e.g., morphological profiles), if applied to optimize
the results, always yield a reduction in the mapping accuracy.
To overcome these difficulties, this letter explains how to
remove the pixels with quite low-PRI features, which are
considered as suspected border pixels, and then a method
similar to region growing is applied to achieve water body
extraction with high accuracy and continuity.

II. STUDY OBJECT AND EXPERIMENTAL DATA SETS

A. Introduction of GF-1 Multispectral Imagery

Our research focuses on the GF-1 satellite, the first satellite
of the Chinese High-Resolution Earth Observation System.
Two multispectral cameras of 8-m resolution with a 4-day
revisiting cycle are mounted on the GF-1 satellite, and the
image extent of each camera is about 4500 x 4500 pixels.
Thus, it has the characteristic of a relatively high spatial
resolution and a short revisiting cycle at the same time. In addi-
tion, the multispectral bands of this imagery consist of blue
(0.45 ~ 0.52um), green (0.52 ~ 0.59 um), red (0.63 ~
0.69 pm), and near infrared (NIR) (0.77 ~ 0.89 um) bands.

B. Data Sets

Three GF-1 multispectral images were used for our quan-
titative comparison (Fig. 1) with the reference to these three
images depicted manually with the help of Google Earth.

Experiment image 1, as shown in Fig. 1(a), contains the
sea border of the Bohai Sea at Suizhong County, Liaon-
ing Province, China, with a longitude range of 120.0874°-
120.5829° and a latitude range of 40.0612°-40.4397°. The
main water body types are broad and blue with darker pixels
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at the middle bottom of this image, and some small blue water
areas distributed in the middle and top parts of the image. The
background types in this image are mostly bare soil, bright
build-ups, and dark mountain areas.

Experiment image 2, as shown in Fig. 1(b), contains a part
of the Qiantang River at Hangzhou City, Zhejiang Province,
China, with a longitude range of 120.1701°-120.6267° and a
latitude range of 30.1023°-30.4952°. There are six large water
bodies, shown as blue in the left part and green in the right
part in the pseudocolor image, which indicates the spectral
changes of the water bodies. Small water fragments are also
distributed in the whole image. Both bright and dark water
bodies are recognizable in this image. This scene is in an
urban area that contains bright and dark build-ups, vegetation,
and bare soil.

Experiment image 3, as shown in Fig. 1(c), contains the
downstream of the Yangtze River near the estuary of the
Yellow Sea, with a longitude range of 121.1542°-121.5982°
and a latitude range of 31.7035°-32.0675°. The main water
body is a part of the Yangtze River, which is quite turbid.
Sediments are apparent in the middle of the river. Small water
bodies along the river reflect different chromatic characteristics
compared to the largest water body. Build-ups and vegetation
are the principal background types.

III. METHODOLOGY

The proposed method includes three stages.

1) Spatial and spectral features, PRI and NDWI, respec-
tively, are integrated in order to obtain the major water
body mask.

2) K-means clustering is employed to cluster the pixels into
different groups based on their internal properties, which
then are further classified into either a water group or a
nonwater group with the guidance of the major water
body mask obtained in the previous stage. The water
group is called the water guide map for its effect in the
next stage.

3) The major water body mask and the water guide map
are merged to obtain the final water extraction map.

The overall flowchart of the proposed method is shown

in Fig. 2. It is worthy to note that the input of this method
is the GF-1 radiometric corrected multispectral image. Thus,
no radiometric correction steps are conducted.

A. Pixel Region Index

Huang [14], [15] proposed a pixel shape index (PSI) and the
extended structural feature set (SFS) to examine the context
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of each pixel and measure the spatial dimensions of groups of
spectrally similar connected pixels. PSI and SFS compute the
direction lines histogram (DLH) for each pixel to describe the
shape of the object to which the pixel belongs. This property is
advantageous for differentiating pixels of different classes with
similar spectral features but distinct spatial features. However,
water bodies have various spatial features so, the sensitivity of
PSI and SFS to spatial differences would decrease the accuracy
of mapping water bodies to some extent. PRI is designed to
overcome this kind of weakness in water body extraction and
reflects the smoothness of a water body.

Given pixel p, the PRI value is defined as the area (number
of pixels) of similar spectral pixels surrounding the pixel
based on region growing, pseudocode of which is displayed
in Algorithm 1.

Algorithm 1: PRI Calculation of Pixel p
Input

. pixel p, a homogeneity threshold 77, an area
threshold 75.
Output: The PRI value of pixel p.
1 Add p — region
2 for each P € region do
3 | for each pixel p' € Neighborhood(P) and
Status(p’) # VISITED do

4 if Homogeneity(p, p’) < T\ and fregion < T»
then

5 Add p’ — region

6 Status(p') = VISITED

7 end

8 | end

9 end

10 return PRI (p) = fregion.

The homogeneity of each surrounding pixel p’ with respect
to the given pixel p is formulated as

n
Homogeneity(p, p') = Y _ |pi — p]| (1)
i=1
where n denotes the number of bands, and p; and p; represent
the spectral value for band i of the given pixel p and the
neighboring pixel p’, respectively.

Three aspects should be noted.

1) Different from PSI and SFS, which are based on DLH,
PRI does not include direction information and the
homogenous surrounding pixels are taken into consid-
eration without distinction. Therefore, pixels belonging
to the same object with different orientations have a
uniform feature value theoretically. As shown in Fig. 3,
all types of water bodies have larger PRI values than
other common materials, while their DLHs are quite
different.

2) Water bodies, in general, are smoother than background
objects. Thus, they tend to have larger PRI values, which
are a valuable feature in separating water pixels from
build-up pixels. An example of PRI and NDWTI features
for six classes in a GF-1 multispectral image is shown
in Fig. 3. It can be seen that vastly different PRI values
are achieved between water bodies (pool and river) and
build-ups (road and building), all of which have positive
NDWTI values.

929
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PRI | NDWI 16 0.122 2 0.0465 87 ‘ -0.381
DLH ; |
Ll ol e L ||.||.|.
reata s @Bare soil ® Pool ©River
PRI | NDWI ’ -0.0232 0.384 ‘ 0.0707
o | ‘ ‘ | ‘ ‘ ‘ ‘ ‘
n et
Fig. 3. PRI, NDWI, and DLH features for six classes from a GF-1

multispectral image [Fig. 1(c)]. The PRI parameters used in this figure are
T1 = 40, Tp = 100. Some of the water types have similar large PRI values but
various DLHs. Both water bodies and build-ups have positive NDWI values
but different PRI values.

Fig. 4. (a) Experiment image 2. (b) NDWI map thresholded by peaks-valley
method, lots of build-ups are retained. (c) Major water body mask obtained
by the proposed method, almost all build-ups are removed.

3) Unlike region growing which checks the similarity of
the seed pixels and its nearest neighbor, homogeneity in
PRI is always measured between the given pixel and its
surrounding pixels. It is better to reflect the smoothness
around the given pixel.

B. Major Water Body Mask by Integration
of PRI and NDWI Features

The smaller the water bodies are, the larger the positive
NDWI value tends to be, which is caused by dissolved
sediments. However, build-up land also has small and positive
NDWI values so, it is impossible to distinguish large water
bodies and build-up land only by NDWI. To address this
problem, the PRI feature is added to assist in detecting water
bodies (see Fig. 4); and this stage is divided into the following
steps.

1) Classify the pixels according to the PRI feature

Clarge, T, < PRI(p)
Csmall, T3 <PRI(p) < T»
discarded, Otherwise

)

where Clage and Csman represent large and small PRI
feature class, respectively.

2) Compute the NDWI of each pixel in Ciarge, and apply
the peaks-valley method on the histogram of the NDWI
to mark out the water pixels, which are then grouped
into objects as large water bodies. Similar process is
conducted to Cgmay to obtain the small water bodies.

3) Combine large water bodies and small water bodies to
obtain the major water body mask.
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The PRI reflects the smoothness and the size of the object
to which the targeted pixel belongs and is applied to detect
large water bodies and rule out rather small objects at this
stage.

C. Water Guide Map Using K-Means Clustering

Some water pixels near the border of water bodies may be
neglected in Section III-B, since these pixels have lower PRI
values due to mixed border pixels. To deal with this situation,
one may use region growing method with the major water body
mask (see Section III-B) taken as seed points set. However, this
will lead to a new problem: how to determine a homogeneity
threshold suitable for various water bodies. To circumvent this
problem, k-means clustering is used to recover such water
borders by considering all the spectral bands.

It is of great importance that before grouping pixels into
objects in the k-means clusters, all the pixels having low
PRI values (not larger than 73) should be removed because
pixels with low PRI values are quite different from their
neighborhood and, thus, should be labeled with a different
classification. Otherwise, the global spectral information used
in k-means would neglect such local spatial information, which
would lead to mixed water and background pixels at the
borders.

The cluster number is given by a fixed number, i.e., 10 in
this letter. Therefore, water pixels with similar spectral char-
acteristics are clustered into the same group. Due to the
different spectral properties of water pixels, several clusters
are generated, all of which represent water bodies. The major
water body mask is used to guide the potential type of clusters.
If more than 10% of the pixels in a group are classified as
water pixels in the water mask, the cluster is considered a
candidate water class. Finally, a guide map is generated, which
consists of different clusters of potential water pixels.

D. Integration of the Major Water Body Mask and the Water
Guide Map

The major water body mask contains almost all the water
pixels except for those near the water border, while the water
guide map also contains those water pixels but is mixed with
nonwater pixels, thereby taking the advantages of both to
obtain the final water mask at this stage.

For each water body in the major water body mask, similar
to region growing, all the pixels are considered as seed points.
For every seed point, the process is as follows.

1) The seed point is skipped if all the nearest neighbor-

hoods are also seed points or are not in the guide map;

2) The nearest neighborhoods of the seed point, which are

in the guide map, are marked as seed points, to which
the process is applied again.
When the process is completed for all the seed points,
the entire water body is obtained as well as the final water
extraction map.

1V. EXPERIMENTS
A. Comparison Methods

The proposed method was quantitatively compared with
three other methods, i.e., OTSU thresholding on NDWI
(NDWI-OTSU), support vector machine—spectral (SVM-S),
and support vector machine—co-occurrence (SVM-C).
NDWI-OTSU applies histogram segmentation on the
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Fig. 5. Comparison of NDWI-OTSU, SVM-S, SVM-C, and MFWE.
Bright color: water. (a) NDWI-OTSU. (b) SVM-S. (¢) SVM-C. (d) MFWE.
(e) NDWI-OTSU. (f) SVM-S. (g) SVM-C. (h) MFWE. (i) NDWI-OTSU.
(G) SVM-S. (k) SVM-C. (1) MFWE.

NDWI feature of the given image whereby the pixels
having higher values than the OTSU threshold is classified
as water [5]. SVM-S uses the spectral bands as input
features [16]. SVM-C uses the spectral bands and the angular
second moment (ASM) [17] of the gray-level cooccurrence
matrix as features. The number of training samples in SVM
is 50 for water (including rivers, ponds, and lakes) and
50 for nonwater (including buildings, roads, farmlands, and
bare soils), respectively. The kernel function used in SVM is
a radial-based function, and parameters ¢ and y are chosen
by grid researching with five-fold cross-validation to achieve
the best results on the training samples.

The accuracy assessment method was conducted by count-
ing the pixels of the correct and incorrect classifications,
followed by comparing the extracted pixelwise results with the
reference maps [Fig. 1(d)—(f)]. Given NN-the pixels number,
the confusion matrix represents four classes of consistency
of the extraction results: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN). Then,
the producers accuracy (PA), users accuracy (UA), overall
accuracy (OA), and kappa coefficient (Kappa) measurements
were calculated based on the statistics of TP, TN, FP, and FN.
In general, PA = TP/(TP+FN) reflects an omission error and
UA = TP/(TP + FP) implies a commission error [18].

B. Parameter Tuning

The thresholds of the proposed method defined by expe-
rience, 71 = 40,7, = 100, and T3 = 5, were applied to
all the experiments. 77 limits the homogeneity difference in
PRI calculation and can be fixed with a tolerance range of
10 since the PRI value is distinct enough to stand out the
water bodies. The spatial resolution of GF-1 multispectral
imagery is 8 m, then a smooth surface which is not smaller
than 75 x 8% m?> = 6400 m? is, for the most part, believed
to be water or farmlands and unlikely to be others (especially
build-ups). The lower bound of area 73 is set to 5 in this
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TABLE I
QUANTITATE COMPARISON OF NDWI-OTSU, SVM-C, SVM-S, AND MFWE

Experiment image 1

Experiment image 2

Experiment image 3

Method Types PA(%) UA(%) OA(%) kappa  PA(%) UA(%) OA(%) kappa  PA(%) UA(%) OA(%) kappa

NDWI-OTSU Water 9990 9684 yeos  gossr o0 1999 o1 gagz PP B g6 0o
Background ~ 98.59 99.96 57.05 99.99 94.17 99.99

SVMLS Water 9987 9665 ool gogro  S3SI 8288 oo 9588 8048 o oo
Background 9849  99.94 98.15 9823 98.11  99.66

SVMLC Water 99.67 9808 ol oy 8263 9098 o 8668 OLM oo oo
Background ~ 99.15  99.86 99.12  98.15 9934  98.92

MFWE Water 9938 990 g r 0oeaz 7T P g0 0oest S07L P75 gg08  0.989s
Background ~ 99.61  99.73 9991 9955 99.98  98.93

letter since an area not larger than 5 pixels is more likely to
be noise or border pixels rather than water body pixels.

C. Quantitative Comparisons

The water extraction maps (Fig. 5) and the quantitative
results (Table I) of our comparison of the proposed method
to three existing methods are discussed in this section. The
PRI feature was shown to be of great benefit to NDWI
in removing built-up land [Fig. 5(e)-(h)], and the proposed
method achieved the best accuracy on all three images, which
also had the best producer’s accuracy of background and best
user’s accuracy of water. Thus, the proposed method was found
to have low commission errors and relatively low omission
errors. In addition, NDWI-OTSU had the tendency toward
low omission error and high commission errors. SVM-S and
SVM-C both obtained good results, while SVM-S had slightly
high commission error leading to high overall error. Thus,
the additional texture, ASM, was utilized to improve water
extraction results. However, the spatial feature used in the
proposed method was shown to contribute to the identifi-
cation of water bodies without excessive concentration on
the differences within water pixels. Therefore, compared to
NDWI-OTSU, SVM-C, and SVM-S, the proposed method
obtained the best results on all three images as a whole.

V. CONCLUSION

An automatic and unsupervised water body extraction
method, called the multifeature water body extraction
(MFWE) method, was proposed in this letter, in which, PRI
is used to reflect the local spatial feature of water pixels. Our
theoretical analysis concluded that as a modification for water
extraction, PRI is useful to denote the local smoothness of
objects. Peaks-and-valley histogram segmentation on NDWI
and k-means clustering are used to integrate the spectral
features, which complement the fact that the methods based
on PRI may neglect water pixels near the borders. Our
experimental results imply that MFWE outperformed NDWI
thresholding and SVM with or without texture features. In our
future work, we will focus on analyzing the sensitivity of the
thresholds to the final performance and self-adaptive strategies
for parameter tuning.
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