An optimizer ensemble algorithm and its application to image registration

Xiaohu Yan ${ }^{\mathrm{a}}$, Fazhi $\mathrm{He}^{\mathrm{b}, *}$, Yongjun Zhang ${ }^{\mathrm{a}}$ and Xunwei Xie ${ }^{\mathrm{a}}$
${ }^{a}$ School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei, China
${ }^{\mathrm{b}}$ School of Computer Science, Wuhan University, Wuhan, Hubei, China

Abstract

The design of effective optimization algorithms is always a hot research topic. An o, timzer ensemble where any population-based optimization algorithm can be integrated is proposed in this study. First the of timizer ensemble framework based on ensemble learning is presented. The learning table consisting of the population memb rs of all optimizers is constructed to share information. The maximum number of iterations is divided into several excharge te ations. Each optimizer exchanges individuals with the learning table in exchange iterations and runs independently ir he other iterations. Exchange individuals are generated by a bootstrap sample from the learning table. To maintain a balanc L tw een exchange individuals and preserved individuals, the exchange number of each optimizer is adaptively assigne accon ing to its fitness. The output is obtained by the voting approach that selects the highest ranked solution. Second, an opunizer ensemble algorithm (OEA) which combines multiple population-based optimization algorithms is proposed. The co npu ational complexity, convergence, and diversity of OEA are analyzed. Finally, extensive experiments on benchmark fun tio 15 demonstrate that OEA outperforms several state-of-the-art algorithms. OEA is used to search the maximum mutual infe mation in image registration. The high performance of OEA is further verified by a large number of registration results on re it mote sensing images.

Keywords: Optimizer ensemble, ensemble learning, popu atic η-based optimization algorithm, image registration

1. Introduction

The design of effective optimization argorithms is a hot topic in the field of scientifi research and engineering applications [1-3]. Ma yy opulation-based optimization algorithms have been explored to solve optimization problems over tis last few decades, such as genetic algorithm (GA) [4], particle swarm optimization (PSO) [5], and ant colony optimization (ACO) [6].

In general, population-based optimization algorithm can be divided into three categories: evolution-based algorithm, swarm-based algorithm, and physics-based algorithm $[7,8]$. Evolution-based algorithm is inspired by the concepts of evolution in nature [9,10]. The most famous evolution-based algorithms are GA [1114], differential evolution (DE) [15,16], genetic programming (GP) [17], and evolutionary programing

[^0](EP) [18]. Swarm-based algorithm simulates the intelligent behavior of biology. The most popular swarmbased algorithms are PSO [19,20], ACO [21], artificial bee colony (ABC) algorithm [22], invasive weed optimization (IWO) [23], cuckoo search (CS) [24], fruit fly optimization algorithm (FOA) [25], harmony search algorithm (HSA) [26], and bat algorithm (BA) [27, 28]. Physics-based algorithm simulates the physical rules in the universe. The most well-known physicsbased algorithms are gravitational search algorithm (GSA) [29], ray optimization (RO) [30], black hole (BH) [31], charged system search (CSS) [32], spiral dynamics algorithm (SpDO) [33], water drop algorithm (WDA) [34], and artificial chemical reaction optimization algorithm (ACROA) [35].

However, according to the no-free-lunch (NFL) theorem [36], no single algorithm can outperform all others on every optimization problem. Efficiently designed algorithms should specifically address the features of the problems to optimize [37]. This study aims to construct an ensemble of multiple population-based

2
2 X. Yan et al. /An optimizer ensemble algorithm and its application to image registration
optimization algorithms, which can address reasonable ranges of problem features and adapt to solve a wide range of optimization problems.

Ensemble learning is a machine learning paradigm [38]. There are numerous studies for constructing the ensemble which consists of a set of individually trained classifiers, such as neural networks and decision trees [39]. Researchers have demonstrated that ensembles can often perform better than any single classifier [40]. The reason is that ensemble methods combine multiple models to improve overall performance [41].

Using the combination strategies in ensemble learning, this paper proposes an optimizer ensemble where any population-based optimization algorithm can be integrated. First, the population of an optimizer might not provide sufficient information for searching the global optimum. The learning table that consists of the population members of all optimizers is constructed to share information. Second, a single optimizer might not be able to solve complex optimization problems. The search mechanism simulating the natural phenomenon might be imperfect, which results in the local optimum entrapment. An optimizer ensemble algorithm (OEA) that combines different search mechanisms is presented to compensate for the imperfection. Third, the search space of an optimizer might not ccatain the global optimum. The maximum number 0 for ations is divided into several exchange iteratio.s wien optimizers exchange individuals with the le arning table.

This paper is organized as follows. Section 2 is devoted to an introduction of related wo ${ }^{1} \mathrm{~s}$. In Section 3, the optimizer ensemble framewon is provided. In Section 4, OEA is introduced. Sertion 5, experimental results are analyzed. The conclusions and future works are presented in Section 6.

2. Related works

2.1. Ensemble of algorithms/strategies

In real-word applications, each problem is characterized by its features, such as problem dimensionality, multi-modality, ill-conditioning, and dynamic behavior. A single optimizer may easily fall into local optima when solving complicated optimization problems [42, 43]. To solve a wide range of optimization problems, researchers have proposed hybrid algorithms which combine multiple algorithms/strategies [44,45].

Memetic computing algorithm is a structure that contains a main optimizer and one or more local search algorithms [46-48]. In hyper-heuristics and portfolio algorithms, a list of multiple optimizers is coordinated by means of a heuristic rule or supervisory/adaptive scheme [49].

In recent years, the ensembles of algorithms/ strategies have been studied. Mallipeddi et al. [50] proposed ensemble strategies with adaptive evolutionary programming. Wang and Li [51] designed a twostage based ensemble optimization evolutionary algorithm to solve large-scale global optimization problems. Qu and Suganthan [52] constructed an ensemble of constraint handling methods to tackle constrained multi-objective optimizatior pioblems. Zhao et al. [53] proposed a decompositic n-iased multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. Yu and Surannin [54] constructed an ensemble of niching argurithms. Tasgetiren et al. [55] constructed an eh sumble of discrete differential evolution algorit ms. Mi.llipeddi and Suganthan [56] presented a differentil evolution algorithm with ensemble of populatic n rembers. Mallipeddi and Suganthan proposed a DF with an ensemble of mutation and crossover strategies and their associated control parameters [57]. Zhang et al. [58] proposed a novel way to design a P system for directly obtaining the approximate solutions of combinatorial optimization problems. Iacca et al. [59] presented a novel population-based algorithm combining two components with complementary algorithm logics. These ensembles mostly consist of multiple evolution-based algorithms. More algorithms/strategies cannot be integrated in the ensembles. Furthermore, the combination strategies in most ensembles are excessively complex, which results in a significant increase in extra calculation.

According to NFL theorem [36], there is no algorithm for solving all optimization problems. This is the motivation of this study, in which an ensemble of multiple population-based optimization algorithms is presented to solve a diverse array of optimization problems. To the best of our knowledge, there is no literature which presents the ensemble of populationbased optimization algorithms. This study is the first work to construct an optimizer ensemble where any population-based optimization algorithm can be integrated.

2.2. Ensemble learning

Ensemble learning methods train multiple learners
to solve a machine learning task. An ensemble contains a lot of learners called base learners. Base learners are generated by a base learning algorithm that may be decision tree or neural network. Ensemble learning methods have gained popularity because researchers have demonstrated that the prediction performance of the ensemble is usually better than that of a single learner on a variety of problems.

Ensemble learning algorithms can generally be divided into two frameworks: the dependent framework and the independent framework. In the dependent framework, the output of each learner affects the construction of the next learner. In the independent framework, each learner is built independently from other learners [60].

The most influential dependent algorithm for building an ensemble is boosting algorithm [61]. Boosting algorithm generates a set of learners sequentially [62]. The later learners focus more on the mistakes of the earlier learners. The level of focus is determined by a weight that is assigned to each training instance.

The most well-known independent algorithm is bagging algorithm [63]. Bagging algorithm adopts bootstrap sampling to obtain the data subsets for training base learners. Each data subset is used to train a different base learner of the same type [64]. The base learners' combination strategy is majority vote [65].

In this study, bagging algorithm will be employer to combine multiple optimizers in OEA. Howeve, d, fferent from bagging algorithm, the type of eaci ba se optimizer is different, and the base optimi ers are combined by the highest ranked solution in OEA.

3. Optimizer ensemble francork

To construct an ensen. b_{f} of multiple optimizers, the related concepts are defined. A population-based optimization algorithm is an optimizer. The ensemble is homogeneous when the type of each base optimizer is the same. Otherwise, the ensemble is heterogeneous.

Without loss of generality, this paper will refer to the minimization problem of an objective function, which is defined as

$$
\begin{equation*}
\min f(x), x=\left[x_{1}, x_{2}, \ldots, x_{D}\right]^{\mathrm{T}} \tag{1}
\end{equation*}
$$

where D is the dimension of the search space. In an iteration, individuals from other optimizers may have unexploited and unexplored positions that can help an optimizer to search the global optimum, which leads to the scope of individual exchange among optimizers.

3.1. Exchange iteration

The maximum number of iterations maxIter is divided into l blocks of iterations; the last of these iterations is an exchange iteration when an optimizer exchanges individuals with the other optimizers. All iterations are expressed by

$$
\begin{equation*}
\text { iter }=\left[1,2, \ldots, E_{1}, 1,2, \ldots, E_{2}, \ldots, E_{l}\right] \tag{2}
\end{equation*}
$$

where E_{i} is the i th exchange iteration. The sum of all exchange iterations is equal to the maximum number of iterations maxIter. The relationship between E_{i} and maxIter is as follows

$$
\begin{equation*}
\text { maxIter }=\sum_{i=1}^{l} E_{i} \tag{3}
\end{equation*}
$$

where l is the exch ang frequency. Note that the setting of l impacts he information exchange and computational \cos When l is large, there are lots of exchange iteretions for information sharing. Nevertheless, the computational cost is high due to the extra calculat on in exchange iterations.
It 's worth mentioning that the values of exchange iteraions affect information exchange. In early iterations, optimizers have not obtained good solutions, which may lead to negative exchange. Meanwhile, the search mechanism of each optimizer may be disturbed when individuals are exchanged too early. In late iterations, optimizers may get trapped into local optima, and then the frequent exchange is helpful to avoid the local optimum and premature convergence. Thus, the exchange iteration E_{i} and exchange frequency l are dynamically adjusted according to the maximum number of iterations maxIter in this study, which is presented in Algorithm 1.

```
Algorithm 1: Calculation of the exchange iteration and ex-
change frequency.
    Input: \(t\), the threshold;
        maxIter, the maximum number of iterations.
    Output: \(E\), the exchange iterations;
            \(l\), the exchange frequency.
    \(i=1\);
    \(E_{1}=\) maxIter \(/ 2\);
    \(s=E_{1} ;\)
    while \(E_{i}>t\) do
        \(i=i+1 ;\)
        \(E_{i}=\) maxIter \(/(2 \times i)\);
        \(s=s+E_{i} ;\)
    end
    \(l=i\);
    \(E_{l}=\) maxIter \(-s\)
```

4 X. Yan et al. /An optimizer ensemble algorithm and its application to image registration

As shown in Algorithm 1, the first exchange iteration is maxIter $/ 2$. Thus, each optimizer exchanges individuals in the late iterations when the iterations are equal to or greater than maxIter/2. Since optimizers may get trapped into local optima in late iterations, the individual exchange can increase the population diversity and enhance the search ability. It is unnecessary to exchange individuals with the learning table when E_{i} is small. As a result, the threshold t is set to ten.

3.2. Learning table

In an exchange iteration, multiple optimizers share information and knowledge via the learning table which consists of the population members of all optimizers. Suppose that the ensemble consists of m optimizers. In the i th exchange iteration E_{i}, the population of the j th optimizer is $P_{i j}$, then the learning table $L t_{i}$ is defined as

$$
\begin{equation*}
L t_{i}=\left[P_{i 1}, P_{i 2}, \ldots, P_{i m}\right]^{\mathrm{T}} \tag{4}
\end{equation*}
$$

In an exchange iteration, each optimizer exchanges i ts individuals with the learning table. The exchange number of individuals significantly affects the information communication of each optimizer. To keep the convergence and search mechanism, more individuals in the population should be preserved. In contrast, to enhance the global search ability, an optimizer siola exchange more individuals with the other ontimers that have better individuals. To maintain a blat ce between exchange individuals and preserye 1 dividuals, the exchange number of each optimze is adaptively assigned according to its fitness.

Suppose that f_{i} is the best fitness the i th optimizer in an exchange iteration, ari is the population size of an optimizer in the ens mble. Note that the population size of each optimizir n the ensemble is the same. Since the fitness difference among optimizers is large, the best fitness of each optimizer is normalized as

$$
\begin{equation*}
h_{i}=\frac{f_{i}-f_{\min }}{\sum_{j=1}^{m}\left(f_{j}-f_{\min }\right)} \tag{5}
\end{equation*}
$$

where h_{i} is the normalized value of f_{i}, and $f_{\text {min }}$ is the minimum value of f. The optimization problem is assumed to be a minimization problem in this paper. Thus, to obtain more good individuals, the optimizer with larger fitness should exchange more individuals with the learning table. To preserve more good individuals, the optimizer with smaller fitness should exchange fewer individuals with the learning table.

Hence, the adaptive exchange number of the i th optimizer is expressed by

$$
\begin{equation*}
n_{i}=\operatorname{round}\left(c e^{h_{i}}\right) \tag{6}
\end{equation*}
$$

where e is the natural logarithm base; c is the exchange factor; round (\cdot) is the rounding function. Since the population size of an optimizer is greater than or equal to its exchange number, the exchange factor c should be less than or equal to N / e. To share information sufficiently, the exchange factor is set to N / e. The denominator in Eq. (5) is zero when the best fitness of each optimizer is the same. In this case, the exchange number of each optimizer is set to $\operatorname{round}(N / e)$.

3.3. Voting approach

Voting approach contenis how the best solutions of all optimizers are ased in exchange iterations. In bagging algorithm, he combination strategy is a simple majority votih. Every learner has the same weight on the ove all decision in majority voting.

Since the best fitness of each optimizer is different, the weight should not be the same in the optimizer ense mb. In the optimizer ensemble, the best solutions of all optimizers are sorted by their fitness values, and the highest ranked solution is considered to be the overall decision. The proposed voting approach can reduce the variance and output the global best solution obtained by all optimizers in the worst case.

3.4. Multi-optimizer combination

In an exchange iteration, a base optimizer in the ensemble interacts with the other optimizers via the learning table. The multi-optimizer combination based on ensemble learning is shown in Fig. 1.

It is clearly shown in Fig. 1 that multiple optimizers share information by exchanging individuals with the learning table that consists of the population members of all optimizers. Each optimizer exchanges individuals with the learning table in exchange iterations and runs independently in the other iterations, which can reduce the computational cost and make the combination simple. A new population for each optimizer is composed of a part of the current population and a bootstrap sample from the learning table. The output of all optimizers is obtained by the voting approach that selects the highest ranked solution.
As shown in Fig. 1, the best individual of each optimizer is added to its population after the exchange with the learning table. Thus, the best solution of each

Fig. 1. Multi-optimizer combination in the optimizer enser. ble.
optimizer is kept in the exchange iteration, which can help to enhance the search ability. Different from the crossover operation between two individuals [66], the individual exchange with the learning table is a masterslave mode that is more suitable for multiple optimizers to share information.

3.5. Ensemble construction

How to select an appropriate optimizer secerding to the optimization problem is an importar slep for constructing an effective ensemble. It is or hwhile to mention that the global search abilit of an ensemble can be stronger than those of its oas? optimizers only if optimizers in the ensemble are crimerent.

If all optimizers are identica, when an optimizer gets trapped into local op in a, it is hard for the other optimizers to obtain the erbal optimum because their search mechanisms are identical. Therefore, to enhance the global search ability, the type of each optimizer is different, and the ensemble is heterogeneous in this study.

In optimization algorithms, the search process is focused on a balance between exploration and exploitation. Hence, it is wise to combine the optimizer that is good at exploitation with the optimizer that is good at exploration. It is also conducive to select optimizers with different categories of population-based optimization algorithms or optimizers with distinct characteristics. In summary, to construct an efficient ensemble, it is a good way to combine optimizers that are competitive, distinct, and complementary.

4. Optimizen ensemble algorithm

4.1. OE. 1

In the proposed optimizer ensemble, each optimizer exchanges individuals with the learning table in exchange iterations. Exchange individuals are generated by a bootstrap sample from the learning table. The exchange number is adaptively assigned to each optimizer. Thus, the resulting algorithm is presented in Algorithm 2.
In OEA, the maximum number of iterations is divided into l exchange iterations. First, m optimizers are initialized by a set of random solutions. Second, each optimizer runs independently when the current iteration is less than the exchange iteration. Each optimizer exchanges individuals with the learning table when the current iteration is equal to the exchange iteration. The exchange number n_{i} is adaptively assigned according to Eq. (6). The population of the i th optimizer in the exchange iteration is its initial population in the next iteration. Finally, the best fitness g and its corresponding position $g x$ obtained by m optimizers are updated according to f and $f x$. The best solution obtained by all optimizers is the overall output of OEA.
The ensemble strategy in OEA differs from bagging algorithm. In bagging algorithm, a bootstrap sample with a fixed number is generated from the training set, and base learners are combined by majority voting. Nevertheless, in OEA, a bootstrap sample with adaptive number is generated from the learning table, and

6
X. Yan et al. /An optimizer ensemble algorithm and its application to image registration

```
Algorithm 2: The pseudo-code of OEA.
```

Algorithm 2: The pseudo-code of OEA.
Input: E, the exchange iterations;
Input: E, the exchange iterations;
D, the dimension of the search space;
D, the dimension of the search space;
N, the population size of an optimizer;
N, the population size of an optimizer;
l, the exchange frequency;
l, the exchange frequency;
m, the number of optimizers.
m, the number of optimizers.
Output: The best fitness g and its corresponding position $g x$
Output: The best fitness g and its corresponding position $g x$
obtained by m optimizers.
obtained by m optimizers.
for $i=1: m$ do
for $i=1: m$ do
Randomly generate N individuals to initialize the i th
Randomly generate N individuals to initialize the i th
optimizer;
optimizer;
end
end
for $k=1: l$ do
for $k=1: l$ do
for $i=1: m$ do
for $i=1: m$ do
for $j=1: E_{k}-1$ do
for $j=1: E_{k}-1$ do
The i th optimizer runs independently in the j th
The i th optimizer runs independently in the j th
iteration;
iteration;
Compute the fitness of each individual in the
Compute the fitness of each individual in the
population;
population;
Update the best fitness f_{i} and its corresponding
Update the best fitness f_{i} and its corresponding
position $f x_{i}$ of the i th optimizer;
position $f x_{i}$ of the i th optimizer;
end
end
end
end
for $i=1: m$ do
for $i=1: m$ do
Normalize the best fitness f_{i} using Eq. (5);
Normalize the best fitness f_{i} using Eq. (5);
Compute the exchange number n_{i} using Eq. (6);
Compute the exchange number n_{i} using Eq. (6);
The i th optimizer exchanges n_{i} individuals with the
The i th optimizer exchanges n_{i} individuals with the
learning table;
learning table;
end
end
Update the best fitness g and its corresponding position
Update the best fitness g and its corresponding position
$g x$ obtained by m optimizers;
$g x$ obtained by m optimizers;
end

```
    end
```

base optimizers are combined by the highest rank Isplution. Moreover, the type of each base learrer inusually the same in bagging algorithm, while 货? unsemble is heterogeneous in OEA.

4.2. Computational complexity

It is difficult to solve lar e-care optimization problems when the computation.l cost of an algorithm is too high. The computaticral complexity of OEA can be defined based on its implementation in Algorithm 2.

In OEA, the population size of an optimizer is N, and the dimension of the search space is D. It takes $O(N \times D)$ time to run an optimizer independently in an iteration. In an exchange iteration, the calculation of the exchange number can be implemented in $O(N \times D)$ time. Hence, the computational complexity of m optimizers in each iteration is $O(m \times N \times D)$. According to Eq. (3), the sum of all exchange iterations is equal to the maximum number of iterations maxIter. In other words, there are maxIter iterations in OEA. Therefore, the computational complexity of OEA is $O($ maxIter $\times m \times N \times D)$, which is equal to that of an optimizer with the population size of $m \times N$.

4.3. Convergence and diversity

The convergence and diversity of OEA are enhanced by the following strategies:

1) The learning table consists of the population members of all optimizers. Each optimizer exchanges individuals with the learning table. Thus, OEA can decrease the risk of local optimum entrapment and premature convergence by sharing information among all optimizers.
2) The exchange number of each optimizer is adaptively assigned according to its fitness. The weak optimizer exchanges more individuals with the learning table, which can take more good solutions from the oth r eptimizers. The strong optimizer exchanges ewer individuals with the learning table wirn can preserve more good solutions. Tae araptive exchange number can maintain a jaiance between exploration and exploitatit n
3) Exchange individuals of each optimizer are seLed randomly with replacement from the learning table. Hence, the diversity of exchange individuals is increased by injecting randomness. Heterogeneous search mechanisms can produce good solutions and various population members, which is beneficial for the local optimum avoidance and population diversity.
4) The voting approach that selects the highest ranked solution can reduce the risk of selecting the local optimum and enhance the search ability. The ensemble can output the best solution obtained by all optimizers in the worst situation.

5. Experiment

To construct an efficient ensemble, it is conducive to select optimizers with different categories of population-based optimization algorithms. DE, PSO, and GSA belong to evolution-based algorithm, swarmbased algorithm, and physics-based algorithm, respectively. Thus, DE, PSO, and GSA are employed in OEA (OEA-DPG). The algorithms have been tested on CEC2013 benchmark and image registration problem. The detailed description of CEC 2013 can be found in [67].

The experimental analysis has been structured as follows. First, OEA-DPG is compared with its base optimizers and EPSDE, which is a DE with an ensemble of mutation and crossover strategies and their as-
sociated control parameters [57]. The exploitation and exploration abilities of OEA are analyzed. Second, the runtime of OEA-DPG is compared with that of its base optimizers. Third, to investigate the construction of an efficient OEA, different ensemble strategies are compared. Finally, to further analyze the performance of OEA, the algorithm is applied to image registration problem which is a real-world application.

5.1. Experimental setup

In this study, the population size of each algorithm is 150 . For the sake of fair comparisons, the population size of each algorithm is the same. Hence, the population size of each optimizer in two-optimizer ensemble is 75 , and the population size of each optimizer in three-optimizer ensemble is 50 . The maximum number of iterations of each algorithm is 1000 . The stopping criteria used for terminating iterations is to stop iterating when the maximum number is reached. If the global best solution is not improved in 50 iterations, then the iteration is stopped as well. According to Algorithm 1, the exchange iterations are set to [500, 250, $125,63,32,16,14]$.

In PSO, the learning factors are 2, and the inertial weight is decreased linearly from 0.9 to 0.2 over iterations. In DE, the crossover rate is 0.9 , and the mutation factor is 0.5 . The mutation strategy is $\mathrm{DE} / \mathrm{rand} / 1$. h parameters of GSA and EPSDE are set acco, tino to their original literature [29,57], respectively. All experiments are executed on an $\operatorname{Intel}(\mathrm{R})$ Core T/V) i7-8700 @3.2 GHz CPU with 8 GB memory. The algorithms are written in Matlab R2018a.

Without loss of generality, 2 of the algorithms are run 30 times on each fun the average fitness value (AVE) and standard aeviation (STD) over the 30 available runs are comp، rer. Moreover, for each function, a statistical pair-wise comparison has been performed by applying the Wilcoxon rank-sum test at the 5% significant level. In all the result tables reported in this study, the symbols of " + ", "=" and "-" respectively represent that the performance of OEA-DPG is better than, similar to and worse than that of the corresponding algorithm. For each function, the first two decimal places are considered, and the best average fitness value is marked in bold.

5.2. Comparison with popular optimizers

There are 28 benchmark functions in CEC2013 testbed, and the search range is $[-100,100]$. These
functions are divided into three groups: unimodal functions (F1-F5), multi-modal functions (F6-F20), and composite functions (F21-F28). The unimodal function has only one global optimum, which makes it useful for evaluating the exploitation ability. In contrast, the multi-modal function has multiple local optima, which makes it suitable for evaluating the exploration capability. The composite function combines multiple functions into a complex landscape, which can assess the performance of optimization algorithms from different perspectives.
To analyze the exploitation and exploration abilities of OEA, OEA-DPG is compared with its base optimizers and the ensemble algorithm EPSDE. Tables 1-3 display the comparison recints on CEC2013 testbed in 10,30 , and 50 dimension espectively. In each table, the average, standa deviation, and Wilcoxon ranksum test obtainea by DE, PSO, GSA, EPSDE, and OEA-DPG are or hpared.
It can be se n from Tables 1-3 that OEA-DPG outperforms the other optimizers on most functions, especially on the composite functions which are more all nging. Although OEA-DPG has not obtained the Lest solution on some functions, OEA-DPG provides the good solution that is competitive. The reason is that OEA-DPG can make use of multiple search mechanisms.
Numerical results show that DE obtains good solutions on the majority of the unimodal functions, and PSO and GSA perform well on the multi-modal functions. Hence, the exploitation ability of DE is strong, and the exploration abilities of PSO and GSA are strong. OEA-DPG can take advantage of the algorithms whose search mechanisms are distinct and complementary, and hence OEA-DPG performs better on most functions.
By employing Wilcoxon's rank-sum test to analyze the experimental results, some findings are given as follows. OEA-DPG is better than DE, PSO, GSA and EPSDE on 17, 21, 24 and 17 functions in the case of $D=10,22,18,24$ and 24 functions in the case of $D=30$, and $24,18,25$ and 19 functions in the case of $D=50$. In contrast, OEA-DPG is only worse than DE, PSO, GSA and EPSDE on $3,0,1$ and 3 function(s) when $D=10,2,4,2$ and 2 functions when $D=$ 30 , and $1,5,2$ and 5 functions when $D=50$. Thus, the superiority of OEA-DPG is statistically significant, which confirms that the proposed ensemble framework is indeed effective.

8
Table 1
OEA-DPG against DE, PSO, GSA, and EPSDE on CEC2013 in 10 dimensions

Function	DE			PSO			GSA			EPSDE			OEA-DPG	
	AVE	STD												
F1	$-1.40 \mathrm{E}+03$	$0.00 \mathrm{E}+00$	=	-1.05 +03	$0.00 \mathrm{E}+00$	=	$-1.40 \mathrm{E}+03$	0.00E +00	=	-1.40E +03	$\mathbf{0 . 0 0 E}+00$	=	$-1.40 \mathrm{E}+03$	$0.00 \mathrm{E}+00$
F2	$-1.30 \mathrm{E}+03$	1.27E-07	-	$3,9 \mathrm{E}-05$	$2.52 \mathrm{E}+05$	$+$	$5.06 \mathrm{E}+06$	$5.67 \mathrm{E}+05$	$+$	$-1.29 \mathrm{E}+03$	$3.41 \mathrm{E}+00$	=	$-6.01 \mathrm{E}+02$	$1.52 \mathrm{E}+03$
F3	$-1.20 \mathrm{E}+03$	$1.34 \mathrm{E}-01$	=	$1.03 \mathrm{~L}-\mathrm{OT}$	$4.80 \mathrm{E}+07$	$+$	$1.10 \mathrm{E}+09$	$1.05 \mathrm{E}+09$	$+$	$-1.19 \mathrm{E}+03$	$5.72 \mathrm{E}+00$	$+$	$-1.20 \mathrm{E}+03$	$1.58 \mathrm{E}+00$
F4	$-1.10 \mathrm{E}+03$	$1.24 \mathrm{E}-09$	-	$-1.11 \mathrm{E}-02$	$5.65 \mathrm{E}+02$	+	$1.58 \mathrm{E}+04$	$1.70 \mathrm{E}+03$	$+$	$-1.10 \mathrm{E}+03$	$5.34 \mathrm{E}-02$	-	$-1.08 \mathrm{E}+03$	$2.79 \mathrm{E}+01$
F5	$-1.00 \mathrm{E}+03$	$0.00 \mathrm{E}+00$	=	$-1.00 \mathrm{E}+03$	3. $59 \mathrm{E}-14$	$+$	$-1.00 \mathrm{E}+03$	$1.07 \mathrm{E}-04$	$+$	$-1.00 \mathrm{E}+03$	$\mathbf{0 . 0 0 E}+00$	=	$-1.00 \mathrm{E}+03$	$\mathbf{0 . 0 0 E}+00$
F6	$-9.00 \mathrm{E}+02$	$1.79 \mathrm{E}+00$	-	$-8.97 \mathrm{E}+02$	$1.95{ }^{\text {r }}+00$	+	$-8.30 \mathrm{E}+02$	$2.89 \mathrm{E}+00$	$+$	$-8.96 \mathrm{E}+02$	$4.89 \mathrm{E}+00$	=	$-8.98 \mathrm{E}+02$	$2.96 \mathrm{E}+00$
F7	$-8.00 \mathrm{E}+02$	$9.18 \mathrm{E}-04$	$+$	$-7.96 \mathrm{E}+02$	$4.24 \mathrm{E}-00$	$+$	$-7.57 \mathrm{E}+02$	$2.68 \mathrm{E}+01$	$+$	$-8.00 \mathrm{E}+02$	$1.03 \mathrm{E}-01$	$+$	$-8.00 \mathrm{E}+02$	7.68E-04
F8	$-6.80 \mathrm{E}+02$	7.15E-02	$=$	$-6.80 \mathrm{E}+02$	$6.461-0$.		$-6.80 \mathrm{E}+02$	$7.87 \mathrm{E}-02$	$=$	$-6.80 \mathrm{E}+02$	$7.32 \mathrm{E}-02$	$=$	$-6.80 \mathrm{E}+02$	$8.72 \mathrm{E}-02$
F9	$-5.98 \mathrm{E}+02$	$1.14 \mathrm{E}+00$	=	$-5.97 \mathrm{E}+02$	$1.36 \mathrm{E}+0$,		$-5.94 \mathrm{E}+02$	$1.31 \mathrm{E}+00$	$+$	$-5.94 \mathrm{E}+02$	$7.91 \mathrm{E}-01$	$+$	$-5.99 \mathrm{E}+02$	$9.91 \mathrm{E}-01$
F10	$-5.00 \mathrm{E}+02$	7.52E-02	$+$	$-5.00 \mathrm{E}+02$	$1.79 \mathrm{E}-0$		$-5.00 \mathrm{E}+02$	$1.24 \mathrm{E}-01$	$+$	$-5.00 \mathrm{E}+02$	$5.57 \mathrm{E}-02$	$+$	$-5.00 \mathrm{E}+02$	$4.49 \mathrm{E}-02$
F11	$-3.83 \mathrm{E}+02$	$2.79 \mathrm{E}+00$	$+$	$-3.99 \mathrm{E}+02$	$8.43 \mathrm{E}-01$		$-3.52 \mathrm{E}+02$	$7.10 \mathrm{E}+00$	+	$-4.00 \mathrm{E}+02$	3.70E-11	-	$-3.99 \mathrm{E}+02$	$9.23 \mathrm{E}-01$
F12	$-2.75 \mathrm{E}+02$	$3.21 \mathrm{E}+00$	$+$	$-2.86 \mathrm{E}+02$	$6.63 \mathrm{E}+00$		$-233 \mathrm{E}+02$	7.76E+00	$+$	$-2.86 \mathrm{E}+02$	$2.28 \mathrm{E}+00$	$+$	$-2.92 \mathrm{E}+02$	$3.02 \mathrm{E}+00$
F13	$-1.74 \mathrm{E}+02$	$3.16 \mathrm{E}+00$	$+$	$-1.79 \mathrm{E}+02$	$8.62 \mathrm{E}+00$	+	$1.19 \mathrm{E}+02$	$1.19 \mathrm{E}+01$	$+$	$-1.84 \mathrm{E}+02$	$2.28 \mathrm{E}+00$	$+$	$-1.90 \mathrm{E}+02$	$5.62 \mathrm{E}+00$
F14	$9.61 \mathrm{E}+02$	$1.58 \mathrm{E}+02$	+	$2.15 \mathrm{E}+01$	$9.79 \mathrm{E}+01$	$+$	8.55 Г +02	$2.51 \mathrm{E}+02$	+	$-4.14 \mathrm{E}+01$	$1.63 \mathrm{E}+01$	$+$	$-4.92 \mathrm{E}+01$	$6.50 \mathrm{E}+01$
F15	$1.43 \mathrm{E}+03$	$1.49 \mathrm{E}+02$	$+$	$8.59 \mathrm{E}+02$	$2.99 \mathrm{E}+02$	$+$	$8.0 \mathrm{E}-02$	$1.82 \mathrm{E}+02$	+	$1.30 \mathrm{E}+03$	$1.23 \mathrm{E}+02$	$+$	$7.28 \mathrm{E}+02$	$2.40 \mathrm{E}+02$
F16	$2.01 \mathrm{E}+02$	$1.82 \mathrm{E}-01$	$+$	$2.01 \mathrm{E}+02$	$2.25 \mathrm{E}-01$	$+$	$2.00 \mathrm{E}-12$	2.52E-02	$=$	$2.01 \mathrm{E}+02$	$1.70 \mathrm{E}-01$	$+$	$2.00 \mathrm{E}+02$	$4.61 \mathrm{E}-02$
F17	$3.27 \mathrm{E}+02$	$3.40 \mathrm{E}+00$	+	$3.13 \mathrm{E}+02$	$1.68 \mathrm{E}+00$	+	$3.12 \mathrm{E}+0$.	$1.00 \mathrm{E}+00$	+	$3.10 \mathrm{E}+02$	8.05E-02	-	$3.11 \mathrm{E}+02$	$1.51 \mathrm{E}+00$
F18	$4.36 \mathrm{E}+02$	$4.30 \mathrm{E}+00$	$+$	$4.26 \mathrm{E}+02$	$7.51 \mathrm{E}+00$	+	$4.12 \mathrm{E}+02$. $.54 \mathrm{E}-01$	-	$4.32 \mathrm{E}+02$	$3.26 \mathrm{E}+00$	$+$	$4.15 \mathrm{E}+02$	$2.10 \mathrm{E}+00$
F19	$5.02 \mathrm{E}+02$	$3.37 \mathrm{E}-01$	$+$	$5.01 \mathrm{E}+02$	$2.08 \mathrm{E}-01$	$=$	$5.02 \mathrm{E}+02$	365001	$+$	$5.01 \mathrm{E}+02$	$7.85 \mathrm{E}-02$	$=$	$5.01 \mathrm{E}+02$	$1.82 \mathrm{E}-01$
F20	$6.03 \mathrm{E}+02$	$2.26 \mathrm{E}-01$	$+$	$6.03 \mathrm{E}+02$	$3.41 \mathrm{E}-01$	+	$6.04 \mathrm{E}+02$	$2.82 \mathrm{E}-01$	$+$	$6.03 \mathrm{E}+02$	$2.14 \mathrm{E}-01$	$+$	$\mathbf{6 . 0 2 E}+02$	3.93E-01
F21	$1.04 \mathrm{E}+03$	9.33E+01	$=$	$1.09 \mathrm{E}+03$	$3.66 \mathrm{E}+01$	$=$	$1.10 \mathrm{E}+03$	$4.63 \mathrm{E}-13$		$1.06 \mathrm{E}+03$	$8.14 \mathrm{E}+01$	$=$	$1.07 \mathrm{E}+03$	$7.59 \mathrm{E}+01$
F22	$1.47 \mathrm{E}+03$	$1.44 \mathrm{E}+02$	$+$	$1.00 \mathrm{E}+03$	$1.08 \mathrm{E}+02$	=	$3.04 \mathrm{E}+03$	$1.57 \mathrm{E}+02$		$9.85 \mathrm{E}+02$	$2.63 \mathrm{E}+01$	$+$	$9.56 \mathrm{E}+02$	$1.03 \mathrm{E}+02$
F23	$2.27 \mathrm{E}+03$	$1.44 \mathrm{E}+02$	+	$1.80 \mathrm{E}+03$	$3.42 \mathrm{E}+02$	=	$2.49 \mathrm{E}+03$	$2.33 \mathrm{E}+02$		$2.12 \mathrm{E}+03$	$1.27 \mathrm{E}+02$	$+$	$1.75 \mathrm{E}+03$	$2.97 \mathrm{E}+02$
F24	$1.20 \mathrm{E}+03$	$1.53 \mathrm{E}+01$	$=$	$1.21 \mathrm{E}+03$	$3.23 \mathrm{E}+00$	$+$	$1.23 \mathrm{E}+03$	$4.35 \mathrm{E}+00$		1.21E+03	$1.08 \mathrm{E}+01$	$+$	$1.20 \mathrm{E}+03$	$1.69 \mathrm{E}+01$
F25	$1.31 \mathrm{E}+03$	$3.83 \mathrm{E}+00$	$+$	$1.31 \mathrm{E}+03$	$1.77 \mathrm{E}+01$	$+$	$1.32 \mathrm{E}+03$	$3.77 \mathrm{E}+00$	$+$	$111 \mathrm{E}+03$	$4.87 \mathrm{E}+00$	$+$	$1.31 \mathrm{E}+03$	$3.67 \mathrm{E}+00$
F26	$1.40 \mathrm{E}+03$	$1.40 \mathrm{E}+01$	+	$1.37 \mathrm{E}+03$	$5.57 \mathrm{E}+01$	$+$	$1.49 \mathrm{E}+03$	$4.27 \mathrm{E}+01$	$+$	$129 \mathrm{E}+03$	$1.87 \mathrm{E}+01$	+	$1.35 \mathrm{E}+03$	$4.31 \mathrm{E}+01$
F27	$1.77 \mathrm{E}+03$	$4.64 \mathrm{E}+01$	$+$	$1.68 \mathrm{E}+03$	$3.13 \mathrm{E}+01$	$+$	$1.70 \mathrm{E}+03$	$1.74 \mathrm{E}-10$	+	$1.785+93$	$3.73 \mathrm{E}+01$	$+$	$1.64 \mathrm{E}+03$	$4.71 \mathrm{E}+01$
F28	$1.67 \mathrm{E}+03$	$6.91 \mathrm{E}+01$	$=$	$1.70 \mathrm{E}+03$	$9.91 \mathrm{E}+01$	$=$	$2.16 \mathrm{E}+03$	$7.81 \mathrm{E}+01$	$+$	$1.69 \mathrm{E}+0^{2}$	$3.65 \mathrm{E}+01$	$=$	$1.67 \mathrm{E}+03$	$7.58 \mathrm{E}+01$

Table 2
OEA-DPG against DE, PSO, GSA, and EPSDE on CEC2013 in 30 dimensions

Function	DE			PSO			GSA			EPSDE			OEA-DPG	
	AVE	STD												
F1	$-1.40 \mathrm{E}+03$	$3.60 \mathrm{E}-06$	$+$	-1402 +03	1.93E-13	-	$-2.34 \mathrm{E}+02$	$4.80 \mathrm{E}+02$	$+$	$-1.40 \mathrm{E}+03$	1.52E-09	+	$-1.40 \mathrm{E}+03$	$4.76 \mathrm{E}-12$
F2	$7.21 \mathrm{E}+06$	$1.78 \mathrm{E}+06$	+	1.,5E-07	$6.38 \mathrm{E}+06$	$+$	$3.98 \mathrm{E}+07$	$5.62 \mathrm{E}+06$	$+$	$9.43 \mathrm{E}+06$	$2.20 \mathrm{E}+06$	+	$2.92 \mathrm{E}+06$	$1.40 \mathrm{E}+06$
F3	$7.88 \mathrm{E}+06$	4.69E+06	$=$	$9.87 \mathrm{~L}-08$	$1.09 \mathrm{E}+09$	+	$7.96 \mathrm{E}+12$	$2.59 \mathrm{E}+13$	+	$1.27 \mathrm{E}+07$	$5.85 \mathrm{E}+06$	$=$	$3.05 \mathrm{E}+07$	$6.05 \mathrm{E}+07$
F4	$4.55 \mathrm{E}+04$	$7.38 \mathrm{E}+03$	+	$2.45 \mathrm{E}-04$	$6.94 \mathrm{E}+03$	$=$	$6.76 \mathrm{E}+04$	$3.12 \mathrm{E}+03$	+	$4.73 \mathrm{E}+04$	$1.03 \mathrm{E}+04$	+	$2.54 \mathrm{E}+04$	$7.03 \mathrm{E}+03$
F5	$-1.00 \mathrm{E}+03$	$1.85 \mathrm{E}-04$	+	$-1.00 \mathrm{E}+0$.).76E-09		$3.47 \mathrm{E}+02$	$1.33 \mathrm{E}+02$	+	$-1.00 \mathrm{E}+03$	$8.51 \mathrm{E}-07$	+	$-1.00 \mathrm{E}+03$	$5.60 \mathrm{E}-06$
F6	$-8.85 \mathrm{E}+02$	5.60E-01	-	$-8.72 \mathrm{E}+02$	$1.04{ }^{\text {c }}+01$	$+$	$-6.16 \mathrm{E}+02$	$5.31 \mathrm{E}+01$	+	$-8.84 \mathrm{E}+02$	$5.41 \mathrm{E}-01$	-	$-8.77 \mathrm{E}+02$	$4.69 \mathrm{E}+00$
F7	$-7.82 \mathrm{E}+02$	$4.63 \mathrm{E}+00$	+	$-7.12 \mathrm{E}+02$	3. $4 \mathrm{4} \div-1$	+	$2.92 \mathrm{E}+04$	$2.28 \mathrm{E}+04$	+	$-7.54 \mathrm{E}+02$	$6.08 \mathrm{E}+00$	$+$	$-7.86 \mathrm{E}+02$	9.24E +00
F8	$-6.79 \mathrm{E}+02$	$4.51 \mathrm{E}-02$		$-6.79 \mathrm{E}+02$	5.81 :- 2		$-6.79 \mathrm{E}+02$	$5.48 \mathrm{E}-02$	$=$	$-6.79 \mathrm{E}+02$	$3.84 \mathrm{E}-02$	$=$	$-6.79 \mathrm{E}+02$	$5.84 \mathrm{E}-02$
F9	$-5.60 \mathrm{E}+02$	$1.34 \mathrm{E}+00$	+	$-5.75 \mathrm{E}+02$	$4.66 \mathrm{E}+0$,		$-5.60 \mathrm{E}+02$	$2.21 \mathrm{E}+00$	$+$	$-5.66 \mathrm{E}+02$	$1.24 \mathrm{E}+00$	$+$	$-5.75 \mathrm{E}+02$	$5.77 \mathrm{E}+00$
F10	$-4.99 \mathrm{E}+02$	$4.13 \mathrm{E}-02$	+	$-4.98 \mathrm{E}+02$	$1.11 \mathrm{E}+0{ }^{\circ}$		$9.05 \mathrm{E}+01$	$8.99 \mathrm{E}+01$	+	$-4.99 \mathrm{E}+02$	$3.23 \mathrm{E}-02$	+	$-5.00 \mathrm{E}+02$	3.98E-01
F11	$-2.16 \mathrm{E}+02$	$1.46 \mathrm{E}+01$	+	$-3.66 \mathrm{E}+02$	$9.04 \mathrm{E}+00$		$6.88 \mathrm{E}+01$	$1.78 \mathrm{E}+01$	+	$-3.67 \mathrm{E}+02$	$2.98 \mathrm{E}+00$	+	$-3.79 \mathrm{E}+02$	8.59E +00
F12	$-9.64 \mathrm{E}+01$	$1.12 \mathrm{E}+01$	+	$-2.09 \mathrm{E}+02$	$2.62 \mathrm{E}+01$		${ }^{2} 85 \mathrm{E}+02$	$4.06 \mathrm{E}+01$	$+$	$-1.45 \mathrm{E}+02$	$1.19 \mathrm{E}+01$	$+$	$-2.70 \mathrm{E}+02$	$1.67 \mathrm{E}+01$
F13	$3.80 \mathrm{E}+00$	$1.26 \mathrm{E}+01$	+	$-1.57 \mathrm{E}+01$	$3.35 \mathrm{E}+01$	+	. $99 \mathrm{E}+02$	$4.39 \mathrm{E}+01$	$+$	$-3.07 \mathrm{E}+01$	$9.74 \mathrm{E}+00$	$+$	$-1.16 E+02$	$2.90 \mathrm{E}+01$
F14	$5.88 \mathrm{E}+03$	$4.31 \mathrm{E}+02$	+	$\mathbf{1 . 1 7 E}+03$	3.12E +02		$4.28 \div 03$	$4.43 \mathrm{E}+02$	+	$2.34 \mathrm{E}+03$	$1.76 \mathrm{E}+02$	+	$1.97 \mathrm{E}+03$	$4.48 \mathrm{E}+02$
F15	$7.53 \mathrm{E}+03$	$3.19 \mathrm{E}+02$	$+$	$7.03 \mathrm{E}+03$	$6.19 \mathrm{E}+02$	+	4, \|E- 0 ?	3.85E +02	-	$6.91 \mathrm{E}+03$	$3.75 \mathrm{E}+02$	$+$	$4.54 \mathrm{E}+03$	$4.90 \mathrm{E}+02$
F16	$2.03 \mathrm{E}+02$	$3.89 \mathrm{E}-01$	$+$	$2.02 \mathrm{E}+02$	$4.72 \mathrm{E}-01$	$+$	$2.00 \mathrm{E}-\mathrm{J} 2$	$1.22 \mathrm{E}-02$	-	$2.03 \mathrm{E}+02$	$3.78 \mathrm{E}-01$	$+$	$2.00 \mathrm{E}+02$	$4.01 \mathrm{E}-02$
F17	$5.20 \mathrm{E}+02$	$8.39 \mathrm{E}+00$	+	$3.80 \mathrm{E}+02$	$1.34 \mathrm{E}+01$	$+$	$5.90 \mathrm{E}+0$.	$2.81 \mathrm{E}+01$	$+$	$3.73 \mathrm{E}+02$	$3.77 \mathrm{E}+00$	$+$	3.46E +02	$4.16 \mathrm{E}+00$
F18	$6.36 \mathrm{E}+02$	$9.29 \mathrm{E}+00$	$+$	$6.34 \mathrm{E}+02$	$3.06 \mathrm{E}+01$	+	$6.67 \mathrm{E}+02$	2.0t E+01	+	$6.09 \mathrm{E}+02$	$1.03 \mathrm{E}+01$	+	$4.68 \mathrm{E}+02$	$1.22 \mathrm{E}+01$
F19	$5.17 \mathrm{E}+02$	$7.73 \mathrm{E}-01$	$+$	$5.04 \mathrm{E}+02$	$9.33 \mathrm{E}-01$	$=$	$2.43 \mathrm{E}+03$	$555 \mathrm{~F}, 02$	$+$	$5.06 \mathrm{E}+02$	$4.15 \mathrm{E}-01$	$+$	$5.05 \mathrm{E}+02$	$1.80 \mathrm{E}+00$
F20	$6.13 \mathrm{E}+02$	$2.51 \mathrm{E}-01$	+	$6.13 \mathrm{E}+02$	$3.24 \mathrm{E}-01$	$+$	$6.15 \mathrm{E}+02$	$1.0+\mathrm{E}-01$	$+$	$6.13 \mathrm{E}+02$	$2.24 \mathrm{E}-01$	+	6.12E+02	4.32E-01
F21	$9.50 \mathrm{E}+02$	$5.08 \mathrm{E}+01$	$=$	$9.91 \mathrm{E}+02$	$6.68 \mathrm{E}+01$	$=$	$2.25 \mathrm{E}+03$	$1.29 \mathrm{E}+\mathrm{C} 2$	+	$9.93 \mathrm{E}+02$	$7.42 \mathrm{E}+01$	+	$9.63 \mathrm{E}+02$	$4.90 \mathrm{E}+01$
F22	$7.04 \mathrm{E}+03$	$3.97 \mathrm{E}+02$	$+$	$2.12 \mathrm{E}+03$	$3.53 \mathrm{E}+02$	-	$8.03 \mathrm{E}+03$	$4.57 \mathrm{E}+02$		$3.68 \mathrm{E}+03$	$2.15 \mathrm{E}+02$	$+$	$3.09 \mathrm{E}+03$	$5.31 \mathrm{E}+02$
F23	$8.38 \mathrm{E}+03$	$3.21 \mathrm{E}+02$	$+$	$8.01 \mathrm{E}+03$	$5.66 \mathrm{E}+02$	$+$	$7.30 \mathrm{E}+03$	3.34E +02		$7.81 \mathrm{E}+03$	$3.84 \mathrm{E}+02$	$+$	$7.37 \mathrm{E}+03$	$4.12 \mathrm{E}+02$
F24	$1.26 \mathrm{E}+03$	$1.75 \mathrm{E}+01$	$+$	$1.27 \mathrm{E}+03$	$9.82 \mathrm{E}+00$	$+$	$1.48 \mathrm{E}+03$	$5.99 \mathrm{E}+01$		1.29E+03	$4.29 \mathrm{E}+00$	+	$1.22 \mathrm{E}+03$	$1.14 \mathrm{E}+01$
F25	$1.35 \mathrm{E}+03$	$6.13 \mathrm{E}+00$	$=$	$1.37 \mathrm{E}+03$	$8.85 \mathrm{E}+00$	$+$	$1.52 \mathrm{E}+03$	$1.02 \mathrm{E}+01$	$+$	$10 \mathrm{E}+03$	$2.54 \mathrm{E}+00$	+	$1.35 \mathrm{E}+03$	$7.49 \mathrm{E}+00$
F26	$1.40 \mathrm{E}+03$	$4.04 \mathrm{E}-01$	-	$1.51 \mathrm{E}+03$	$7.91 \mathrm{E}+01$	$+$	$1.59 \mathrm{E}+03$	$3.40 \mathrm{E}+01$	$+$	$1, \mathrm{OD}+03$	$2.17 \mathrm{E}-01$	-	$1.44 \mathrm{E}+03$	$6.28 \mathrm{E}+01$
F27	$2.55 \mathrm{E}+03$	$1.22 \mathrm{E}+02$	$+$	$2.26 \mathrm{E}+03$	$1.18 \mathrm{E}+02$	$+$	$2.54 \mathrm{E}+03$	$7.89 \mathrm{E}+01$	$+$	$2.175+93$	$3.40 \mathrm{E}+01$	$+$	$1.96 \mathrm{E}+03$	$1.12 \mathrm{E}+02$
F28	$1.70 \mathrm{E}+03$	$3.41 \mathrm{E}-02$	+	$1.78 \mathrm{E}+03$	$2.99 \mathrm{E}+02$	$=$	$5.84 \mathrm{E}+03$	$3.23 \mathrm{E}+02$	$+$	$1.70 \mathrm{E}+0^{2}$	$1.43 \mathrm{E}-03$	$+$	$1.70 \mathrm{E}+03$	3.02E-04

10 X. Yan et al. / An optimizer ensemble algorithm and its application to image registration
Table 3
OEA-DPG against DE, PSO, GSA, and EPSDE on CEC2013 in 50 dimensions

Function	DE			PSO			GSA			EPSDE			OEA-DPG	
	AVE	STD												
F1	$-1.40 \mathrm{E}+03$	$2.33 \mathrm{E}-02$	$+$	-1.05 +03	7.42E-05	-	$1.26 \mathrm{E}+04$	$1.39 \mathrm{E}+03$	$+$	$-1.40 \mathrm{E}+03$	5.05E-05	$+$	$-1.40 \mathrm{E}+03$	$2.11 \mathrm{E}-05$
F2	$1.23 \mathrm{E}+08$	$2.28 \mathrm{E}+07$	+	4-3E- 07	$1.89 \mathrm{E}+07$	+	$1.33 \mathrm{E}+08$	$2.20 \mathrm{E}+07$	$+$	$6.56 \mathrm{E}+07$	$9.12 \mathrm{E}+06$	$+$	$1.99 \mathrm{E}+07$	$7.49 \mathrm{E}+06$
F3	$4.94 \mathrm{E}+09$	$2.24 \mathrm{E}+09$	$+$	$1.56-10$	$9.53 \mathrm{E}+09$	$+$	$7.17 \mathrm{E}+11$	$5.17 \mathrm{E}+11$	$+$	$4.85 \mathrm{E}+09$	$1.24 \mathrm{E}+09$	$+$	$7.84 \mathrm{E}+08$	5.69E+08
F4	$1.33 \mathrm{E}+05$	$1.51 \mathrm{E}+04$	$+$	$6.60 \mathrm{E}-04$	$1.06 \mathrm{E}+04$	$+$	$9.02 \mathrm{E}+04$	$2.60 \mathrm{E}+03$	+	$1.18 \mathrm{E}+05$	$1.61 \mathrm{E}+04$	$+$	6.04E +04	6.38E +03
F5	$-1.00 \mathrm{E}+03$	$7.54 \mathrm{E}-02$	+	$-1.00 \mathrm{E}+03$. $29 \mathrm{E}-03$	-	$1.05 \mathrm{E}+03$	$2.65 \mathrm{E}+02$	$+$	$-1.00 \mathrm{E}+03$	1.45E-03	-	$-1.00 \mathrm{E}+03$	$4.68 \mathrm{E}-02$
F6	$-8.53 \mathrm{E}+02$	$5.72 \mathrm{E}-01$	$=$	$-8.51 \mathrm{E}+02$	- $8.89^{\text {r }}+00$	+	$-7.03 \mathrm{E}+01$	$1.14 \mathrm{E}+02$	+	$-8.54 \mathrm{E}+02$	6.98E-01	-	$-8.51 \mathrm{E}+02$	$9.99 \mathrm{E}+00$
F7	$-7.20 \mathrm{E}+02$	$1.15 \mathrm{E}+01$	$+$	$-6.58 \mathrm{E}+02$	$2.64 \mathrm{E}-11$	$+$	$1.59 \mathrm{E}+03$	$1.13 \mathrm{E}+03$	+	$-6.82 \mathrm{E}+02$	$1.05 \mathrm{E}+01$	$+$	$-7.30 \mathrm{E}+02$	$1.77 \mathrm{E}+01$
F8	$-6.79 \mathrm{E}+02$	$3.15 \mathrm{E}-02$	$=$	$-6.79 \mathrm{E}+02$	4.88 - 2		$-6.79 \mathrm{E}+02$	$2.86 \mathrm{E}-02$	$+$	$-6.79 \mathrm{E}+02$	$2.99 \mathrm{E}-02$	$=$	$-6.79 \mathrm{E}+02$	3.26E-02
F9	$-5.26 \mathrm{E}+02$	$1.79 \mathrm{E}+00$	$+$	$-5.46 \mathrm{E}+02$	$5.64 \mathrm{E}+0$,		$-5.36 \mathrm{E}+02$	$2.83 \mathrm{E}+00$	$+$	$-5.34 \mathrm{E}+02$	$1.60 \mathrm{E}+00$	$+$	$-5.42 \mathrm{E}+02$	$9.79 \mathrm{E}+00$
F10	$-4.84 \mathrm{E}+02$	$6.39 \mathrm{E}+00$	$+$	$-4.61 \mathrm{E}+02$	$1.58 \mathrm{E}+01$		$1.35 \mathrm{E}+03$	$1.40 \mathrm{E}+02$	$+$	$-4.92 \mathrm{E}+02$	$1.96 \mathrm{E}+00$	$+$	$-4.94 \mathrm{E}+02$	3.35E +00
F11	$-2.18 \mathrm{E}+01$	$1.75 \mathrm{E}+01$	+	$-3.16 \mathrm{E}+02$	$1.51 \mathrm{E}+01$		$2.28 \mathrm{E}+02$	$3.08 \mathrm{E}+01$	+	$-2.66 \mathrm{E}+02$	$8.82 \mathrm{E}+00$	$+$	$-3.32 \mathrm{E}+02$	$2.08 \mathrm{E}+01$
F12	$1.06 \mathrm{E}+02$	$1.33 \mathrm{E}+01$	+	$-5.41 \mathrm{E}+01$	$7.49 \mathrm{E}+01$		- $0.3 \mathrm{E}+02$	$4.44 \mathrm{E}+01$	$+$	$5.53 \mathrm{E}+01$	$1.82 \mathrm{E}+01$	+	$-2.05 \mathrm{E}+02$	$2.84 \mathrm{E}+01$
F13	$2.08 \mathrm{E}+02$	$1.92 \mathrm{E}+01$	+	$2.04 \mathrm{E}+02$	$8.08 \mathrm{E}+01$	+	5.33E+02	$5.65 \mathrm{E}+01$	$+$	$1.67 \mathrm{E}+02$	$1.89 \mathrm{E}+01$	+	$1.43 \mathrm{E}+01$	$4.05 \mathrm{E}+01$
F14	$1.18 \mathrm{E}+04$	$4.28 \mathrm{E}+02$	+	$\mathbf{2 . 8 1 E}+03$	$6.02 \mathrm{E}+02$		8.17 - 03	$7.76 \mathrm{E}+02$	$+$	$5.56 \mathrm{E}+03$	$4.62 \mathrm{E}+02$	$=$	$5.67 \mathrm{E}+03$	$6.98 \mathrm{E}+02$
F15	$1.44 \mathrm{E}+04$	$3.86 \mathrm{E}+02$	+	$1.41 \mathrm{E}+04$	$4.58 \mathrm{E}+02$	+	9 ¢.E $\cdot 53$	$6.42 \mathrm{E}+02$	$=$	$1.35 \mathrm{E}+04$	$4.30 \mathrm{E}+02$	$+$	$9.59 \mathrm{E}+03$	$8.65 \mathrm{E}+02$
F16	$2.04 \mathrm{E}+02$	$3.23 \mathrm{E}-01$	+	$2.03 \mathrm{E}+02$	$4.14 \mathrm{E}-01$	+	$2.00 \mathrm{E}+\mathrm{J} 2$	$1.01 \mathrm{E}-02$	-	$2.04 \mathrm{E}+02$	$3.44 \mathrm{E}-01$	$+$	$2.00 \mathrm{E}+02$	$3.42 \mathrm{E}-02$
F17	$7.41 \mathrm{E}+02$	$1.46 \mathrm{E}+01$	$+$	$4.90 \mathrm{E}+02$	$2.90 \mathrm{E}+01$	+	$9.58 \mathrm{E}+0$?	1.68E+01	$+$	$5.04 \mathrm{E}+02$	$9.59 \mathrm{E}+00$	+	$4.06 \mathrm{E}+02$	$1.63 \mathrm{E}+01$
F18	$8.60 \mathrm{E}+02$	$1.29 \mathrm{E}+01$	+	$9.13 \mathrm{E}+02$	$4.60 \mathrm{E}+01$	$+$	$1.04 \mathrm{E}+03$	r.79E+01	$+$	$8.30 \mathrm{E}+02$	$2.03 \mathrm{E}+01$	$+$	$5.74 \mathrm{E}+02$	$2.06 \mathrm{E}+01$
F19	$5.36 \mathrm{E}+02$	$1.66 \mathrm{E}+00$	+	5.12E +02	3.07E +00	-	$2.06 \mathrm{E}+04$	30ヶF,03	$+$	$5.17 \mathrm{E}+02$	8.93E-01	-	$5.18 \mathrm{E}+02$	$4.16 \mathrm{E}+00$
F20	$6.23 \mathrm{E}+02$	$2.14 \mathrm{E}-01$	$+$	$6.23 \mathrm{E}+02$	$3.47 \mathrm{E}-01$	$+$	$6.25 \mathrm{E}+02$	$2.16 \mathrm{E}-01$	$+$	$6.23 \mathrm{E}+02$	$3.44 \mathrm{E}-01$	$+$	6.22E +02	$5.25 \mathrm{E}-01$
F21	$1.09 \mathrm{E}+03$	3.73E +02	$=$	$1.49 \mathrm{E}+03$	$4.30 \mathrm{E}+02$	$=$	$3.95 \mathrm{E}+03$	$5.84 \mathrm{E}+0$.		$1.11 \mathrm{E}+03$	$3.82 \mathrm{E}+02$	$=$	$1.30 \mathrm{E}+03$	$4.31 \mathrm{E}+02$
F22	$1.31 \mathrm{E}+04$	$4.29 \mathrm{E}+02$	$+$	$4.02 \mathrm{E}+03$	$6.52 \mathrm{E}+02$	-	$1.42 \mathrm{E}+04$	$6.11 \mathrm{E}+02$		$6.87 \mathrm{E}+03$	$2.61 \mathrm{E}+02$	-	$7.57 \mathrm{E}+03$	$1.22 \mathrm{E}+03$
F23	$1.51 \mathrm{E}+04$	$4.37 \mathrm{E}+02$	$+$	$1.51 \mathrm{E}+04$	$7.35 \mathrm{E}+02$	$+$	$1.36 \mathrm{E}+04$	$4.47 \mathrm{E}+02$		$1.46 \mathrm{E}+04$	$4.23 \mathrm{E}+02$	$+$	$1.42 \mathrm{E}+04$	$4.98 \mathrm{E}+02$
F24	$1.37 \mathrm{E}+03$	$1.24 \mathrm{E}+01$	+	$1.34 \mathrm{E}+03$	$1.19 \mathrm{E}+01$	+	$1.91 \mathrm{E}+03$	$1.47 \mathrm{E}+02$		1.37E+03	$4.62 \mathrm{E}+00$	+	$1.28 \mathrm{E}+03$	$1.15 \mathrm{E}+01$
F25	$1.45 \mathrm{E}+03$	$2.89 \mathrm{E}+01$	$+$	$1.44 \mathrm{E}+03$	$1.52 \mathrm{E}+01$	+	$1.76 \mathrm{E}+03$	$2.71 \mathrm{E}+01$	$+$	1. $9 \mathrm{E}+03$	$4.55 \mathrm{E}+00$	$+$	$1.41 \mathrm{E}+03$	$1.65 \mathrm{E}+01$
F26	$1.66 \mathrm{E}+03$	$7.39 \mathrm{E}+01$	+	$1.63 \mathrm{E}+03$	$4.56 \mathrm{E}+01$	$=$	$1.67 \mathrm{E}+03$	$8.73 \mathrm{E}+01$	+	$1.50 \mathrm{OE}+03$	1.03E+02	$=$	$1.60 \mathrm{E}+03$	$9.18 \mathrm{E}+01$
F27	$3.49 \mathrm{E}+03$	$4.63 \mathrm{E}+01$	$+$	$2.99 \mathrm{E}+03$	$1.52 \mathrm{E}+02$	$+$	$4.18 \mathrm{E}+03$	$1.33 \mathrm{E}+02$	$+$	$3.295+33$	$3.68 \mathrm{E}+01$	$+$	$2.72 \mathrm{E}+03$	$2.81 \mathrm{E}+02$
F28	$1.80 \mathrm{E}+03$	$4.17 \mathrm{E}-01$	-	$2.58 \mathrm{E}+03$	$1.44 \mathrm{E}+03$	$+$	$1.02 \mathrm{E}+04$	$4.20 \mathrm{E}+02$	$+$	$1.80 \mathrm{E}+0^{3}$	$2.53 \mathrm{E}-02$	-	$2.00 \mathrm{E}+03$	$7.75 \mathrm{E}+02$

5.3. Runtime

To analyze the computational cost, the runtime of OEA-DPG is compared with that of its base optimizers. The difference of runtime among the algorithms is similar in 10, 30, and 50 dimensions on CEC2013. Due to the page limit, the results in 30 dimensions are selected for comparison. Figure 2 presents the average runtime of DE, PSO, GSA, and OEA-DPG. In Fig. 2, the horizontal axis represents the function, and the vertical axis represents the average runtime in seconds.

As shown in Fig. 2, it is clear that OEA consumes more time than its base optimizers due to the extra calculation in exchange iterations. However, the runtime of OEA-DPG is competitive with that of DE, PSO, and GSA except for F9, F16, and the composite functions. The reason is that there are only seven exchange iterations for the individual exchange in OEA-DPG. Each optimizer runs independently in the other iterations. The runtime of OEA-DPG is large on the composite functions due to the large runtime of DE and PSO, which demonstrates that the computational cost of extra calculation in OEA-DPG is low.

5.4. Analysis of ensemble strategies

Several ensemble strategies are designed in OEA to promote its performance. To analyze the influerce or the search mechanism in OEA, this paper conpues heterogeneous ensembles with homogeneo is insembles. The ensemble of DE, DE and DF (EEA-DDD), the ensemble of PSO, PSO and PSO (NEA-PPP), and the ensemble of GSA, GSA and GOA (OEA-GGG) are compared with OEA-DPG. Th - a elage, standard deviation, and Wilcoxon rank- out est obtained by OEADPG and homogeneous en su mbles are compared in Table 4. Due to the page im t, the results on CEC2013 testbed in 30 dimensions are selected for comparison.

As can be seen from Table 4, OEA-DPG is superior to OEA-PPP and OEA-GGG on almost all functions, and OEA-DPG is better than or similar to OEA-DDD on the majority of functions. OEA-DDD performs well on the unimodal functions because of the strong exploitation ability of DE. Compared with the base optimizer in Table 2, the homogeneous ensemble of multiple optimizers has not improved the performance obviously. The reason is that the search mechanisms of base optimizers are identical in the homogeneous ensemble. Due to the combination of different and complementary search mechanisms, OEA-DPG is better than OEA-DDD, OEA-PPP and OEA-GGG on 13, 24
and 26 functions, while OEA-DPG is only worse than OEA-DDD, OEA-PPP and OEA-GGG on 11, 2 and 0 function(s).
In an exchange iteration, the exchange number of each optimizer is adaptively assigned according to its fitness in OEA. To analyze the influence of the adaptive exchange number, OEA-DPG with a fixed exchange number (OEA-DPG-F) is compared. In OEA-DPG-F, the fixed exchange number of exchange individuals is 20. Table 5 displays the comparison result of OEADPG and OEA-DPG-F on CEC2013 testbed in 30 dimensions.

As can be clearly seen from Table 5 that OEA-DPG is better than OEA-DPG-F on 11 functions, and OEADPG is similar to OEA-DP/ F on 17 functions. It is worthwhile to mention that there is no function on which OEA-DPG is wo se than OEA-DPG-F. These results are mainly de to the fact that the adaptive exchange number cin maintain a balance between exchange indivical and preserved individuals. When a fixed exehange number is assigned to each optimizer, t e weak optimizer cannot exchange more individu is vith the other optimizers, and the strong optinter cannot preserve more good individuals, which deceases the global search ability. Hence, the performance of OEA-DPG is higher than or similar to that of OEA-DPG-F on all functions, which conforms the effectiveness of the adaptive exchange number.

5.5. Image registration problem

To further investigate the performance of OEA, the algorithm is applied to solve image registration problem, which is a fundamental and crucial issue in remote sensing image processing [68]. Mutual information (MI) is a commonly used similarity measure in image registration [69]. The larger the MI, the better the registration [70]. According to the information theoretic notion of entropy, MI of images A and B can be computed as

$$
\begin{equation*}
I(A, B)=H(A)+H(B)-H(A, B) \tag{7}
\end{equation*}
$$

where $H(A)$ and $H(B)$ are the marginal entropies of images A and B, respectively and $H(A, B)$ is their joint entropy. These can be denoted as

$$
\begin{align*}
H(A) & =-\sum_{a} P_{A}(a) \log _{2} P_{A}(a) \tag{8}\\
H(B) & =-\sum_{b} P_{B}(b) \log _{2} P_{B}(b) \tag{9}\\
H(A, B) & =-\sum_{a, b} P_{A B}(a, b) \log _{2} P_{A B}(a, b) \tag{10}
\end{align*}
$$

12 X. Yan et al. / An optimizer ensemble algorithm and its application to image registration

Table 4
OEA-DPG against OEA-DDD, OEA-PPP, and OEA-GGG on CEC2013 in 30 dimensions

Function	OEA-DDD			OEA-PPP			OEA-GGG			OEA-DPG	
	AVE	STD									
F1	$-1.40 \mathrm{E}+03$	$1.53 \mathrm{E}-12$	-	$-1.40 \mathrm{E}+03$	$2.78 \mathrm{E}-01$	+	$3.87 \mathrm{E}+03$	$1.41 \mathrm{E}+03$	$+$	$-1.40 \mathrm{E}+03$	$9.79 \mathrm{E}-12$
F2	$1.73 \mathrm{E}+06$	$9.25 \mathrm{E}+05$	-	$2.37 \mathrm{E}+07$	$8.54 \mathrm{E}+06$	+	$8.54 \mathrm{E}+07$	$6.20 \mathrm{E}+07$	$+$	$3.52 \mathrm{E}+06$	$2.01 \mathrm{E}+06$
F3	$2.17 \mathrm{E}+06$	$3.97 \mathrm{E}+06$	-	$1.64 \mathrm{E}+09$	$1.19 \mathrm{E}+09$	+	$4.42 \mathrm{E}+14$	$7.18 \mathrm{E}+14$	$+$	$1.46 \mathrm{E}+07$	$1.56 \mathrm{E}+07$
F4	$1.84 \mathrm{E}+04$	$4.01 \mathrm{E}+03$	-	$7.63 \mathrm{E}+04$	$2.26 \mathrm{E}+04$	+	$6.07 \mathrm{E}+04$	$6.65 \mathrm{E}+03$	$+$	$2.34 \mathrm{E}+04$	$6.03 \mathrm{E}+03$
F5	$-1.00 \mathrm{E}+03$	$1.70 \mathrm{E}-08$	-	$-9.99 \mathrm{E}+02$	$6.58 \mathrm{E}-01$	+	$3.66 \mathrm{E}+02$	$4.35 \mathrm{E}+02$	$+$	$-1.00 \mathrm{E}+03$	$5.69 \mathrm{E}-05$
F6	$-8.81 \mathrm{E}+02$	$4.68 \mathrm{E}+00$	-	$-8.72 \mathrm{E}+02$	$2.09 \mathrm{E}+00$	+	$8.99 \mathrm{E}+01$	$3.23 \mathrm{E}+02$	$+$	$-8.78 \mathrm{E}+02$	$4.46 \mathrm{E}+00$
F7	$-7.96 \mathrm{E}+02$	$2.57 \mathrm{E}+00$	-	$-7.21 \mathrm{E}+02$	$2.27 \mathrm{E}+01$	+	$2.71 \mathrm{E}+04$	$3.17 \mathrm{E}+04$	$+$	$-7.86 \mathrm{E}+02$	$9.75 \mathrm{E}+00$
F8	$-6.79 \mathrm{E}+02$	$4.64 \mathrm{E}-02$	=	$-6.79 \mathrm{E}+02$	$5.41 \mathrm{E}-02$	+	$-6.79 \mathrm{E}+02$	$6.95 \mathrm{E}-02$	$+$	$-6.79 \mathrm{E}+02$	$5.71 \mathrm{E}-02$
F9	$-5.64 \mathrm{E}+02$	$6.61 \mathrm{E}+00$	$+$	$-5.76 \mathrm{E}+02$	$3.47 \mathrm{E}+00$	$=$	$-5.59 \mathrm{E}+02$	$2.83 \mathrm{E}+00$	$+$	$-5.77 \mathrm{E}+02$	$5.46 \mathrm{E}+00$
F10	$-5.00 \mathrm{E}+02$	$2.46 \mathrm{E}-02$	-	$-4.73 \mathrm{E}+02$	$1.35 \mathrm{E}+01$	$+$	$6.74 \mathrm{E}+02$	$3.53 \mathrm{E}+02$	$+$	$-5.00 \mathrm{E}+02$	$3.41 \mathrm{E}-01$
F11	$-2.92 \mathrm{E}+02$	$1.74 \mathrm{E}+01$	$+$	$-3.53 \mathrm{E}+02$	$9.75 \mathrm{E}+00$	$+$	$3.49 \mathrm{E}+01$	$6.66 \mathrm{E}+01$	$+$	$-3.79 \mathrm{E}+02$	1.14E+01
F12	$-1.18 \mathrm{E}+02$	$1.33 \mathrm{E}+01$	$+$	$-1.93 \mathrm{E}+02$	$2.98 \mathrm{E}+01$	+	$3.19 \mathrm{E}+02$	$9.08 \mathrm{E}+01$	$+$	$-2.63 \mathrm{E}+02$	$2.38 \mathrm{E}+01$
F13	$-7.64 \mathrm{E}+00$	$9.85 \mathrm{E}+00$	+	$-1.35 \mathrm{E}+00$	$3.46 \mathrm{E}+01$	+	$4.92 \mathrm{E}+02$	$7.75 \mathrm{E}+01$	$+$	$-1.20 \mathrm{E}+02$	$3.57 \mathrm{E}+01$
F14	$4.21 \mathrm{E}+03$	$4.93 \mathrm{E}+02$	$+$	$1.75 \mathrm{E}+03$	$4.33 \mathrm{E}+02$	-	$3.77 \mathrm{E}+03$	$5.20 \mathrm{E}+02$		$2.16 \mathrm{E}+03$	$4.58 \mathrm{E}+02$
F15	$7.60 \mathrm{E}+03$	$2.41 \mathrm{E}+02$	+	$5.58 \mathrm{E}+03$	$1.18 \mathrm{E}+03$	$+$	$4.72 \mathrm{E}+03$	$6.89 \mathrm{E}+02$		$4.38 \mathrm{E}+03$	$5.47 \mathrm{E}+02$
F16	$2.03 \mathrm{E}+02$	$4.03 \mathrm{E}-01$	$+$	$2.03 \mathrm{E}+02$	8.39E-01	$+$	$2.04 \mathrm{E}+02$	$7.23 \mathrm{E}-0$		$2.00 \mathrm{E}+02$	5.11E-02
F17	$4.46 \mathrm{E}+02$	$1.28 \mathrm{E}+01$	$+$	$4.42 \mathrm{E}+02$	$2.14 \mathrm{E}+01$	$+$	$7.16 \mathrm{E}+02$	$6.77 \mathrm{~F}+\mathrm{u}^{1}$		$3.45 \mathrm{E}+02$	$4.31 \mathrm{E}+00$
F18	$6.15 \mathrm{E}+02$	$1.54 \mathrm{E}+01$	$+$	$6.86 \mathrm{E}+02$	$3.68 \mathrm{E}+01$	$+$	$8.91 \mathrm{E}+02$	$4.35+1$	+	$4.72 \mathrm{E}+02$	$1.44 \mathrm{E}+01$
F19	$5.14 \mathrm{E}+02$	$1.43 \mathrm{E}+00$	$+$	$5.09 \mathrm{E}+02$	$2.76 \mathrm{E}+00$	$+$	$4.22 \mathrm{E}+03$	3. $6 \mathrm{E}+03$	$+$	$5.05 \mathrm{E}+02$	$1.69 \mathrm{E}+00$
F20	$6.13 \mathrm{E}+02$	$2.81 \mathrm{E}-01$	$+$	$6.13 \mathrm{E}+02$	$4.45 \mathrm{E}-01$	$+$	$6.15 \mathrm{E}+02$	1. $99 \mathrm{E}-01$	$+$	$6.12 \mathrm{E}+02$	$4.85 \mathrm{E}-01$
F21	$9.47 \mathrm{E}+02$	$5.07 \mathrm{E}+01$	-	$1.01 \mathrm{E}+03$	$9.69 \mathrm{E}+01$	$+$	$2.30 \mathrm{E}+0.3$	$2.19 \mathrm{E}+02$	$+$	$9.76 \mathrm{E}+02$	$6.55 \mathrm{E}+01$
F22	$5.37 \mathrm{E}+03$	$5.08 \mathrm{E}+02$	$+$	$2.86 \mathrm{E}+03$	$4.90 \mathrm{E}+02$	$=$	$664 \mathrm{E}+05$	$8.96 \mathrm{E}+02$	$+$	$2.84 \mathrm{E}+03$	$4.06 \mathrm{E}+02$
F23	$8.42 \mathrm{E}+03$	$3.16 \mathrm{E}+02$	$+$	$6.80 \mathrm{E}+03$	9.54E+02	-	7.8.E+03	$4.28 \mathrm{E}+02$	$=$	$7.50 \mathrm{E}+03$	$5.89 \mathrm{E}+02$
F24	$1.21 \mathrm{E}+03$	$9.63 \mathrm{E}+00$	-	$1.26 \mathrm{E}+03$	$8.66 \mathrm{E}+00$	$+$	1.5) $\mathrm{E}+03$	$9.05 \mathrm{E}+01$	$+$	$1.23 \mathrm{E}+03$	$1.25 \mathrm{E}+01$
F25	$1.35 \mathrm{E}+03$	$7.11 \mathrm{E}+00$	$=$	$1.36 \mathrm{E}+03$	$7.68 \mathrm{E}+00$		$1.54 \mathrm{E}+03$	$1.73 \mathrm{E}+01$	$+$	$1.35 \mathrm{E}+03$	7.15E+00
F26	$1.42 \mathrm{E}+03$	$4.71 \mathrm{E}+01$	-	$1.51 \mathrm{E}+03$	$7.35 \mathrm{E}+0$		$1.62 \mathrm{E}+03$	$7.21 \mathrm{E}+01$	$+$	$1.44 \mathrm{E}+03$	$6.18 \mathrm{E}+01$
F27	$1.92 \mathrm{E}+03$	$1.18 \mathrm{E}+02$	$=$	$2.19 \mathrm{E}+03$	$9.76 \mathrm{E}+\rho$		$2.60 \mathrm{E}+03$	$8.68 \mathrm{E}+01$	+	$1.96 \mathrm{E}+03$	$1.43 \mathrm{E}+02$
F28	$1.70 \mathrm{E}+03$	$4.29 \mathrm{E}-05$	$=$	$1.74 \mathrm{E}+03$	$4.24 \mathrm{E}+91$		$6.25 \mathrm{E}+03$	$3.94 \mathrm{E}+02$	$+$	$1.70 \mathrm{E}+03$	$2.03 \mathrm{E}-04$

Fig. 2. Runtime comparison of DE, PSO, GSA, and OEA-DPG.
where $a \in A, b \in B, P_{A}(a)$ and $P_{B}(b)$ are the marginal probability distributions of images A and B, respectively, and $P_{A B}(a, b)$ is the joint probability distribution of images A and B [71].

The rigid transformation model is considered in this study due to its wide applicability. The translations of the x-axis and y-axis are denoted as t_{x} and t_{y}, re-
spectively. The rotation is denoted as θ. Then the rigid transformation model can be formulated as

$$
\left[\begin{array}{l}
x^{\prime} \tag{11}\\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta-\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Images registration based on MI is essentially an

Fig. 3. Remote sensing image pairs. (a) visible-SAR. (b) LiDAR-visible. (c) image-map. (d) infrared-visible.
optimization problem of searching for the optimal parameters t_{x}, t_{y}, and θ. The multi-modal remote sensing images are used to test the algorithms, which are shown in Fig. 3. Four types of multi-modal remote sensing images are selected as experimental sets, including visible-synthetic aperture radar (SAR), light detection and ranging (LiDAR)-visible, image-map,
and infrared-visible.
As shown in Fig. 3, for each image pair, the image on the left is the reference image, and the image on the right is the sensed image. There are obvious intensity, translation and rotation changes between the reference and sensed images. The images are captured by different sensors, from different places, at different time, or

14 X. Yan et al. /An optimizer ensemble algorithm and its application to image registration
Table 6
MI and RMSE comparison of DE, PSO, GSA, EPSDE, and OEA-DPG on image registration problem

Image pair	DE		PSO		GSA		EPSDE		OEA-DPG	
	MI	RMSE								
a	0.1608	2.0244	0.1607	2.0533	0.1591	2.6129	0.1608	1.9678	0.1610	1.6433
b	0.4153	1.4929	0.3963	2.4615	0.4121	1.6200	0.4142	1.5485	0.4153	1.4927
c	0.2274	1.5519	0.2180	2.4443	0.2266	1.5539	0.2273	1.5528	0.2273	1.5525
d	0.2066	1.3480	0.1858	2.0916	0.2048	1.3942	0.2066	1.3477	0.2067	1.3439

from different viewpoints, which can test the efficiency and robustness of the proposed algorithm comprehensively.

The root mean square error (RMSE) of check points is used to evaluate the registration accuracy quantitatively. In general, the check points are determined manually. Specifically, for each image pair, 40-50 evenly distributed check points with subpixel accuracy between the reference and sensed images are selected [72]. The smaller the RMSE, the higher the registration accuracy.

The upper and lower boundaries of the transformation parameters t_{x}, t_{y}, and θ are set to $[-100,-100$, $-100 ; 100,100,100]$. When the value of MI is larger than 0.8 , the image registration is considered to be satisfactory, and hence the iteration is stopped. Since the registration of remote sensing images is very timeconsuming, the algorithms are run once on each image pair. Comparison results of the algorithms on image registration problem are presented in Table 6.
It can be seen from Table 6 that RMSE of CDADPG is smaller than 2 pixels on each image 1 air which demonstrates that OEA-DPG handles tr ars ation and rotation changes well and achieves satisfactory registration. OEA-DPG is superior to ther algorithms on image pairs a, b, and d . This mainly attributed to the fact that OEA-DPG 1 onger global search ability and obtains bettes l:ansformation parameters. However, DE outperfoins OEA-DPG on image pair c. No algorithm outperforms the others on each image pair, which is in accord with NFL theorem. Although OEA-DPG is outperformed, it still obtains competitive results. Thus, OEA-DPG is more suitable for solving real-world optimization problems.

6. Conclusions

An optimizer ensemble where any population-based optimization algorithm can be integrated is proposed in this study. Multiple optimizers share information by exchanging individuals with the learning table. Each optimizer exchanges information in exchange itera-
tions and runs independently in the other iterations. The output is obtained by the voting approach that selects the highest ranked solution. The proposed ensemble benefits from the optimizer ensemble strategies, such as the learning table, the heterogeneous search mechanism, and the voting approach. The high performance of OEA is confirmed oy the empirical results on CEC2013 benchmark an in mege registration problem.

OEA is significantly a:fferent from other optimization algorithms. Otleoptimization algorithms mostly simulate the swarin intelligence behavior or evolutionary process. N - e theless, OEA is inspired by ensemble learning that is a machine learning paradigm. Most hybrid Untimization algorithms combine two or three diffe ent optimizers, while more optimizers can be inte grated into the ensemble in OEA.
Fie important feature that makes OEA unique from other ensembles of algorithms is that OEA can be applied to any population-based optimization algorithm, while other ensembles can only be applied to evolution-based algorithm or swarm-based algorithm. In most ensembles, each optimizer exchanges information in all iterations. However, in OEA, each optimizer exchanges information only in exchange iterations and runs independently in the other iterations. Furthermore, different from the point-point mode of information sharing in other ensembles, the information exchange between the learning table and optimizers is a master-slave mode in OEA.
In the future, the following directions will be investigated:

1) Although OEA performs well in most cases, the performance of OEA algorithm mainly depends on the selected optimizers. When the base optimizers are improperly selected, the performance of OEA is poor. It is suggested that OEA combines optimizers that are distinct and complementary. Future work needs to be done to construct efficient OEA.
2) Since OEA has shown impressive performance in various optimization problems, OEA will be applied to more real-word optimization problems, such as computer aided design (CAD), image segmentation, and video processing [73-79].
3) The optimizer ensemble will benefit from the integration with deep learning methods [80-82]. Trained by the data in the previous iterations, a deep network can generate good solutions for optimizers in the exchange iteration, which is helpful to enhance the performance of OEA. However, training a deep network is usually a very time-consuming process [83-85], which needs to be improved in OEA.
4) Since the proposed ensemble is compatible with any population-based optimization algorithm [86-90], OEA will be applied to multiobjective optimization algorithms. To evaluate each optimizer, a weighted sum fitness function with a different weight vector will be constructed in the ensemble of multi-objective optimization algorithms.

Acknowledgments

This work is supported by the National Key Research and Development Program of China under Grant 2018YFB0505003, and the National Natural Science Foundation of China under Grants 41871368 and 41601352.

References

[1] Palacios J.J., González-Rodríguez I., Vela C … an. ©uente J. Satisfying flexible due dates in fuzzy job s. op y means of hybrid evolutionary algorithms, Integn ite.' Computer-Aided Engineering 26(1) (2019), 65-84
[2] Wang Q., Liu H., Yuan J., and Chen L. Optimizing the energyspectrum efficiency of cellular : vste ns by evolutionary multiobjective algorithm, Integr tea' Computer-Aided Engineering 26(2) (2019), 207-220.
[3] Cui L., Li G., Zhu Z., in 2., Wong K., Chen J., Lu N., and Lu J. Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism, Information Sciences 422 (2018), 122-143.
[4] Holland J.H. Genetic algorithms, Scientific American 267(1) (1992), 66-73.
[5] Eberhart R., and Kennedy J. A new optimizer using particle swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, pp. 3943.
[6] Zhou Y., He F., Hou N., and Qiu Y. Parallel ant colony optimization on multi-core SIMD CPUs, Future Generation Computer Systems 79(2) (2018), 473-487.
[7] Pan L., He C., Tian Y., Su Y., and Zhang X. A region division based diversity maintaining approach for many-objective optimization, Integrated Computer-Aided Engineering 24(3) (2017), 279-296.
[8] Mirjalili S., and Lewis A. The whale optimization algorithm, Advances in Engineering Software 95 (2016), 51-67
[9] Kyriklidis C., and Dounias G. Evolutionary computation for resource leveling optimization in project management, Integrated Computer-Aided Engineering 23(2) (2016), 173-184.
[10] Rostami S., and Neri F. Covariance matrix adaptation pareto archived evolution strategy with hypervolume-sorted adaptive grid algorithm, Integrated Computer-Aided Engineering 23(4) (2016), 313-329.
[11] Mencía R., Sierra M.R., Mencía C., and Varela R. Genetic algorithms for the scheduling problem with arbitrary precedence relations and skilled operators, Integrated ComputerAided Engineering 23(3) (2016), 269-285.
[12] Jia L., Wang Y., and Fan L. Multiobjective bilevel optimization for production-distribution planning problems using hybrid genetic algorithm, Integrated Computer-Aided Engineering 21(1) (2014), 77-90.
[13] Martínez-Ballesteros M., Bacardit J., Troncoso A., anc Riquelme J.C. Enhancing the scalability of a genetic algorithm to discover quantitative association rules in largescale datasets, Integrated C. mputer-Aided Engineering 22(1) (2015), 21-39.
[14] Pillon P., Pedrino E.C. D Jda V.O., and Nicoletti M.C. A hardware oriented ad oc computer-based method for binary structuring ele, ent decomposition based on genetic algorithms, Inte ro ea Computer-Aided Engineering 23(4) (2016), 369-383.
[15] Qin A.n., Juang V.L., and Suganthan P.N. Differential evolut. n algorithm with strategy adaptation for global numerical opt mization, IEEE Transactions on Evolutionary Computaior 13(2) (2009), 398-417.
1] Cheng J., Zhang G., Caraffini F., and Neri F. Multicriteria adaptive differential evolution for global numerical optimization, Integrated Computer-Aided Engineering 22(2) (2015), 103-107.
[17] Montana D.J. Strongly typed genetic programming, Evolutionary Computation 3(2) (1995), 199-230.
[18] Yao X., Liu Y., and Lin G. Evolutionary programming made faster, IEEE Transactions on Evolutionary Computation 3(2) (1999), 82-102.
[19] Alexandridis A., Paizis E., Chondrodima E., and Stogiannos M. A particle swarm optimization approach in printed circuit board thermal design, Integrated Computer-Aided Engineering 24(2) (2017), 143-155.
[20] Boulkaibet I., Mthembu L., De Lima Neto F., and Marwala T. Finite element model updating using fish school search and volitive particle swarm optimization, Integrated ComputerAided Engineering 22(4) (2015), 361-376.
[21] Dorigo M., and Di Caro G. Ant colony optimization: a new meta-heuristic, in: Proceedings of the 1999 Congress on Evolutionary Computation, IEEE, 1999, pp. 1470-1477.
[22] Karaboga D., and Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of Global Optimization 39(3) (2007), 459-471.
[23] Mehrabian A.R., and Lucas C. A novel numerical optimization algorithm inspired from weed colonization, Ecological Informatics 1(4) (2006), 355-366.
[24] Wang G., Deb S., Gandomi A.H., Zhang Z., and Alavi A.H. Chaotic cuckoo search, Soft Computing 20(9) (2016), 33493362.
[25] Pan Q., Sang H., Duan J., and Gao L. An improved fruit fly optimization algorithm for continuous function optimization problems, Knowledge-Based Systems 62 (2014), 69-83.
[26] Siddique N., and Adeli H. Harmony search algorithm and its variants, International Journal of Pattern Recognition and Ar-

16 X. Yan et al. /An optimizer ensemble algorithm and its application to image registration
tificial Intelligence 29(8) (2015), 1539001.
[27] Yang X. A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 65-74.
[28] Iglesias A., Galvez A., and Collantes M. Multilayer embedded bat algorithm for B-spline curve reconstruction, Integrated Computer-Aided Engineering 24(4) (2017), 385-399.
[29] Rashedi E., Nezamabadi-Pour H., and Saryazdi S. GSA: a gravitational search algorithm, Information Sciences 179(13) (2009), 2232-2248.
[30] Kaveh A., and Khayatazad M. A new meta-heuristic method: ray optimization, Computers \& Structures 112 (2012), 283294.
[31] Hatamlou A. Black hole: a new heuristic optimization approach for data clustering, Information Sciences 222 (2013), 175-184.
[32] Kaveh A., and Talatahari S. A novel heuristic optimization method: charged system search, Acta Mechanica 213(3) (2010), 267-289.
[33] Siddique N., and Adeli H. Spiral dynamics algorithm, International Journal on Artificial Intelligence Tools 23(6) (2014), 1430001.
[34] Siddique N., and Adeli H. Water drop algorithms, International Journal on Artificial Intelligence Tools 23(6) (2014), 1430002.
[35] Alatas B. ACROA: artificial chemical reaction optimization algorithm for global optimization, Expert Systems with Applications 38(10) (2011), 13170-13180.
[36] Wolpert D.H., and Macready W.G. No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1(1) (1997), 67-82.
[37] Caraffini F., Neri F., and Epitropakis M. HyperSPAM: a stut̂v on hyper-heuristic coordination strategies in the continu us domain, Information Sciences 477 (2019), 186-202.
[38] Liu Y., and Yao X. Ensemble learning via negative d ar ati n, Neural Networks 12(10) (1999), 1399-1404.
[39] Fernández A., Carmona C.J., José del Jesus M., and Herrera F. A pareto-based ensemble with feature an 1 nitance selection for learning from multi-class imbala ed uatasets, International Journal of Neural Systems 2, (6) (2017), 1750028, PMID: 28633551.
[40] Dietterich T.G. Ensemble m thoas in machine learning, in: Multiple Classifier Syst ra, ${ }_{r}$ r inger Berlin Heidelberg, Berlin, Heidelberg, 2000 p̂ 1-15.
[41] G D.T. Machine-learning r search, AI Magazine 18(4) (1997), 97-106.
[42] Yan X., He F., and Chen Y. A novel hardware/software partitioning method based on position disturbed particle swarm optimization with invasive weed optimization, Journal of Computer Science and Technology 32(2) (2017), 340-355.
[43] Li H., He F., and Yan X. IBEA-SVM: an indicator-based evolutionary algorithm based on pre-selection with classification guided by SVM, Applied Mathematics-A Journal of Chinese Universities 34(1) (2019), 1-26.
[44] Deng L., Lu G., Shao Y., Fei M., and Hu H. A novel camera calibration technique based on differential evolution particle swarm optimization algorithm, Neurocomputing 174 (2016), 456-465.
[45] Yan X., He F., Hou N., and Ai H. An efficient particle swarm optimization for large-scale hardware/software co-design system, International Journal of Cooperative Information Systems 27(1) (2018), 1741001.
[46] Neri F., and Cotta C. Memetic algorithms and memetic computing optimization: a literature review, Swarm and Evolutionary Computation 2 (2012), 1-14.
[47] Ouyang Y., and Yin H. Multi-step time series forecasting with an ensemble of varied length mixture models, International Journal of Neural Systems 28(4) (2018), 1750053, PMID: 29297261.
[48] Mencía C., Sierra M.R., Mencía R., and Varela R. Evolutionary one-machine scheduling in the context of electric vehicles charging, Integrated Computer-Aided Engineering 26(1) (2019), 49-63.
[49] Caraffini F., Neri F., and Picinali L. An analysis on separability for Memetic Computing automatic design, Information Sciences 265 (2014), 1-22.
[50] Mallipeddi R., Mallipeddi S., and Suganthan P.N. Ensemble strategies with adaptive evolutionary programming, Information Sciences 180(9) (2010), 1571-1581.
[51] Wang Y., and Li B. Two-staco based ensemble optimization for large-scale global opti ization, in: IEEE Congress on Evolutionary Computat on, 2010, pp. 1-8.
[52] Qu B.Y., and Suganth. n TN. Constrained multi-objective optimization algoritl m itn an ensemble of constraint handling methods, Engin erino Optimization 43(4) (2011), 403-416.
[53] Zhao S., Sag.ntian P.N., and Zhang Q. Decompositionbased mu tic nis tive evolutionary algorithm with an ensemble of nu: borhood sizes, IEEE Transactions on Evolutionar Computation 16(3) (2012), 442-446.
[54] ru E.L., and Suganthan P.N. Ensemble of niching algorithms, 'nfrrmation Sciences 180 (2010), 2815-2833.
[57] [asgetiren M.F., Suganthan P.N., and Pan Q. An ensemble of discrete differential evolution algorithms for solving the generalized traveling salesman problem, Applied Mathematics and Computation 215(9) (2010), 3356-3368.
[56] Mallipeddi R., and Suganthan P. Differential evolution algorithm with ensemble of populations for global numerical optimization, Opsearch 46(2) (2009), 184-213.
[57] Mallipeddi R., and Suganthan P.N. Ensemble differential evolution algorithm for CEC2011 problems, in: 2011 IEEE Congress of Evolutionary Computation (CEC), 2011, pp. 1557-1564.
[58] Zhang G., Rong H., Neri F., and Pérez-Jiménez M.J. An optimization spiking neural p system for approximately solving combinatorial optimization problems, International Journal of Neural Systems 24(5) (2014), 1440006, PMID: 24875789.
[59] Iacca G., Caraffini F., and Neri F. Multi-strategy coevolving aging particle optimization, International Journal of Neural Systems 24(1) (2014), 1450008, PMID: 24344695.
[60] Sagi O., and Rokach L. Ensemble learning: a survey, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8(4) (2018), 1249.
[61] Freund Y., and Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences 55(1) (1997), 119-139.
[62] Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants, Machine Learning 36(1) (1999), 105-139.
[63] Breiman L. Bagging predictors, Machine Learning 24(2) (1996), 123-140.
[64] Wang G., Sun J., Ma J., Xu K., and Gu J. Sentiment classification: the contribution of ensemble learning, Decision Support Systems 57 (2014), 77-93.
[65] Zhou Z., Wu J., and Tang W. Ensembling neural networks: many could be better than all, Artificial Intelligence 137 (2002), 239-263.
[66] Gupta A., Ong Y., and Feng L. Multifactorial evolution: toward evolutionary multitasking, IEEE Transactions on Evolutionary Computation 20(3) (2016), 343-357.
[67] Liang J., Qu B., Suganthan P., and Hernández-Díaz A.G. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report 201212 (2013).
[68] Li J., Hu Q., Ai M., and Zhong R. Robust feature matching via support-line voting and affine-invariant ratios, ISPRS Journal of Photogrammetry and Remote Sensing 132 (2017), 61-76.
[69] Li Q., and Ji H. Multimodality image registration using local linear embedding and hybrid entropy, Neurocomputing 111 (2013), 34-42.
[70] Lu W., Chen M., Olivera G.H., Ruchala K.J., and Mackie T.R. Fast free-form deformable registration via calculus of variations, Physics in Medicine and Biology 49(14) (2004), 30673087.
[71] Wachowiak M.P., Smolikova R., Zheng Y., Zurada J.M., and Elmaghraby A.S. An approach to multimodal biomedical image registration utilizing particle swarm optimization, IEEE Transactions on Evolutionary Computation 8(3) (2004), 289301.
[72] Ye Y., Shan J., Bruzzone L., and Shen L. Robust registration of multimodal remote sensing images based on structural similarity, IEEE Transactions on Geoscience and Remote Sensing 55(5) (2017), 2941-2958.
[73] Zhang D., He F., Han S., Zou L., Wu Y., and Chen Y. An efficient approach to directly compute the exact Hausdorff distance for 3D point sets, Integrated Computer Aided Engineering 24(3) (2017), 261-277.
[74] Zhang D., He F., Han S., and Li X. Quantitative optimizatie n of interoperability during feature-based data exchange, $I_{r}(e-$ grated Computer-Aided Engineering 23(1) (2016), 31-
[75] Wu Y., He F., Zhang D., and Li X. Service-orient 1 atu ebased data exchange for cloud-based design and man, facturing, IEEE Transactions on Services Computino 1 (2) (2018), 341-353.
[76] Lv X., He F., Cai W., and Cheng Y. Suprô ting selective undo of string-wise operations for collabor a ive editing systems, Future Generation Computer Syste ns 82 (2018), 41-62.
[77] Lv X., He F., Cheng Y., and 1qi ... A novel CRDT-based synchronization method for al ti.e collaborative CAD Systems, Advanced Engineerin. Injormatics 38 (2018), 381-391.
[78] Yu H., He F., and Pan Y. 4 novel region-based active contour model via local pate. similarity measure for image segmentation, Multimedia Tools and Applications 77(18) (2018), 24097-24119.
[79] Lv X., He F., Cai W., and Cheng Y. An optimized RGA supporting selective undo for collaborative text editing systems, Journal of Parallel and Distributed Computing 132 (2019), 310-330.
[80] Antoniades A., Spyrou L., Martin-Lopez D., Valentin A., Alarcon G., Sanei S., and Took C.C. Deep neural architectures for mapping scalp to intracranial EEG, International Journal of Neural Systems 28(8) (2018), 1850009, PMID: 29631503.
[81] Rafiei M.H., and Adeli H. A novel unsupervised deep learning model for global and local health condition assessment of structures, Engineering Structures 156 (2018), 598-607.
[82] Pan Y., He F., and Yu H. A novel enhanced collaborative autoencoder with knowledge distillation for top-n recommender systems, Neurocomputing 332 (2019), 137-148.
[83] Xue Y., and Li Y. A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects, Computer-Aided Civil and Infrastructure Engineering 33(8) (2018), 638-654.
[84] Gao Y., and Mosalam K.M. Pee ${ }_{\mathrm{p}}$ transfer learning for imagebased structural damag ere ognition, Computer-Aided Civil and Infrastructure Entimeng 33(9) (2018), 748-768.
[85] Vera-Olmos F., P rd E., Melero H., and Malpica N. DeepEye: deep cont lutial network for pupil detection in real environmen s. integrated Computer-Aided Engineering 26(1) (2019), 8.-
[86] Restamı Neri F., and Epitropakis M. Progressive preferen articulation for decision making in multi-objective optimis ation problems, Integrated Computer-Aided Engineering 14.) (2017), 315-335.
[87] Yang Z., Emmerich M., Bäck T., and Kok J. Multi-objective inventory routing with uncertain demand using populationbased metaheuristics, Integrated Computer-Aided Engineering 23(3) (2016), 205-220.
[88] Valenzuela O., Jiang X., Carrillo A., and Rojas I. Multiobjective genetic algorithms to find most relevant volumes of the brain related to alzheimer's disease and mild cognitive impairment, International Journal of Neural Systems 28(9) (2018), 1850022, PMID: 29914313.
[89] Su Y., Wu Y., Ji W., and Shen S. Shape generation of grid structures by inverse hanging method coupled with multiobjective optimization, Computer-Aided Civil and Infrastructure Engineering 33(6) (2018), 498-509.
[90] Liu J., Wang Y., Fan N., Wei S., and Tong W. A convergence-diversity balanced fitness evaluation mechanism for decomposition-based many-objective optimization algorithm, Integrated Computer-Aided Engineering 26(2) (2019), 1-26.

[^0]: *Corresponding author: Fazhi He, School of Computer Science, Wuhan University, Wuhan, Hubei, China. E-mail: fzhe@whu.edu. cn.

