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Abstract. The design of effective optimization algorithms is always a hot research topic. An optimizer ensemble where any
population-based optimization algorithm can be integrated is proposed in this study. First, the optimizer ensemble framework
based on ensemble learning is presented. The learning table consisting of the population members of all optimizers is constructed
to share information. The maximum number of iterations is divided into several exchange iterations. Each optimizer exchanges
individuals with the learning table in exchange iterations and runs independently in the other iterations. Exchange individuals
are generated by a bootstrap sample from the learning table. To maintain a balance between exchange individuals and preserved
individuals, the exchange number of each optimizer is adaptively assigned according to its fitness. The output is obtained by
the voting approach that selects the highest ranked solution. Second, an optimizer ensemble algorithm (OEA) which combines
multiple population-based optimization algorithms is proposed. The computational complexity, convergence, and diversity of
OEA are analyzed. Finally, extensive experiments on benchmark functions demonstrate that OEA outperforms several state-of-
the-art algorithms. OEA is used to search the maximum mutual information in image registration. The high performance of OEA
is further verified by a large number of registration results on real remote sensing images.
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1. Introduction1

The design of effective optimization algorithms is a2

hot topic in the field of scientific research and engi-3

neering applications [1–3]. Many population-based op-4

timization algorithms have been explored to solve op-5

timization problems over the last few decades, such as6

genetic algorithm (GA) [4], particle swarm optimiza-7

tion (PSO) [5], and ant colony optimization (ACO) [6].8

In general, population-based optimization algorithm9

can be divided into three categories: evolution-based10

algorithm, swarm-based algorithm, and physics-based11

algorithm [7,8]. Evolution-based algorithm is inspired12

by the concepts of evolution in nature [9,10]. The13

most famous evolution-based algorithms are GA [11–14

14], differential evolution (DE) [15,16], genetic pro-15

gramming (GP) [17], and evolutionary programing16
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(EP) [18]. Swarm-based algorithm simulates the intel- 17

ligent behavior of biology. The most popular swarm- 18

based algorithms are PSO [19,20], ACO [21], artificial 19

bee colony (ABC) algorithm [22], invasive weed opti- 20

mization (IWO) [23], cuckoo search (CS) [24], fruit fly 21

optimization algorithm (FOA) [25], harmony search 22

algorithm (HSA) [26], and bat algorithm (BA) [27, 23

28]. Physics-based algorithm simulates the physical 24

rules in the universe. The most well-known physics- 25

based algorithms are gravitational search algorithm 26

(GSA) [29], ray optimization (RO) [30], black hole 27

(BH) [31], charged system search (CSS) [32], spiral 28

dynamics algorithm (SpDO) [33], water drop algo- 29

rithm (WDA) [34], and artificial chemical reaction op- 30

timization algorithm (ACROA) [35]. 31

However, according to the no-free-lunch (NFL) the- 32

orem [36], no single algorithm can outperform all 33

others on every optimization problem. Efficiently de- 34

signed algorithms should specifically address the fea- 35

tures of the problems to optimize [37]. This study aims 36

to construct an ensemble of multiple population-based 37
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optimization algorithms, which can address reasonable38

ranges of problem features and adapt to solve a wide39

range of optimization problems.40

Ensemble learning is a machine learning41

paradigm [38]. There are numerous studies for con-42

structing the ensemble which consists of a set of in-43

dividually trained classifiers, such as neural networks44

and decision trees [39]. Researchers have demon-45

strated that ensembles can often perform better than46

any single classifier [40]. The reason is that ensemble47

methods combine multiple models to improve overall48

performance [41].49

Using the combination strategies in ensemble learn-50

ing, this paper proposes an optimizer ensemble where51

any population-based optimization algorithm can be52

integrated. First, the population of an optimizer might53

not provide sufficient information for searching the54

global optimum. The learning table that consists of the55

population members of all optimizers is constructed56

to share information. Second, a single optimizer might57

not be able to solve complex optimization problems.58

The search mechanism simulating the natural phe-59

nomenon might be imperfect, which results in the lo-60

cal optimum entrapment. An optimizer ensemble al-61

gorithm (OEA) that combines different search mecha-62

nisms is presented to compensate for the imperfection.63

Third, the search space of an optimizer might not con-64

tain the global optimum. The maximum number of iter-65

ations is divided into several exchange iterations when66

optimizers exchange individuals with the learning ta-67

ble.68

This paper is organized as follows. Section 2 is de-69

voted to an introduction of related works. In Section 3,70

the optimizer ensemble framework is provided. In Sec-71

tion 4, OEA is introduced. In Section 5, experimental72

results are analyzed. The conclusions and future works73

are presented in Section 6.74

2. Related works75

2.1. Ensemble of algorithms/strategies76

In real-word applications, each problem is charac-77

terized by its features, such as problem dimensionality,78

multi-modality, ill-conditioning, and dynamic behav-79

ior. A single optimizer may easily fall into local optima80

when solving complicated optimization problems [42,81

43]. To solve a wide range of optimization prob-82

lems, researchers have proposed hybrid algorithms83

which combine multiple algorithms/strategies [44,45].84

Memetic computing algorithm is a structure that con- 85

tains a main optimizer and one or more local search al- 86

gorithms [46–48]. In hyper-heuristics and portfolio al- 87

gorithms, a list of multiple optimizers is coordinated 88

by means of a heuristic rule or supervisory/adaptive 89

scheme [49]. 90

In recent years, the ensembles of algorithms/ 91

strategies have been studied. Mallipeddi et al. [50] 92

proposed ensemble strategies with adaptive evolution- 93

ary programming. Wang and Li [51] designed a two- 94

stage based ensemble optimization evolutionary algo- 95

rithm to solve large-scale global optimization prob- 96

lems. Qu and Suganthan [52] constructed an ensemble 97

of constraint handling methods to tackle constrained 98

multi-objective optimization problems. Zhao et al. [53] 99

proposed a decomposition-based multiobjective evolu- 100

tionary algorithm with an ensemble of neighborhood 101

sizes. Yu and Suganthan [54] constructed an ensem- 102

ble of niching algorithms. Tasgetiren et al. [55] con- 103

structed an ensemble of discrete differential evolution 104

algorithms. Mallipeddi and Suganthan [56] presented a 105

differential evolution algorithm with ensemble of pop- 106

ulation members. Mallipeddi and Suganthan proposed 107

a DE with an ensemble of mutation and crossover 108

strategies and their associated control parameters [57]. 109

Zhang et al. [58] proposed a novel way to design a 110

P system for directly obtaining the approximate so- 111

lutions of combinatorial optimization problems. Iacca 112

et al. [59] presented a novel population-based algo- 113

rithm combining two components with complemen- 114

tary algorithm logics. These ensembles mostly con- 115

sist of multiple evolution-based algorithms. More al- 116

gorithms/strategies cannot be integrated in the ensem- 117

bles. Furthermore, the combination strategies in most 118

ensembles are excessively complex, which results in a 119

significant increase in extra calculation. 120

According to NFL theorem [36], there is no algo- 121

rithm for solving all optimization problems. This is 122

the motivation of this study, in which an ensemble 123

of multiple population-based optimization algorithms 124

is presented to solve a diverse array of optimization 125

problems. To the best of our knowledge, there is no 126

literature which presents the ensemble of population- 127

based optimization algorithms. This study is the first 128

work to construct an optimizer ensemble where any 129

population-based optimization algorithm can be inte- 130

grated. 131

2.2. Ensemble learning 132

Ensemble learning methods train multiple learners 133
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to solve a machine learning task. An ensemble contains134

a lot of learners called base learners. Base learners are135

generated by a base learning algorithm that may be de-136

cision tree or neural network. Ensemble learning meth-137

ods have gained popularity because researchers have138

demonstrated that the prediction performance of the139

ensemble is usually better than that of a single learner140

on a variety of problems.141

Ensemble learning algorithms can generally be di-142

vided into two frameworks: the dependent framework143

and the independent framework. In the dependent144

framework, the output of each learner affects the con-145

struction of the next learner. In the independent frame-146

work, each learner is built independently from other147

learners [60].148

The most influential dependent algorithm for build-149

ing an ensemble is boosting algorithm [61]. Boosting150

algorithm generates a set of learners sequentially [62].151

The later learners focus more on the mistakes of the152

earlier learners. The level of focus is determined by a153

weight that is assigned to each training instance.154

The most well-known independent algorithm is bag-155

ging algorithm [63]. Bagging algorithm adopts boot-156

strap sampling to obtain the data subsets for training157

base learners. Each data subset is used to train a differ-158

ent base learner of the same type [64]. The base learn-159

ers’ combination strategy is majority vote [65].160

In this study, bagging algorithm will be employed to161

combine multiple optimizers in OEA. However, differ-162

ent from bagging algorithm, the type of each base op-163

timizer is different, and the base optimizers are com-164

bined by the highest ranked solution in OEA.165

3. Optimizer ensemble framework166

To construct an ensemble of multiple optimizers, the167

related concepts are defined. A population-based op-168

timization algorithm is an optimizer. The ensemble is169

homogeneous when the type of each base optimizer is170

the same. Otherwise, the ensemble is heterogeneous.171

Without loss of generality, this paper will refer to the172

minimization problem of an objective function, which173

is defined as174

min f(x), x = [x1, x2, . . . , xD]T (1)

where D is the dimension of the search space. In an175

iteration, individuals from other optimizers may have176

unexploited and unexplored positions that can help an177

optimizer to search the global optimum, which leads to178

the scope of individual exchange among optimizers.179

3.1. Exchange iteration 180

The maximum number of iterations maxIter is di- 181

vided into l blocks of iterations; the last of these iter- 182

ations is an exchange iteration when an optimizer ex- 183

changes individuals with the other optimizers. All iter- 184

ations are expressed by 185

iter = [1, 2, . . . , E1, 1, 2, . . . , E2, . . . , El] (2)

where Ei is the ith exchange iteration. The sum of all 186

exchange iterations is equal to the maximum number 187

of iterations maxIter. The relationship between Ei and 188

maxIter is as follows 189

maxIter =
l∑

i=1

Ei (3)

where l is the exchange frequency. Note that the set- 190

ting of l impacts the information exchange and com- 191

putational cost. When l is large, there are lots of ex- 192

change iterations for information sharing. Neverthe- 193

less, the computational cost is high due to the extra cal- 194

culation in exchange iterations. 195

It is worth mentioning that the values of exchange 196

iterations affect information exchange. In early iter- 197

ations, optimizers have not obtained good solutions, 198

which may lead to negative exchange. Meanwhile, the 199

search mechanism of each optimizer may be disturbed 200

when individuals are exchanged too early. In late iter- 201

ations, optimizers may get trapped into local optima, 202

and then the frequent exchange is helpful to avoid the 203

local optimum and premature convergence. Thus, the 204

exchange iterationEi and exchange frequency l are dy- 205

namically adjusted according to the maximum number 206

of iterations maxIter in this study, which is presented 207

in Algorithm 1. 208

Algorithm 1: Calculation of the exchange iteration and ex-
change frequency.

Input: t, the threshold;
maxIter, the maximum number of iterations.

Output: E, the exchange iterations;
l, the exchange frequency.

i = 1;
E1 = maxIter/2;
s = E1;
while Ei > t do

i = i+ 1;
Ei = maxIter/(2× i);
s = s+ Ei;

end
l = i;
El = maxIter − s.

un
co

rre
cte

d p
roo

f v
ers

ion



Galley Proof 22/08/2019; 9:57 File: ica–1-ica190723.tex; BOKCTP/xjm p. 4

4 X. Yan et al. / An optimizer ensemble algorithm and its application to image registration

As shown in Algorithm 1, the first exchange itera-209

tion is maxIter/2. Thus, each optimizer exchanges in-210

dividuals in the late iterations when the iterations are211

equal to or greater than maxIter/2. Since optimizers212

may get trapped into local optima in late iterations, the213

individual exchange can increase the population diver-214

sity and enhance the search ability. It is unnecessary to215

exchange individuals with the learning table when Ei216

is small. As a result, the threshold t is set to ten.217

3.2. Learning table218

In an exchange iteration, multiple optimizers share219

information and knowledge via the learning table220

which consists of the population members of all opti-221

mizers. Suppose that the ensemble consists of m opti-222

mizers. In the ith exchange iterationEi, the population223

of the jth optimizer is Pij , then the learning table Lti224

is defined as225

Lti = [Pi1, Pi2, . . . , Pim]T (4)

In an exchange iteration, each optimizer exchanges226

its individuals with the learning table. The exchange227

number of individuals significantly affects the infor-228

mation communication of each optimizer. To keep the229

convergence and search mechanism, more individuals230

in the population should be preserved. In contrast, to231

enhance the global search ability, an optimizer should232

exchange more individuals with the other optimizers233

that have better individuals. To maintain a balance be-234

tween exchange individuals and preserved individuals,235

the exchange number of each optimizer is adaptively236

assigned according to its fitness.237

Suppose that fi is the best fitness of the ith optimizer238

in an exchange iteration, and N is the population size239

of an optimizer in the ensemble. Note that the popula-240

tion size of each optimizer in the ensemble is the same.241

Since the fitness difference among optimizers is large,242

the best fitness of each optimizer is normalized as243

hi =
fi − fmin

m∑
j=1

(fj − fmin)
(5)

where hi is the normalized value of fi, and fmin is244

the minimum value of f . The optimization problem245

is assumed to be a minimization problem in this pa-246

per. Thus, to obtain more good individuals, the opti-247

mizer with larger fitness should exchange more indi-248

viduals with the learning table. To preserve more good249

individuals, the optimizer with smaller fitness should250

exchange fewer individuals with the learning table.251

Hence, the adaptive exchange number of the ith opti- 252

mizer is expressed by 253

ni = round(cehi) (6)

where e is the natural logarithm base; c is the exchange 254

factor; round(·) is the rounding function. Since the 255

population size of an optimizer is greater than or equal 256

to its exchange number, the exchange factor c should 257

be less than or equal to N/e. To share information suf- 258

ficiently, the exchange factor is set to N/e. The de- 259

nominator in Eq. (5) is zero when the best fitness of 260

each optimizer is the same. In this case, the exchange 261

number of each optimizer is set to round(N/e). 262

3.3. Voting approach 263

Voting approach concerns how the best solutions of 264

all optimizers are used in exchange iterations. In bag- 265

ging algorithm, the combination strategy is a simple 266

majority voting. Every learner has the same weight on 267

the overall decision in majority voting. 268

Since the best fitness of each optimizer is different, 269

the weight should not be the same in the optimizer en- 270

semble. In the optimizer ensemble, the best solutions 271

of all optimizers are sorted by their fitness values, and 272

the highest ranked solution is considered to be the over- 273

all decision. The proposed voting approach can reduce 274

the variance and output the global best solution ob- 275

tained by all optimizers in the worst case. 276

3.4. Multi-optimizer combination 277

In an exchange iteration, a base optimizer in the 278

ensemble interacts with the other optimizers via the 279

learning table. The multi-optimizer combination based 280

on ensemble learning is shown in Fig. 1. 281

It is clearly shown in Fig. 1 that multiple optimiz- 282

ers share information by exchanging individuals with 283

the learning table that consists of the population mem- 284

bers of all optimizers. Each optimizer exchanges indi- 285

viduals with the learning table in exchange iterations 286

and runs independently in the other iterations, which 287

can reduce the computational cost and make the com- 288

bination simple. A new population for each optimizer 289

is composed of a part of the current population and a 290

bootstrap sample from the learning table. The output of 291

all optimizers is obtained by the voting approach that 292

selects the highest ranked solution. 293

As shown in Fig. 1, the best individual of each op- 294

timizer is added to its population after the exchange 295

with the learning table. Thus, the best solution of each 296
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Fig. 1. Multi-optimizer combination in the optimizer ensemble.

optimizer is kept in the exchange iteration, which can297

help to enhance the search ability. Different from the298

crossover operation between two individuals [66], the299

individual exchange with the learning table is a master-300

slave mode that is more suitable for multiple optimiz-301

ers to share information.302

3.5. Ensemble construction303

How to select an appropriate optimizer according304

to the optimization problem is an important step for305

constructing an effective ensemble. It is worthwhile to306

mention that the global search ability of an ensemble307

can be stronger than those of its base optimizers only308

if optimizers in the ensemble are different.309

If all optimizers are identical, when an optimizer310

gets trapped into local optima, it is hard for the other311

optimizers to obtain the global optimum because their312

search mechanisms are identical. Therefore, to en-313

hance the global search ability, the type of each opti-314

mizer is different, and the ensemble is heterogeneous315

in this study.316

In optimization algorithms, the search process is fo-317

cused on a balance between exploration and exploita-318

tion. Hence, it is wise to combine the optimizer that319

is good at exploitation with the optimizer that is good320

at exploration. It is also conducive to select optimiz-321

ers with different categories of population-based opti-322

mization algorithms or optimizers with distinct charac-323

teristics. In summary, to construct an efficient ensem-324

ble, it is a good way to combine optimizers that are325

competitive, distinct, and complementary.326

4. Optimizer ensemble algorithm 327

4.1. OEA 328

In the proposed optimizer ensemble, each optimizer 329

exchanges individuals with the learning table in ex- 330

change iterations. Exchange individuals are generated 331

by a bootstrap sample from the learning table. The 332

exchange number is adaptively assigned to each opti- 333

mizer. Thus, the resulting algorithm is presented in Al- 334

gorithm 2. 335

In OEA, the maximum number of iterations is di- 336

vided into l exchange iterations. First,m optimizers are 337

initialized by a set of random solutions. Second, each 338

optimizer runs independently when the current itera- 339

tion is less than the exchange iteration. Each optimizer 340

exchanges individuals with the learning table when the 341

current iteration is equal to the exchange iteration. The 342

exchange number ni is adaptively assigned according 343

to Eq. (6). The population of the ith optimizer in the 344

exchange iteration is its initial population in the next 345

iteration. Finally, the best fitness g and its correspond- 346

ing position gx obtained by m optimizers are updated 347

according to f and fx. The best solution obtained by 348

all optimizers is the overall output of OEA. 349

The ensemble strategy in OEA differs from bagging 350

algorithm. In bagging algorithm, a bootstrap sample 351

with a fixed number is generated from the training set, 352

and base learners are combined by majority voting. 353

Nevertheless, in OEA, a bootstrap sample with adap- 354

tive number is generated from the learning table, and 355
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Algorithm 2: The pseudo-code of OEA.

Input: E, the exchange iterations;
D, the dimension of the search space;
N , the population size of an optimizer;
l, the exchange frequency;
m, the number of optimizers.

Output: The best fitness g and its corresponding position gx
obtained by m optimizers.

for i = 1 : m do
Randomly generate N individuals to initialize the ith

optimizer;
end
for k = 1 : l do

for i = 1 : m do
for j = 1 : Ek − 1 do

The ith optimizer runs independently in the jth
iteration;

Compute the fitness of each individual in the
population;

Update the best fitness fi and its corresponding
position fxi of the ith optimizer;

end
end
for i = 1 : m do

Normalize the best fitness fi using Eq. (5);
Compute the exchange number ni using Eq. (6);
The ith optimizer exchanges ni individuals with the

learning table;
end
Update the best fitness g and its corresponding position
gx obtained by m optimizers;

end

base optimizers are combined by the highest ranked so-356

lution. Moreover, the type of each base learner is usu-357

ally the same in bagging algorithm, while the ensemble358

is heterogeneous in OEA.359

4.2. Computational complexity360

It is difficult to solve large-scale optimization prob-361

lems when the computational cost of an algorithm is362

too high. The computational complexity of OEA can363

be defined based on its implementation in Algorithm 2.364

In OEA, the population size of an optimizer is N ,365

and the dimension of the search space is D. It takes366

O(N × D) time to run an optimizer independently367

in an iteration. In an exchange iteration, the calcula-368

tion of the exchange number can be implemented in369

O(N ×D) time. Hence, the computational complexity370

of m optimizers in each iteration is O(m × N × D).371

According to Eq. (3), the sum of all exchange itera-372

tions is equal to the maximum number of iterations373

maxIter. In other words, there are maxIter iterations374

in OEA. Therefore, the computational complexity of375

OEA is O(maxIter ×m ×N ×D), which is equal to376

that of an optimizer with the population size ofm×N .377

4.3. Convergence and diversity 378

The convergence and diversity of OEA are enhanced 379

by the following strategies: 380

1) The learning table consists of the population 381

members of all optimizers. Each optimizer ex- 382

changes individuals with the learning table. Thus, 383

OEA can decrease the risk of local optimum en- 384

trapment and premature convergence by sharing 385

information among all optimizers. 386

2) The exchange number of each optimizer is adap- 387

tively assigned according to its fitness. The weak 388

optimizer exchanges more individuals with the 389

learning table, which can take more good so- 390

lutions from the other optimizers. The strong 391

optimizer exchanges fewer individuals with the 392

learning table, which can preserve more good 393

solutions. The adaptive exchange number can 394

maintain a balance between exploration and ex- 395

ploitation. 396

3) Exchange individuals of each optimizer are se- 397

lected randomly with replacement from the learn- 398

ing table. Hence, the diversity of exchange in- 399

dividuals is increased by injecting randomness. 400

Heterogeneous search mechanisms can produce 401

good solutions and various population members, 402

which is beneficial for the local optimum avoid- 403

ance and population diversity. 404

4) The voting approach that selects the highest 405

ranked solution can reduce the risk of selecting 406

the local optimum and enhance the search abil- 407

ity. The ensemble can output the best solution 408

obtained by all optimizers in the worst situation. 409

5. Experiment 410

To construct an efficient ensemble, it is conducive to 411

select optimizers with different categories of 412

population-based optimization algorithms. DE, PSO, 413

and GSA belong to evolution-based algorithm, swarm- 414

based algorithm, and physics-based algorithm, respec- 415

tively. Thus, DE, PSO, and GSA are employed in 416

OEA (OEA-DPG). The algorithms have been tested on 417

CEC2013 benchmark and image registration problem. 418

The detailed description of CEC 2013 can be found 419

in [67]. 420

The experimental analysis has been structured as 421

follows. First, OEA-DPG is compared with its base op- 422

timizers and EPSDE, which is a DE with an ensem- 423

ble of mutation and crossover strategies and their as- 424
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sociated control parameters [57]. The exploitation and425

exploration abilities of OEA are analyzed. Second, the426

runtime of OEA-DPG is compared with that of its base427

optimizers. Third, to investigate the construction of an428

efficient OEA, different ensemble strategies are com-429

pared. Finally, to further analyze the performance of430

OEA, the algorithm is applied to image registration431

problem which is a real-world application.432

5.1. Experimental setup433

In this study, the population size of each algorithm434

is 150. For the sake of fair comparisons, the population435

size of each algorithm is the same. Hence, the popu-436

lation size of each optimizer in two-optimizer ensem-437

ble is 75, and the population size of each optimizer in438

three-optimizer ensemble is 50. The maximum num-439

ber of iterations of each algorithm is 1000. The stop-440

ping criteria used for terminating iterations is to stop441

iterating when the maximum number is reached. If the442

global best solution is not improved in 50 iterations,443

then the iteration is stopped as well. According to Al-444

gorithm 1, the exchange iterations are set to [500, 250,445

125, 63, 32, 16, 14].446

In PSO, the learning factors are 2, and the inertial447

weight is decreased linearly from 0.9 to 0.2 over itera-448

tions. In DE, the crossover rate is 0.9, and the mutation449

factor is 0.5. The mutation strategy is DE/rand/1. The450

parameters of GSA and EPSDE are set according to451

their original literature [29,57], respectively. All exper-452

iments are executed on an Intel(R) Core(TM) i7-8700453

@3.2 GHz CPU with 8 GB memory. The algorithms454

are written in Matlab R2018a.455

Without loss of generality, all of the algorithms are456

run 30 times on each function. The average fitness457

value (AVE) and standard deviation (STD) over the 30458

available runs are compared. Moreover, for each func-459

tion, a statistical pair-wise comparison has been per-460

formed by applying the Wilcoxon rank-sum test at the461

5% significant level. In all the result tables reported in462

this study, the symbols of “+”, “=” and “−” respec-463

tively represent that the performance of OEA-DPG is464

better than, similar to and worse than that of the cor-465

responding algorithm. For each function, the first two466

decimal places are considered, and the best average fit-467

ness value is marked in bold.468

5.2. Comparison with popular optimizers469

There are 28 benchmark functions in CEC2013470

testbed, and the search range is [−100, 100]. These471

functions are divided into three groups: unimodal func- 472

tions (F1-F5), multi-modal functions (F6-F20), and 473

composite functions (F21-F28). The unimodal func- 474

tion has only one global optimum, which makes it use- 475

ful for evaluating the exploitation ability. In contrast, 476

the multi-modal function has multiple local optima, 477

which makes it suitable for evaluating the exploration 478

capability. The composite function combines multiple 479

functions into a complex landscape, which can assess 480

the performance of optimization algorithms from dif- 481

ferent perspectives. 482

To analyze the exploitation and exploration abilities 483

of OEA, OEA-DPG is compared with its base optimiz- 484

ers and the ensemble algorithm EPSDE. Tables 1–3 485

display the comparison results on CEC2013 testbed in 486

10, 30, and 50 dimensions, respectively. In each table, 487

the average, standard deviation, and Wilcoxon rank- 488

sum test obtained by DE, PSO, GSA, EPSDE, and 489

OEA-DPG are compared. 490

It can be seen from Tables 1–3 that OEA-DPG out- 491

performs the other optimizers on most functions, es- 492

pecially on the composite functions which are more 493

challenging. Although OEA-DPG has not obtained the 494

best solution on some functions, OEA-DPG provides 495

the good solution that is competitive. The reason is that 496

OEA-DPG can make use of multiple search mecha- 497

nisms. 498

Numerical results show that DE obtains good solu- 499

tions on the majority of the unimodal functions, and 500

PSO and GSA perform well on the multi-modal func- 501

tions. Hence, the exploitation ability of DE is strong, 502

and the exploration abilities of PSO and GSA are 503

strong. OEA-DPG can take advantage of the algo- 504

rithms whose search mechanisms are distinct and com- 505

plementary, and hence OEA-DPG performs better on 506

most functions. 507

By employing Wilcoxon’s rank-sum test to analyze 508

the experimental results, some findings are given as 509

follows. OEA-DPG is better than DE, PSO, GSA and 510

EPSDE on 17, 21, 24 and 17 functions in the case of 511

D = 10, 22, 18, 24 and 24 functions in the case of 512

D = 30, and 24, 18, 25 and 19 functions in the case 513

of D = 50. In contrast, OEA-DPG is only worse than 514

DE, PSO, GSA and EPSDE on 3, 0, 1 and 3 function(s) 515

when D = 10, 2, 4, 2 and 2 functions when D = 516

30, and 1, 5, 2 and 5 functions when D = 50. Thus, 517

the superiority of OEA-DPG is statistically significant, 518

which confirms that the proposed ensemble framework 519

is indeed effective. 520
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5.3. Runtime521

To analyze the computational cost, the runtime of522

OEA-DPG is compared with that of its base optimiz-523

ers. The difference of runtime among the algorithms524

is similar in 10, 30, and 50 dimensions on CEC2013.525

Due to the page limit, the results in 30 dimensions are526

selected for comparison. Figure 2 presents the average527

runtime of DE, PSO, GSA, and OEA-DPG. In Fig. 2,528

the horizontal axis represents the function, and the ver-529

tical axis represents the average runtime in seconds.530

As shown in Fig. 2, it is clear that OEA consumes531

more time than its base optimizers due to the extra cal-532

culation in exchange iterations. However, the runtime533

of OEA-DPG is competitive with that of DE, PSO,534

and GSA except for F9, F16, and the composite func-535

tions. The reason is that there are only seven exchange536

iterations for the individual exchange in OEA-DPG.537

Each optimizer runs independently in the other itera-538

tions. The runtime of OEA-DPG is large on the com-539

posite functions due to the large runtime of DE and540

PSO, which demonstrates that the computational cost541

of extra calculation in OEA-DPG is low.542

5.4. Analysis of ensemble strategies543

Several ensemble strategies are designed in OEA to544

promote its performance. To analyze the influence of545

the search mechanism in OEA, this paper compares546

heterogeneous ensembles with homogeneous ensem-547

bles. The ensemble of DE, DE and DE (OEA-DDD),548

the ensemble of PSO, PSO and PSO (OEA-PPP), and549

the ensemble of GSA, GSA and GSA (OEA-GGG) are550

compared with OEA-DPG. The average, standard de-551

viation, and Wilcoxon rank-sum test obtained by OEA-552

DPG and homogeneous ensembles are compared in Ta-553

ble 4. Due to the page limit, the results on CEC2013554

testbed in 30 dimensions are selected for comparison.555

As can be seen from Table 4, OEA-DPG is superior556

to OEA-PPP and OEA-GGG on almost all functions,557

and OEA-DPG is better than or similar to OEA-DDD558

on the majority of functions. OEA-DDD performs well559

on the unimodal functions because of the strong ex-560

ploitation ability of DE. Compared with the base opti-561

mizer in Table 2, the homogeneous ensemble of mul-562

tiple optimizers has not improved the performance ob-563

viously. The reason is that the search mechanisms of564

base optimizers are identical in the homogeneous en-565

semble. Due to the combination of different and com-566

plementary search mechanisms, OEA-DPG is better567

than OEA-DDD, OEA-PPP and OEA-GGG on 13, 24568

and 26 functions, while OEA-DPG is only worse than 569

OEA-DDD, OEA-PPP and OEA-GGG on 11, 2 and 0 570

function(s). 571

In an exchange iteration, the exchange number of 572

each optimizer is adaptively assigned according to its 573

fitness in OEA. To analyze the influence of the adaptive 574

exchange number, OEA-DPG with a fixed exchange 575

number (OEA-DPG-F) is compared. In OEA-DPG-F, 576

the fixed exchange number of exchange individuals is 577

20. Table 5 displays the comparison result of OEA- 578

DPG and OEA-DPG-F on CEC2013 testbed in 30 di- 579

mensions. 580

As can be clearly seen from Table 5 that OEA-DPG 581

is better than OEA-DPG-F on 11 functions, and OEA- 582

DPG is similar to OEA-DPG-F on 17 functions. It is 583

worthwhile to mention that there is no function on 584

which OEA-DPG is worse than OEA-DPG-F. These 585

results are mainly due to the fact that the adaptive ex- 586

change number can maintain a balance between ex- 587

change individuals and preserved individuals. When 588

a fixed exchange number is assigned to each opti- 589

mizer, the weak optimizer cannot exchange more indi- 590

viduals with the other optimizers, and the strong op- 591

timizer cannot preserve more good individuals, which 592

decreases the global search ability. Hence, the perfor- 593

mance of OEA-DPG is higher than or similar to that 594

of OEA-DPG-F on all functions, which conforms the 595

effectiveness of the adaptive exchange number. 596

5.5. Image registration problem 597

To further investigate the performance of OEA, the 598

algorithm is applied to solve image registration prob- 599

lem, which is a fundamental and crucial issue in re- 600

mote sensing image processing [68]. Mutual informa- 601

tion (MI) is a commonly used similarity measure in 602

image registration [69]. The larger the MI, the better 603

the registration [70]. According to the information the- 604

oretic notion of entropy, MI of images A and B can be 605

computed as 606

I(A,B) = H(A) +H(B)−H(A,B) (7)

where H(A) and H(B) are the marginal entropies of 607

images A and B, respectively and H(A,B) is their 608

joint entropy. These can be denoted as 609

H(A) = −
∑
a

PA(a)log2PA(a) (8)

H(B) = −
∑
b

PB(b)log2PB(b) (9)

H(A,B) = −
∑
a,b

PAB(a, b)log2PAB(a, b) (10)
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Table 4
OEA-DPG against OEA-DDD, OEA-PPP, and OEA-GGG on CEC2013 in 30 dimensions

Function OEA-DDD OEA-PPP OEA-GGG OEA-DPG
AVE STD AVE STD AVE STD AVE STD

F1 −1.40E+03 1.53E−12 − −1.40E+03 2.78E−01 + 3.87E+03 1.41E+03 + −1.40E+03 9.79E−12
F2 1.73E+06 9.25E+05 − 2.37E+07 8.54E+06 + 8.54E+07 6.20E+07 + 3.52E+06 2.01E+06
F3 2.17E+06 3.97E+06 − 1.64E+09 1.19E+09 + 4.42E+14 7.18E+14 + 1.46E+07 1.56E+07
F4 1.84E+04 4.01E+03 − 7.63E+04 2.26E+04 + 6.07E+04 6.65E+03 + 2.34E+04 6.03E+03
F5 −1.00E+03 1.70E−08 − −9.99E+02 6.58E−01 + 3.66E+02 4.35E+02 + −1.00E+03 5.69E−05
F6 −8.81E+02 4.68E+00 − −8.72E+02 2.09E+00 + 8.99E+01 3.23E+02 + −8.78E+02 4.46E+00
F7 −7.96E+02 2.57E+00 − −7.21E+02 2.27E+01 + 2.71E+04 3.17E+04 + −7.86E+02 9.75E+00
F8 −6.79E+02 4.64E−02 = −6.79E+02 5.41E−02 + −6.79E+02 6.95E−02 + −6.79E+02 5.71E−02
F9 −5.64E+02 6.61E+00 + −5.76E+02 3.47E+00 = −5.59E+02 2.83E+00 + −5.77E+02 5.46E+00
F10 −5.00E+02 2.46E−02 − −4.73E+02 1.35E+01 + 6.74E+02 3.53E+02 + −5.00E+02 3.41E−01
F11 −2.92E+02 1.74E+01 + −3.53E+02 9.75E+00 + 3.49E+01 6.66E+01 + −3.79E+02 1.14E+01
F12 −1.18E+02 1.33E+01 + −1.93E+02 2.98E+01 + 3.19E+02 9.08E+01 + −2.63E+02 2.38E+01
F13 −7.64E+00 9.85E+00 + −1.35E+00 3.46E+01 + 4.92E+02 7.75E+01 + −1.20E+02 3.57E+01
F14 4.21E+03 4.93E+02 + 1.75E+03 4.33E+02 − 3.77E+03 5.20E+02 + 2.16E+03 4.58E+02
F15 7.60E+03 2.41E+02 + 5.58E+03 1.18E+03 + 4.72E+03 6.89E+02 = 4.38E+03 5.47E+02
F16 2.03E+02 4.03E−01 + 2.03E+02 8.39E−01 + 2.04E+02 7.23E−01 + 2.00E+02 5.11E−02
F17 4.46E+02 1.28E+01 + 4.42E+02 2.14E+01 + 7.16E+02 6.77E+01 + 3.45E+02 4.31E+00
F18 6.15E+02 1.54E+01 + 6.86E+02 3.68E+01 + 8.91E+02 4.85E+01 + 4.72E+02 1.44E+01
F19 5.14E+02 1.43E+00 + 5.09E+02 2.76E+00 + 4.22E+03 3.36E+03 + 5.05E+02 1.69E+00
F20 6.13E+02 2.81E−01 + 6.13E+02 4.45E−01 + 6.15E+02 1.09E−01 + 6.12E+02 4.85E−01
F21 9.47E+02 5.07E+01 − 1.01E+03 9.69E+01 + 2.30E+03 2.19E+02 + 9.76E+02 6.55E+01
F22 5.37E+03 5.08E+02 + 2.86E+03 4.90E+02 = 6.64E+03 8.96E+02 + 2.84E+03 4.06E+02
F23 8.42E+03 3.16E+02 + 6.80E+03 9.54E+02 − 7.80E+03 4.28E+02 = 7.50E+03 5.89E+02
F24 1.21E+03 9.63E+00 − 1.26E+03 8.66E+00 + 1.50E+03 9.05E+01 + 1.23E+03 1.25E+01
F25 1.35E+03 7.11E+00 = 1.36E+03 7.68E+00 + 1.54E+03 1.73E+01 + 1.35E+03 7.15E+00
F26 1.42E+03 4.71E+01 − 1.51E+03 7.35E+01 + 1.62E+03 7.21E+01 + 1.44E+03 6.18E+01
F27 1.92E+03 1.18E+02 = 2.19E+03 9.76E+01 + 2.60E+03 8.68E+01 + 1.96E+03 1.43E+02
F28 1.70E+03 4.29E−05 = 1.74E+03 4.24E+01 + 6.25E+03 3.94E+02 + 1.70E+03 2.03E−04

Fig. 2. Runtime comparison of DE, PSO, GSA, and OEA-DPG.

where a ∈ A, b ∈ B, PA(a) and PB(b) are the610

marginal probability distributions of images A and B,611

respectively, and PAB(a, b) is the joint probability dis-612

tribution of images A and B [71].613

The rigid transformation model is considered in this614

study due to its wide applicability. The translations of615

the x-axis and y-axis are denoted as tx and ty , re-616

spectively. The rotation is denoted as θ. Then the rigid 617

transformation model can be formulated as 618x′y′
1

 =

cos θ − sin θ tx
sin θ cos θ ty
0 0 1

xy
1

 (11)

Images registration based on MI is essentially an 619
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Table 5
OEA-DPG against OEA-DPG-F on CEC2013 in 30 dimensions

Function OEA-DPG-F OEA-DPG
AVE STD AVE STD

F1 −1.40E+03 2.27E−11 + −1.40E+03 9.79E−12
F2 3.71E+06 1.49E+06 = 3.52E+06 2.01E+06
F3 1.20E+07 1.69E+07 = 1.46E+07 1.56E+07
F4 2.50E+04 5.84E+03 = 2.34E+04 6.03E+03
F5 −1.00E+03 2.71E−06 = −1.00E+03 5.69E−05
F6 −8.78E+02 4.42E+00 = −8.78E+02 4.46E+00
F7 −7.89E+02 7.68E+00 = −7.86E+02 9.75E+00
F8 −6.79E+02 6.76E−02 + −6.79E+02 5.71E−02
F9 −5.78E+02 5.30E+00 = −5.76E+02 5.46E+00
F10 −5.00E+02 2.73E−01 = −5.00E+02 3.41E−01
F11 −3.63E+02 1.73E+01 + −3.79E+02 1.14E+01
F12 −2.36E+02 2.81E+01 + −2.63E+02 2.38E+01
F13 −9.84E+01 3.57E+01 + −1.20E+02 3.57E+01
F14 2.42E+03 5.45E+02 + 2.16E+03 4.58E+02
F15 4.43E+03 5.44E+02 = 4.38E+03 5.47E+02
F16 2.00E+02 5.87E−02 + 2.00E+02 5.11E−02
F17 3.52E+02 9.47E+00 + 3.45E+02 4.31E+00
F18 4.86E+02 2.45E+01 + 4.72E+02 1.44E+01
F19 5.06E+02 3.26E+00 = 5.05E+02 1.69E+00
F20 6.12E+02 4.94E−01 = 6.12E+02 4.85E−01
F21 1.01E+03 1.02E+02 = 9.76E+02 6.55E+01
F22 3.61E+03 7.61E+02 + 2.98E+03 4.06E+02
F23 7.40E+03 7.06E+02 = 7.50E+03 5.89E+02
F24 1.23E+03 1.11E+01 = 1.23E+03 1.25E+01
F25 1.35E+03 6.62E+00 = 1.35E+03 7.15E+00
F26 1.42E+03 5.10E+01 = 1.44E+03 6.18E+01
F27 1.96E+03 1.72E+02 = 1.96E+03 1.43E+02
F28 1.70E+03 1.82E−03 + 1.70E+03 2.03E−04

Fig. 3. Remote sensing image pairs. (a) visible-SAR. (b) LiDAR-visible. (c) image-map. (d) infrared-visible.

optimization problem of searching for the optimal pa-620

rameters tx, ty , and θ. The multi-modal remote sens-621

ing images are used to test the algorithms, which are622

shown in Fig. 3. Four types of multi-modal remote623

sensing images are selected as experimental sets, in-624

cluding visible-synthetic aperture radar (SAR), light625

detection and ranging (LiDAR)-visible, image-map,626

and infrared-visible. 627

As shown in Fig. 3, for each image pair, the image 628

on the left is the reference image, and the image on the 629

right is the sensed image. There are obvious intensity, 630

translation and rotation changes between the reference 631

and sensed images. The images are captured by differ- 632

ent sensors, from different places, at different time, or 633
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Table 6
MI and RMSE comparison of DE, PSO, GSA, EPSDE, and OEA-DPG on image registration problem

Image pair DE PSO GSA EPSDE OEA-DPG

MI RMSE MI RMSE MI RMSE MI RMSE MI RMSE
a 0.1608 2.0244 0.1607 2.0533 0.1591 2.6129 0.1608 1.9678 0.1610 1.6433
b 0.4153 1.4929 0.3963 2.4615 0.4121 1.6200 0.4142 1.5485 0.4153 1.4927
c 0.2274 1.5519 0.2180 2.4443 0.2266 1.5539 0.2273 1.5528 0.2273 1.5525
d 0.2066 1.3480 0.1858 2.0916 0.2048 1.3942 0.2066 1.3477 0.2067 1.3439

from different viewpoints, which can test the efficiency634

and robustness of the proposed algorithm comprehen-635

sively.636

The root mean square error (RMSE) of check points637

is used to evaluate the registration accuracy quanti-638

tatively. In general, the check points are determined639

manually. Specifically, for each image pair, 40–50640

evenly distributed check points with subpixel accu-641

racy between the reference and sensed images are se-642

lected [72]. The smaller the RMSE, the higher the reg-643

istration accuracy.644

The upper and lower boundaries of the transforma-645

tion parameters tx, ty , and θ are set to [−100, −100,646

−100; 100, 100, 100]. When the value of MI is larger647

than 0.8, the image registration is considered to be648

satisfactory, and hence the iteration is stopped. Since649

the registration of remote sensing images is very time-650

consuming, the algorithms are run once on each image651

pair. Comparison results of the algorithms on image652

registration problem are presented in Table 6.653

It can be seen from Table 6 that RMSE of OEA-654

DPG is smaller than 2 pixels on each image pair, which655

demonstrates that OEA-DPG handles translation and656

rotation changes well and achieves satisfactory regis-657

tration. OEA-DPG is superior to the other algorithms658

on image pairs a, b, and d. This is mainly attributed659

to the fact that OEA-DPG has stronger global search660

ability and obtains better transformation parameters.661

However, DE outperforms OEA-DPG on image pair662

c. No algorithm outperforms the others on each image663

pair, which is in accord with NFL theorem. Although664

OEA-DPG is outperformed, it still obtains competitive665

results. Thus, OEA-DPG is more suitable for solving666

real-world optimization problems.667

6. Conclusions668

An optimizer ensemble where any population-based669

optimization algorithm can be integrated is proposed670

in this study. Multiple optimizers share information by671

exchanging individuals with the learning table. Each672

optimizer exchanges information in exchange itera-673

tions and runs independently in the other iterations. 674

The output is obtained by the voting approach that se- 675

lects the highest ranked solution. The proposed ensem- 676

ble benefits from the optimizer ensemble strategies, 677

such as the learning table, the heterogeneous search 678

mechanism, and the voting approach. The high perfor- 679

mance of OEA is confirmed by the empirical results on 680

CEC2013 benchmark and image registration problem. 681

OEA is significantly different from other optimiza- 682

tion algorithms. Other optimization algorithms mostly 683

simulate the swarm intelligence behavior or evolution- 684

ary process. Nevertheless, OEA is inspired by ensem- 685

ble learning that is a machine learning paradigm. Most 686

hybrid optimization algorithms combine two or three 687

different optimizers, while more optimizers can be in- 688

tegrated into the ensemble in OEA. 689

The important feature that makes OEA unique from 690

other ensembles of algorithms is that OEA can be 691

applied to any population-based optimization algo- 692

rithm, while other ensembles can only be applied to 693

evolution-based algorithm or swarm-based algorithm. 694

In most ensembles, each optimizer exchanges infor- 695

mation in all iterations. However, in OEA, each op- 696

timizer exchanges information only in exchange iter- 697

ations and runs independently in the other iterations. 698

Furthermore, different from the point-point mode of 699

information sharing in other ensembles, the informa- 700

tion exchange between the learning table and optimiz- 701

ers is a master-slave mode in OEA. 702

In the future, the following directions will be inves- 703

tigated: 704

1) Although OEA performs well in most cases, the 705

performance of OEA algorithm mainly depends 706

on the selected optimizers. When the base opti- 707

mizers are improperly selected, the performance 708

of OEA is poor. It is suggested that OEA com- 709

bines optimizers that are distinct and comple- 710

mentary. Future work needs to be done to con- 711

struct efficient OEA. 712

2) Since OEA has shown impressive performance 713

in various optimization problems, OEA will be 714

applied to more real-word optimization prob- 715

lems, such as computer aided design (CAD), im- 716

age segmentation, and video processing [73–79]. 717
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3) The optimizer ensemble will benefit from the in-718

tegration with deep learning methods [80–82].719

Trained by the data in the previous iterations, a720

deep network can generate good solutions for op-721

timizers in the exchange iteration, which is help-722

ful to enhance the performance of OEA. How-723

ever, training a deep network is usually a very724

time-consuming process [83–85], which needs to725

be improved in OEA.726

4) Since the proposed ensemble is compatible727

with any population-based optimization728

algorithm [86–90], OEA will be applied to multi-729

objective optimization algorithms. To evaluate730

each optimizer, a weighted sum fitness function731

with a different weight vector will be constructed732

in the ensemble of multi-objective optimization733

algorithms.734
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