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A novel extended phase correlation algorithm based on
Log-Gabor filtering for multimodal remote sensing image
registration
Xunwei Xiea, Yongjun Zhanga, Xiao Lingb and Xiang Wanga

aSchool of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei Province,
China; bFuture Cities Laboratory, Singapore-ETH Centre, CREATE Tower, Singapore

ABSTRACT
Automatic registration of multimodal remote sensing images, which is
a critical prerequisite in a range of applications (e.g. image fusion,
image mosaic, and image analysis), continues to be a fundamental
and challenging problem. In this paper, we propose a novel extended
phase correlation algorithm based on Log-Gabor filtering (LGEPC) for
the registration of images with nonlinear radiometric differences and
geometric differences (e.g. rotation, scale, and translation). Our algo-
rithm focuses on two problems that the traditional extended phase
correlation algorithms cannot well handle: 1) significant nonlinear
radiometric differences and 2) large-scale differences between image
pairs. After an over-complete multi-scale atlas space of the original
image is built based on the filtered magnitudes obtained by using
Log-Gabor filters with different central frequencies, the phase correla-
tion of the single scale images is extended by LGEPC to atlases phase
correlation, which is conducive to solving the problem of large scale
and rotation differences between the image pairs. Subsequently,
LGEPC eliminates the interface of the significant nonlinear radiometric
differences by superimposing multi-scale geometric structural spectra
and carrying out the phase correlation module, so that the translation
can bewell determined. Our experiments on synthetic images demon-
strated the rationality and effectiveness of LGEPC, and the experiments
on a variety of multimodal images confirmed that LGEPC can ideally
achieve pixel-wise registration accuracy for multimodal image pairs
that conform to the similarity transformation model.
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1. Introduction

The purpose of image registration is essentially to overlap two or more images of the
same scene taken by different sensors, thereby geometrically aligning the reference and
sensed images (Zitova and Flusser 2003; Szeliski 2010). It is a fundamental and crucial
problem in remote sensing analysis tasks, such as change detection, image fusion, and
image mosaic (Wong and Clausi 2007a). And the image registration results will seriously
affect the performance of these follow-up processes.
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Image registration has been widely applied in the fields of remote sensing (Bentoutou
et al. 2005; Dawn, Saxena, and Sharma 2010; C. Chen et al. 2014) mainly using these two
types of methods: feature-based methods (FBMs) and area-based methods (ABMs).

FBMs first extract the salient structural information of the images and detect features like
points, lines, and edges as the matching units. Then, the correspondences with similar local
descriptors are found. In general, the common feature descriptors used in remote sensing
images are Scale Invariant Feature Transform (SIFT) (Lowe 2004) and its various variants
(Sedaghat, Mokhtarzade, and Ebadi 2011; Cai et al. 2013; Dai, Song, and Li 2014) Speed Up
Robust Features (SURF) (Bouchiha and Besbes 2013) and wavelet feature (Wong and Clausi
2010b). For remote sensing image registration with linear radiometric differences, many
related studies have been carried out and certain achievements have been made (Kim and
Im 2003; Wan and Zhang 2017). The common practice is to combine a traditional SIFT
algorithm with the geometric characteristics of the imaging; overcome the influence of big
data and complex scenes on the accuracy of the SIFT matching algorithm; and obtain
numerous corresponding points (Vural, Yardimci, and Temlzel 2009; Xu, Zhang, and Li 2014).
On basis of SIFT, a more uniform and robust SIFT method is proposed by (Sedaghat,
Mokhtarzade, and Ebadi 2011), which can generate a sufficient number of reliable and
uniformly distributed points. Also, an advanced self-similarity descriptor was proposed by
Sedaghat and Ebabi (2015), which can exhibit high discrimination. For the registration tasks
of the images with a large-scale difference, Sun et al. (2014) proposed an efficient SIFT
matching method. However, these methods often suffer from the poor distribution and
number of points in multimodal images (Ghassabi et al. 2013), further affecting the trans-
formation model estimation. The reason for this is that it is difficult to extract highly
repeatable shared features and describe their feature vectors for multimodal images.

On the whole, FBMs show robust geometric registration and low time complexity, but
highly repeatable shared features extraction and description are not easy works for
multimodal images.

ABMs can be subdivided into three categories: mutual information (MI) methods,
correlation-like methods, and Fourier methods (Zitova and Flusser 2003).

The MI methods work directly with image intensities which are not sensitive to local
differences such as inequality grey, geometric distortion, so they are suitable for multimodal
remote sensing image registration (Inglada et al. 2007; Liang et al. 2014; Chen, Arora, and
Varshney 2003; S. Chen et al. 2018; Zhang et al. 2018; Gong et al. 2014). And they can achieve
excellent performance and robustness with only slightly more time expended (Gharbia,
Ahmed, and Hassanien 2015). The basic principle of most of these methods is to solve the
transformation parameters that maximizes the similarity metric of corresponding voxels.
However, some researches show that MI as a similarity measure may not obtain accurate
registration results, while the normalized MI (NMI) may be more robust. In addition, in order
to integrate spatial information, Regional Mutual Information (RMI) calculates joint prob-
ability distribution by eight-adjacent information instead of original grey information (Zhao
et al. 2015), which can be considered a replacement of MI metric in some special cases.
Inspired by RMI, a rotationally invariant regional and mutual information (RIRMI) method is
proposed by (S. Chen et al. 2018), which considers not only spatial information but also the
effect of the local grey variations and rotation changes on computing probability density
function. Their experiments verified that RIRMI was more robust and accurate than the
original MI-based registration methods.
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Correlation-like methods, such as Normalization Cross Correlation (NCC), are early classical
representatives of the ABMs (Gonzalez andWintz 1987), which strive to compute the similarity
metrics of the image windows and thus consider the one with the largest similarity as the
correspondence. However, the traditional correlation-likemethods based on grey information
are not robust to multimodal images and the situations where the regions lack texture.

One common technique of the Fourier methods is phase correlation method (PC)
based on the Fourier shift theorem (Reddy and Chatterji 1996; Chen, Defrise, and
Deconinck 1994). They have advantages in efficiency and are robust to frequency-
dependent noise. The original PC was proposed to match two images with translation
differences (Kuglin and Hines 1975; Foroosh, Zerubia, and Berthod 2002), and some
extended phase correlation (EPC) methods were proposed to solve rotation and scaling
factor (Decastro and Morandi 1987; Reddy and Chatterji 1996; Ge, Lan, and Wang 2014).
As an increase in the radiometric differences between two images can cause a gradual
decrease in the salience of phase correlation, the EPC only can tolerate the inhomoge-
neous illumination difference between the two images. Furthermore, in theory, EPC can
deal with images with any scale differences in a continuous frequency domain. However,
because of the discretization selection of frequency domain in Fourier transform, EPC
also cannot handle the large scale differences between images. Therefore, EPC cannot
realize the theoretical effects in many multimodal image registration tasks. Some
research showed that the results of EPC will not be reliable when the scaling ratio
between two images is more than 1.8 due to the great difficulty in finding the peak in
the phase correlation module (Reddy and Chatterji 1996). In (Tong et al. 2015), a new
EPC registration method in frequency domain was proposed so as to achieve affine
variance using singular value decomposition and unified random sample consensus.
However, they focused not on significant radiometric differences.

Strictly speaking, EPC and its variants belong to the transformation model methods
(TMMs), because they directly yielded the parameters of transformation model other than
the discretely distributed correspondences like Histogram of Orientated Phase Congruency
(HOPC) (Ye et al. 2017). Although some researchers utilize the idea of Fourier methods, their
methods actually belong to NCC-like methods. These methods often use a similarity metric
based on phase congruency other than NCC in the template window, among which
Automatic Registration of Remote-Sensing Images (ARRSI) and HOPC are the representatives
(Wong and Clausi 2007a; Ye and Shen 2016; Ye et al. 2017). These methods and the correla-
tion-like methods can be collectively called spatial domain methods (SDMs). Both ARRSI and
HOPC used a matching progress based on the phase congruency model, and their difference
is that HOPC constructs a more robust descriptor for multimodal images. ARRSI employed
a phase congruency model-based method in the control point detection to address global
and local contrast and illumination conditions that may affect the accuracy of the detected
control points. And ARRSI also used a phase-congruency moment-based patches as local
feature descriptors that are invariant to intensity-mapping conditions during the matching
process. HOPC extracted the highly consistent structural information of the same features in
the images of interest (Anuta 1970) using Log-Gabor (Field 1987; Gabor 1946), utilized these
structural information to calculate phase congruency orientation and further constructed
HOPC descriptor. As HOPC is a feature descriptor that captures the internal structures of
images, it can be used tomatch two images with significant nonlinear radiometric differences
using NCC framework (Ye et al. 2017). The reason for using Log-Gabor is that Gabor filter can
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seize multi-direction and multi-scale local structures with excellent spatial locality and direc-
tional selectivity (Feichtinger and Strohmer 2012), so it is widely used in image edge detection
and visual information comprehension (Kokila and Thangavel 2014; Lee 1996; Serrano et al.
2010). In addition, extracting geometric structures with Log-Gabor showed a better perfor-
mance than other methods, such as contour gradient-basedmethods (Elder and Zucker 1998;
Arbelaez et al. 2011) and wavelet transform-based methods (Kovesi 1999). However, the
prerequisite of using HOPC is that the rotation and scale differences should be first eliminated.
Compared to TMMs, these SDMs need extract interest points as candidate points so as to
utilize the similarity metric like HOPC, and most of their authors do not tell the readers that
what to do if we extract few or no candidate points.

Specifically, ABMs will obtain high registration accuracy, while they also require more
preprocessing, such as eliminating most of rotation or scale differences.

As the traditional EPC cannot well deal with the problems caused by nonlinear
radiometric and large scale differences, we combined the advantages of EPC and Log-
Gabor and proposed a novel extended phase correlation algorithm based on Log-Gabor
filtering (LGEPC) in this paper. The idea is based on the fact that the multi-scale
geometric structural information of image without being affected by the radiometric
differences will be conducive to the phase correlation between images. The proposed
method has the following two contributions:

(1) we use the filtered magnitude images obtained by Log-Gabor filtering with
different central frequencies to construct an over-completed multi-scale atlas
space. Thereby a process of atlases phase correlation is conducted to obtain the
rotation and scale. Specifically, the phase correlation of every magnitude image
pair in the multi-scale atlas spaces between the reference and sensed images is
constructed using the phase correlation method (Kuglin and Hines 1975; Decastro
and Morandi 1987; Reddy and Chatterji 1996). And the scale factor and rotation
angle can be determined by calculating the maximum peak of the atlases phase
correlation. These processes can help solve the large scale difference problems in
the step of solving rotation-scale in EPC module.

(2) we superimpose the filtered structural spectra obtained by Log-Gabor filtering with
different central frequencies together to enhance the overall structural information,
so as to be conducive to eliminate the influence of radiometric differences as
accurately as possible in the step of solving translation in EPC module.

The above two points can effectively improve the applicability and stability of EPC to
a certain extent. And it must be emphasized that LGEPC is an extension of EPC and
essentially also belongs to a TMM method within the scope of ABMs.

2. Methodology

This section describes the process of LGEPC for multimodal remote sensing image
registration. We start by briefly introducing an important module in our method, i.e.
EPC, and then demonstrate how to and why we extract the multi-scale structural
information with a Log-Gabor filter. Some details of LGEPC are thereafter described,
followed by the parameter settings to conclude this section.
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2.1. Extended phase correlation algorithm

The phase correlation image registration is possible to obtain good robustness against
correlated and frequency dependent noise, and it depends on the transformation
property of Fourier transform known as the shift theorem (Sarvaiya, Patnaik, and
Kothari 2012). Given a reference image mðx; yÞ and a sensed image nðx; yÞ, the transla-
tion ðx0; y0Þ differs them as

nðx; yÞ ¼ mðx � x0; y � y0Þ (1)

According to Fourier theorem (Reddy and Chatterji 1996), we can get the following
relationship, as in

Fnð�; ηÞ ¼ Fmð�; ηÞe�i2πð�x0þηy0Þ (2)

where Fmð�; ηÞ and Fnð�; ηÞ represent the Fourier transform of mðx; yÞ and nðx; yÞ; ð�; ηÞ
represents the frequency variables in the frequency domain; i2 ¼ �1.

From Equation (2), the translation will not affect the Fourier magnitude but differ the
phase. The cross-power spectrum of mðx; yÞ and nðx; yÞis calculated by

Cð�; ηÞ ¼ Fmð�; ηÞF�mð�; ηÞ
Fnð�; ηÞF�nð�; ηÞ

e�i2πð�x0þηy0Þ (3)

Taking the inverse Fourier transform of Equation (3), we can get a delta function that is
an impulse, in which the location of non-zero specifies the translation (Reddy and
Chatterji 1996).

The above theorem defines how to compute the translation, while the rotation-scale
can be obtained by Fourier-Mellin transform theorem (Reddy and Chatterji 1996).
Further, if mðx; yÞ and nðx; yÞ are differs by rotation θ, isotropic scale s and transform
t ¼ ðx0; y0Þ, i.e.

nðx; yÞ ¼ Tðθ; s; tÞmðx; yÞ (4)

where Tðθ; s; tÞ represents a rotation-scale-translation transform. Their Fourier transform
Fmð�; ηÞ and Fnð�; ηÞ have the following relationship, i.e.

Fnð�; ηÞj j ¼ s�2 Fmðs�1�cosðθÞ þ s�1ηsinðθÞ;�s�1�sinðθÞ þ s�1ηcosðθÞÞ�� �� (5)

where �j j represents magnitude. From Equation (5), their magnitudes are independent of
translation, so the rotation and scale can be calculated by the magnitudes of the
reference and sensed images.

As the scaling and rotation in the Cartesian domain correspond to pure translation in
log-polar domain, we can utilize the magnitude images of reference and sensed images
in the log-polar space to calculate scale and rotation. The magnitudes Fmp and Fnp of the
reference and sensed images in the log-polar domain, are related by

Fnpðα; ln ρÞ ¼ Fmpðα� θ; ln ρ� ln sÞ (6)

where α, ρ represent the radial distance and angle from the centre in log-polar domain,
respectively.
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Note that Equation (6) and Equation (1) are the same in form, so that θ and s (actually,
ln s) can be calculated by Equations (1)-(3) in log-polar domain using the Fourier trans-
form theorem.

In accordance with the recovered scale factor and rotation, the sensed image is
resampled to eliminate its rotation and scale difference to the reference image, followed
by removing the translations if necessary. However, the difference between ourmethod and
previous ones is that we do not directly use themagnitude spectra of original reference and
sensed images but the magnitude spectra of their multi-scale structural information. Next
section we will elaborate how our method combines the multi-scale structural information
generated by multi-scale Log-Gabor and phase correlation algorithm in detail.

2.2. Multi-scale structural information extraction via Log-Gabor filtering

The Gabor filter is defined as a plane wave constrained by the Gauss envelope function
in the two-dimensional (2D) space domain (Daugman 1985; Lades et al. 1993), as in

g~kð~xÞ ¼
~k
2

δ2
e�0:5δ

�2~k
2
~x2ðei~k~x � e�

δ2
2 Þ (7)

where the first term is the oscillating part of the Gabor kernel function; the second term
is the direct-current (DC) compensation component, which eliminates the influence of
the luminance difference on the kernel function;~x is the 2D plane coordinate;~k controls
the wavelength and direction of the oscillating part; and δ determines the proportion
between the width of the Gaussian and the wavelength. However, when the width of
the Gabor filter reaches a certain value, its response values will be affected by the image
brightness, which is not conducive to the structural information extraction of the same
feature under different radiometric conditions.

On this basis, when compared to the Gabor filter, the Log-Gabor filter introduced by
Field (Field 1987) does not contain the DC compensation component and is more
suitable for dealing with natural images. As the edge structural information independent
of the direction is what we need, the transfer function of the 2D Gabor filter, which is
unaffected by direction in the frequency domain, is what we focus on Sarvaiya, Patnaik,
and Kothari (2012), as in

GðfÞ ¼ e
� ln2ðf=f0Þ

2ln2ðδ=f0Þ or Gð�; ηÞ ¼ e
�ln2ð

ffiffiffiffiffiffiffiffi
�2þη2
p

=f0Þ
2ln2ðδ=f0Þ (8)

where f0 is the centre frequency of the filter; δ is the bandwidth of the filter; �; ηð Þ is the
coordinates in the frequency domain. If δ=f0 is constant, the form of the Gabor filter will
remain the same.

Figure 1 shows the 2D images of Log-Gabor filtering with a different f0 in the
frequency domain and the results obtained by using the Gabor filters to filter the
image shown in Figure 3(a). It is apparent that the lower f0 is, the smaller the range of
the Log-Gabor and the closer it is to the origin in the frequency domain, which is to say
that a lower f0 corresponds to the large scale structural information. On the other hand,
the higher f0 is, the more it corresponds to the medium or small scale structural
information. The enhancement of multi-scale structural information is conducive to
the phase correlation of the images with large scale differences.
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Take the log-polar coordinates ðα; ρÞ back to the Cartesian domain of Equation (8), i.e.
ð�; ηÞ ¼ ðeρcosα; eρcosαÞ, the Log-Gabor has the corresponding transfer function, as in

Glogðα; ρÞ ¼ e
�ðρ�ln f0Þ2

2ln2ðσ=f0Þ (9)

Equation (9) demonstrates that the transfer function of Log-Gabor filter without con-
sidering the direction information in log-polar space is very simple in form, and it is the
extension of 1D Gaussian function in a certain direction of 2D space.

To sum up, the proposed LGEPC method utilizes the Log-Gabor filter to extract the
geometric structural information for the following three reasons.

(1) The Log-Gabor filter does not contain the DC component and is insensitive to the
local radiometric differences, which is more suitable for the identical structural
information extraction in the multimodal images than the algorithms based on
contour gradients.

(2) The Log-Gabor filter is able to extract multi-scale structural information, which can
make a big difference in phase correlation of images with scale differences. We
will discuss it in more detail later in this paper.

(3) In addition, it is easy to achieve the Log-Gabor filter in the log-polar domain
without overburdening the process.

(a) (b) (c)

(d) (e) (f)

Figure 1. 2D images of Log-Gabor with different f0 in the frequency domain and the filtering results
of Figure 3(a). (a)-(c) are the 2D images of Log-Gabor with f0 ¼ 0:333, f0 ¼ 0:158 and f0 ¼ 0:076 in
the frequency domain; (d)-(e) are the corresponding filtered structural information of Figure 3(a).
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2.3. The LGEPC algorithm

There are two main components to estimate the similarity transformation model in this
paper, which is discussed below: 1) solving the rotation and scale differences and 2)
solving the translation differences between the reference image and the sensed image.
Also, the workflow of LGEPC is shown in Figure 5, in which only some of the key steps
are described because some steps of LGEPC are similar to those of the traditional EPC.

2.3.1. Solving rotation and scale differences
Similar to the traditional EPC, LGEPC obtains the magnitude spectra of the reference
image and sensed image in the log-polar domain via a series of transformations (i.e. the
Fourier transform and the Log-Polar transform), which are shown in part one of Figure 2.
Given a reference image Irðx; yÞ and a sensed image Isðx; yÞ, they are both transformed
by Fourier transform and Log-Polar transform:

Fpi ð�; ηÞ ¼ TlogðFFTðIiðx; yÞÞÞ; i ¼ r; s (10)

where FFTð�Þ represents Fourier transform; Tlogð�Þ represents Log-Polar transform; ð�Þp
represents the component in the log-polar domain; i ¼ r and i ¼ s represent reference
image and sensed image, respectively. Fpi

�� �� represents the magnitude of reference image
or sensed image in the log-polar domain.

(1) Log-Gabor filtering with multi-scale

This step aims to build the multi-scale filtered atlases of the reference and sensed
images with their magnitudes filtered by the Log-Gabor filter with different central

Figure 2. Flowchart of LGEPC. Inputs: reference image and sensed image. Outputs: similarity
transformation model parameters (e.g. rotation, scale, translation). The red dotted rectangle areas
represent the specific parts of LGEPC.
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frequencies. Due to the scale difference between the two images reaches a certain value,
the phase correlation will fail to solve the scaling ratio. Therefore, we use the atlases
phase correlation algorithm to eliminate the scale differences, especially large scale
differences, so as to overcome this problem.

Three kinds of Log-Gabor filters with different central frequencies (i.e. fmin, fmid and
fmax) are used to filter the magnitudes of the reference and sensed images in the log-
polar domain using Equation (11),

AðjÞi ð�; ηÞ ¼ Fpi ð�; ηÞ
�� �� � Gjð�; ηÞ; j ¼ 1; 2; 3; i ¼ r; s (11)

where AðjÞi ð�; ηÞ represents the Log-Gabor filtered result of the magnitude of the refer-
ence image or sensed image; Gjð�; ηÞ represents Log-Gabor filter, whose form is as
Equation (9); j ¼ 1; 2; 3 represents the Log-Gabor filters with fmin, fmid and fmax.

From (11), we obtain three filtered magnitude images corresponding to the reference
image and sensed image, respectively, whose properties are summarized in Table 1.

(a) (b)

(c) (d)

Figure 3. Data sets of test 1 and test 2. (a) test1-reference image (Chinese ZY-3 satellite image). (b)
test1-sensed image. (c) test2-reference image (low-altitude visible spectral). (d) test2-sensed image.
The original images are scaled for better visualization.
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Note that the filtered magnitude images AðjÞi can reflect the structural information at
different levels and there is nearly no overlapping information between them.

Subsequently, we respectively utilize the filtered magnitude images of the reference
image and sensed image to construct their multi-scale atlas spaces, so as to facilitate
phase correlation between every image pair. The basic principle of multi-scale atlas
space is that the upper structural information in the multi-scale atlas space will be
completely contained in the next layer, which is much similar to an image pyramid. That
is to say, the multi-scale atlas space belongs to an over-complete scale space. Here,
a mathematical formula is used to express the relationship between the multi-scale atlas
space Si ¼ Sti ; S

m
i ; S

b
i

� �
and the corresponding magnitude images AðjÞi as follows:

Sti ¼ Að1Þi

Smi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAð1Þi Þ

2 þ ðAð2Þi Þ
2

q

Sbi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAð1Þi Þ

2 þ ðAð2Þi Þ
2 þ ðAð3Þi Þ

2
q

; i ¼ r; s

8>>><
>>>:

(12)

where Sti contains only the large scale structural information and Smi contains the large

and medium scale structural information, and yet Sbi contains all the structural informa-
tion. The multi-scale atlas space constructed according to Equation (12) is only formally
similar to the image pyramid.

Because the multi-scale atlas space is based on the magnitude of the signal, it is
constructed by using the root of the sum of squared magnitudes in Equation (12).

(2) Atlases phase correlation

After the Log-Gabor filtering with multiple central frequencies is conducted, we build
the multi-scale atlas space Sr of the reference image and the multi-scale atlas space Ss of
the sensed image. This step aims to conduct phase correlation between each image pair
in their multi-scale atlas spaces, and then obtain the image pair corresponding to the
maximum response peak of atlases phase correlation so as to obtain the rotation and
scaling parameters. The special process to realize that is as follows.

First, the phase correlation between each image pair in their multi-scale atlas spaces
is carried out to solve rotation and scale using EPC module as shown in Equations (1–6),
and this process can be simplified as:

Tsoði; jÞ  SrðiÞ � SsðjÞ; i; j ¼ N (13)

where � represents the phase correlation operation using the EPC; N represents the
layer number of the multi-scale atlas space, and it is fixed as three in this paper; and
Tsoði; jÞ represents the rotation-scale transformation model of image pair ði; jÞ.

Table 1. The properties of the multi-scale filtered magnitude images.
Filtered magnitude image Log-Gabor filter structural information

Að1Þr ; Að1Þs low central frequency fmin large scale

Að2Þr ; Að2Þs medium central frequency fmid medium scale

Að3Þr ; Að3Þs high central frequency fmax small scale

10 X. XIE ET AL.



In this process, the reliability of phase correlation results must be tested (Reddy and
Chatterji 1996). There are two key thresholds in this step: response intensity tmag, and
the ratio tratio of the sub-maximum response peak and the maximum response peak. The
maximum response peak calculated in the EPC module directly reflects the strength of
phase correlation between each image pair. If the maximum response peak is less than
some given threshold tmag, we consider that phase correlation failure may occur.
Besides, if the ratio of the sub-maximum response peak and the maximum response
peak is greater than tratio, we believe that the correlation between the two images is not
significant enough and also determine that phase correlation failure occurs. We record
every rotation-scale transformation model Tsoði; jÞ and the maximum response peak
Peakði; jÞ after the EPC module is carried out.

Second, the maximum among IEOP A 1574745 can be obtained, and its correspond-
ing rotation-scale transformation model Tso is what we want.

2.3.2. Solving translation differences
First, we rectify the sensed image via bilinear interpolation to eliminate its rotation and
scale differences to the reference image according to rotation-scale transformation
model Tso obtained in part one of Figure 2:

Irecs ðx; yÞ ¼ Tso � Isðx; yÞ (14)

where Irecs ðx; yÞ and Isðx; yÞ represent the rectified sensed image and the sensed image,
respectively.

Then, we obtain the spectra of the reference image and the rectified sensed image
via the Fourier transform, followed by filtering their spectra to obtain the structural
spectra using the Log-Gabor filters with different central frequencies as Equation (15):

FðjÞyi ð�; ηÞ ¼ GjðFið�; ηÞÞ; j ¼ 1; 2; 3; i ¼ r; rec (15)

where Fið�; ηÞ represents the Fourier transform result of the image; FðjÞyi ð�; ηÞ represents
the filtered result in the frequency domain; Gjð�Þ represents the Log-Gabor filtering
operation in frequency domain; j ¼ 1; 2; 3 represents the Log-Gabor filters with fmin, fmid

and fmax; i ¼ r; rec represents the reference image and the rectified sensed image. It is
noted that the purpose of Log-Gabor filtering with multiple central frequencies in this
step is to extract as much of the structural information as possible so as to eliminate the
interference of radiometric differences. Therefore, unlike part one in Figure 2, the multi-
scale atlas space is not needed to deal with the scale differences.

Thereafter, the three filtered structural spectrum images obtained by the Log-Gabor
filters with different central frequencies are simply superimposed together to obtain the
final structural spectrum as follows:

F0 ið�; ηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Fð1Þyi ð�; ηÞ�

2
þ ½Fð2Þyi ð�; ηÞ�

2
þ ½Fð3Þyi ð�; ηÞ�

2
r

; i ¼ r; rec (16)

where F0ið�; ηÞ is the overall superimposed structural spectrum.
In addition, in order to directly implement EPC module, we apply the inverse Fourier

transform to get the corresponding filtered result of the Log-Gabor wavelet in the spatial
domain:
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Iout0i ¼ IFFTðF0 ið�; ηÞÞ; i ¼ r; rec (17)

where Iout0i represents the corresponding filtered result of the Log-Gabor in the spatial
domain, and IFFT represents the inverse Fourier transform.

Finally, we implement the phase correlation to solve translation as shown in
Equations (1–3), and obtain the maximum response peak in an impulse, whose coordi-
nates specify the translation between the reference image and the rectified sensed
image. In accordance with the above process, the rotation, scale, and translation
between the reference image and the sensed image can be obtained.

In order to facilitate the display in Figure 2, here we rectify the sensed image to
eliminate its geometric difference to the reference image. However, it is actually neces-
sary to decide whether to down-sample the large-scale image or up-sample the small-
scale image according to the actual scale parameters.

2.4. Parameter settings

In order to build the multi-scale atlas space, there are three parameters in the LGEPC:
δ=f0, N and f0 ið Þ in the Log-Gabor filter. Parameter δ=f0 is the ratio of the bandwidth and
the central frequency of the filter. Parameter N is the number of layers of the multi-scale

atlas space. Parameter f0 ið Þ is the central frequency of the ith layer. The f0 ið Þ of the ith

layer is not set directly, but rather is calculated by

f0ðiÞ ¼ 1
λminsi�1

(18)

where λmin is the minimum wavelength and s is the ratio of the wavelength between the
adjacent layers.

According to the recommendation of Kovesi, the parameters of the Log-Gabor filter
are set as follows: δ=f0 ¼ 0:55, λmin ¼ 3, s ¼ 2:1 and N ¼ 3 (Kovesi 1999). That is to say,
there are three layers in the multi-scale atlas space, and the scale ratio between the
adjacent layers is 2.1. There are also two parameters in the phase correlation module:
tmag and tratio. Likewise, according to Reddy, the two parameters are selected for tmag ¼
0:03 and tratio ¼ 0:75 (Reddy and Chatterji 1996).

3. Experimental results and analysis

In this section, the rationality and effectiveness of LGEPC will be tested with the
synthetic images, and the performance of LGEPC also is evaluated with three different
types of multimodal remote sensing images. In following, the data sets, implementation
details and experimental results are presented as well as a failure case.

3.1. Data sets

The data sets are divided into two classes: 1) synthetic images which are used to
evaluate the resistance of LGEPC on images with the nonlinear radiometric differences
and the large-scale differences and 2) multimodal remote sensing images which are
used to evaluate the performance of LGEPC.

12 X. XIE ET AL.



The first data set class mainly tested two properties of LGEPC: 1) whether LGEPC can
successfully degenerate the similarity transform model into a translation model when
there are only nonlinear radiometric differences and translation differences between the
two images; and 2) whether LGEPC can successfully estimate a transformation model
when there are nonlinear radiometric differences, rotation and large-scale differences
between the two images. We designed two sets (i.e. test 1 and test 2) of synthetic
images to verify the two properties, as shown in Figure 3.

Figure 3(a) and Figure 3(c) are a Chinese ZY-3 satellite image and a low-altitude visible
spectral image, respectively. Figure 3(b) is obtained by the brightness and contrast
enhancement of Figure 3(a), followed by translating ð100; 100Þ. Figure 3(d) is obtained
by the brightness enhancement and nonlinear stretching of Figure 3(c), followed by
rotating 30� and down-scaling 4 times. Figure 3(a) and Figure 3(b) are both 400	 400,
while Figure 3(c) and Figure 3(d) are 524	 532, 181	 181 in size, respectively. The non-
linear radiometric differences are common between each image pair.

In addition, to evaluate the performance of LGEPC, we also selected three multimodal
remote sensing image pairs, which were divided into three categories: Visible-to-Infrared
(test 3), LiDAR-to-Visible (test 4), and Panchromatic-to-Multispectral (test 5), as shown in
Figure 4. Significant radiometric differences are common between these image pairs

(a) (b) (c)

(d) (e) (f)

Figure 4. Multimodal remote sensing images. (a) test 3-reference image (visible spectral). (b) test
4-reference image (LiDAR depth). (c) test 5-reference image (panchromatic). (d) test 3-sensed image
(infrared). (e) test 4-sensed image (visible spectral). (f) test 5-sensed image (multi-spectral: red band).
The original images are scaled for better visualization.
Note that the original images shown in Figure 3 and Figure 4 are scaled for better visualization, therefore, the
real scale differences are not reflected.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 5. Results of atlases phase correlation on test 1. (a)-(i): phase correlation results between Str, S
m
r , S

b
r of

the atlas Sr and Sts, S
m
s , S

b
s of the atlas Ss, respectively. (x, y) are the coordinates in the pulse image obtained by

LGEPC in solving the rotation and scale, and z is the peak corresponding to each (x, y). The maximum peaks
of the z-axis in each sub-figure, which reflect the strength of the correlation, are 0.093, 0.099, 0.090, 0.100,
0.109, 0.103, 0.102, 0.116, and 0.131 in (a)-(i), respectively, for comparing their value. The z-coordinates are
taken from−0.02 to 0.16. All the above results both gave the correct scale s0 ¼ 1:0, and rotation θ0 ¼ 0:0�.
However, the peak in (i) was the most significant, so its results were the most reliable according to (Reddy
and Chatterji 1996).
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because they were acquired by different imaging modalities. Among them, the test 3
and test 4 were provided by (Ye and Shen 2016). And the test data are described below.

The first group was visible spectral (Daedalus) and infrared (Daedalus), respectively,
and both were 400	 400 in size. The image pair contained bare land and very few
buildings. There were large translation and nonlinear radiometric differences between
them; however, the geometric structural information of the same feature was nearly
identical. The second group was the LiDAR depth image and visible spectral image
(Airborne), 524	 524 and 220	 174 in size, respectively. The overlapped areas were the
urban setting areas. Although there were obvious radiometric differences and geometric
differences, the geometric structural information of the buildings was very similar.

The third group was panchromatic image and multi-spectral image (red band),
1000	 800 and 250	 200 in size, respectively. They both come from Chinese GF1
satellite imagery. The resolution of panchromatic image is 2 m and that of multi-
spectral image was 8 m, so there are a big scale difference between this image pair.
The image pair was covered by lots of croplands, roads and buildings. However, many
details cannot be manually identified due to the resolution difference. There were also
significant nonlinear radiometric differences near the centre between images. In addi-
tion, there was also a big translation between them.

3.2. Implementation details

We chose the root mean squared error (RMSE) of the residuals of checkpoints (CPs) as
the criterion to evaluate the quality of estimated transformation model (or registration
accuracy). According to our prior knowledge of various multimodal matching methods
mentioned in the introduction, we found that HOPC can generate many correct corre-
spondences uniformly. In order to avoid the hassle of manually selecting CPs, we
implemented HOPC on these multimodal image pairs and converted the correct match-
ing points of HOPC to the original image as CPs. We must emphasize that the correct
matching points of HOPC had passed manual re-examination, and those whose residuals
are two pixels are considered mismatches. And then the residuals of CPs are calculated
using the similarity transformation model estimated by LGEPC.

3.3. Performance of LGEPC

(1) Results of test 1

The original image pair of test 1 is shown in Figure 3(a) and Figure 3(b). Since there was
no scale difference between the two images, in theory, the atlases phase correlation
results of multi-scale atlas Sr ¼ ðStr; Smr ; Sbr Þ of the reference image and the multi-scale

atlas Ss ¼ ðSts; Sms ; Sbs Þ of the sensed image had an important characteristic. That was that
the more similar the structural information of each image pair, the more significant their

phase correlation results (e.g. the correlation of ðSbr ; Sbs Þ > that of ðSbr ; Sms Þ > that

of ðSbr ; StsÞ).
The atlases phase correlation results in solving the rotation and scale differences are

shown in Figure 5, and the phase correlation result in solving the translation difference
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is shown in Figure 6. As shown in Figure 5(g), Figure 5(h) and Figure 5(i), the results are
basically in accordance with the above theoretical analysis. Besides, the peak in Figure 5
(i) > that in Figure 5(e) > that in Figure 5(a) meant that the enhancement of the multi-
scale structural information helps to improve the significance of the phase correlation.
This experiment demonstrated that LGEPC can successfully solve the rotation and scale
differences without being affected by nonlinear radiometric differences. In addition, it
also was confirmed that LGEPC can successfully obtain a reliable translation because
Figure 6 obtained by the phase correlation module is a standard pulse image with
a significant peak whose coordinates specify the translation. In general, LGEPC exhibited
good robustness to image pair with nonlinear radiometric differences.

(2) Results of test 2

The original image pair of test 2 is shown in Figure 3(c) and Figure 3(d). The atlases phase
correlation results of LGEPC in solving the rotation and scale differences, as well as Reddy’s
(Reddy and Chatterji 1996), are shown in Figure 7(a-c), respectively. Both the results in
Figure 7(a-b) successfully obtained the approximate rotation angle and scale factor.
However, according to our method, the result in Figure 7(a) was deemed the final
acceptable one because the peak in Figure 7(a) was larger than that in Figure 7(b).
Besides, the ratio of the sub-maximum peak and the maximum peak in Figure 7(a) and
Figure 7(b) is 0.74 and 0.88, respectively, and the former was within the given threshold
tratio, while the latter was beyond tratio, so the result in Figure 7(b) was not reliable according
(Reddy and Chatterji 1996). The phase correlation failure occurred in solving the correct
rotation angle and scale factor as shown in Figure 7(c), which demonstrated that the
correct results may not be extracted by directly conducting the phase correlation module
when there were large scale differences between the image pair. This experiment verified
that it was effective to build the multi-scale atlas space to enhance the phase correlation
for resistance to the large scale differences between the image pairs.

Figure 6. Result of phase correlation in solving the translation on test 1. (x, y) are the coordinates in
the pulse image obtained by LGEPC in solving the translation, and z is the peak corresponding to
each (x, y). The coordinates of the maximum peak (0.128) on the z-axis is (100, 100), which is the
actual offset of the test data.
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The experimental results of the two sets of synthetic images show that LGEPC is an
effective applicability extension of EPC. Furthermore, LGEPC can deal with image pairs with
significant nonlinear radiometric differences and large scale differences to a certain extent,
and it can correctly calculate the similarity transformation model between the images.

3.4 Tests on multimodal remote sensing image pairs

3.4.1. Visualization and accuracy
Figure 8(a-c) show the registration results of LGEPC, the details of which are displayed using
staggered grids for visualization. For the Visible-to-Infrared, LGEPC performed very well in
terms of the displayed details shown in Figure 8(a). It demonstrated that the part two of
LGEPC that utilized the enhanced structural spectra to solve translation was as robust as the
original EPC. For the LiDAR-to-Visible, there were a twice scale difference and a small rotation
angle between them. The registration details shown in Figure 8(b) demonstrated that LGEPC
also achieved good registration accuracy in this case. For the Panchromatic-to-Multispectral,
a big scale difference and translation existed between the image pair, and the original EPC
cannot handle this case as the scale factor beyond its tolerance. However, LGEPC can well
solve their scale factor, which indirectly confirmed that the necessity and effectiveness of
atlases phase correlation in part one of LGEPC. In addition, it can be seen that the significant
nonlinear radiometric differences are ubiquitous between these three image pairs, while

(a) (b)

(c)

Figure 7. Results of atlases phase correlation on test 2. (a) phase correlation result of Str and S
b
s . (b) phase

correlation result of Smr and Sbs . (c) phase correlation result of the original image pair using the method of
(Reddy and Chatterji 1996). The meanings of x, y, z are the same as those in Figure 5. The transformation
parameters are s0 ¼ 0:255; r0 ¼ 30:45�ð Þ, s0 ¼ 0:255; r0 ¼ 30:45�ð Þ, and s0 ¼ 0:844; r0 ¼ 57:18�ð Þ in
(a)-(c), respectively, for comparison. Obviously, the parameters are not correct in (c).
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LGEPC was able to resist these differences very well. It is also worth noting that the re-
sampling errors will inevitably occur in Test 4 and Test 5 when rectifying the sensed images
due to the rotation-scale differences, which may affect the effect of visualization.

On the whole, LGEPC can resist nonlinear radiometric and geometric differences
(including scale, rotation and translation) to a certain extent, and achieve a good level
of registration accuracy for multimodal remote sensing images in terms of visualization.

As LGEPC is a kind of transformationmodelmethod in essence, it does not provide discrete
matching points as the methods such as NCC or HOPC. Therefore, in order to quantitatively
evaluate the registration accuracy of LGEPC, we converted the correct matching points of
HOPC to the original images as CPs. And then the RMSE of the residuals of CPs was calculated
as the evaluation criterion. The registration accuracy of the above experiments onmultimodal
remote sensing images is presented in Table 2. As shown, the registration accuracy of LGEPC
can achieve one pixel for image pairs which well conform to the similarity transformation
model. It must be emphasized that the correct matching points of HOPC were manually re-
examined, and the mismatches whose residuals beyond 2 pixels were eliminated. As present,
the max error of the residuals of CPs was within 2 pixels, which suggested that there was no
obvious error in the transformationmodel obtained by LGEPC. The RMSEs of Test 4 and Test 5
were slightly larger than that of Test 3, and part of the reasonmaybe attributed to re-sampling
errors to some extent because rectifying the sensed images both occurred in the previous two
cases.

Figure 8. Registration results of LGEPC. (a) test 3. (b) test 4. (c) test 5. (d)-(e), (f)-(g) and (h)-(i) are the
amplifications of the two local overlapped areas of test 3, test 4 and test 5, respectively. In (a)-(c),
the local registration details of the two images in the overlapped areas are displayed using
staggered grids. The sensed image is resampled to the coordinate system of the reference image
and superposed with the later for visualization.

Table 2. Registration accuracy of LGEPC.
Image pair Number of checkpoints RMSE (pix.) Max error (pix.)

Test 3-Visible-to-Infrared 99 0.701 1.502
Test 4-LiDAR-to-Visible 142 0.961 1.670
Test 5-Panchromatic-to-Multispectral 141 0.945 1.414
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3.4.2. Comparisons
The traditional FBMs such as SIFT suffer to extract highly repeatable shared features and
describe their features, so that few correspondences can be to obtain and then trans-
formation model estimation may fail. Therefore, without consideration of FBMs, we
compared our method with some ABMs: NCC, MI, RMI and HOPC, utilizing once again
test 3 in terms of registration accuracy. The reason for choosing test 3 is that the ABMs
often force a similar scale between image pairs.

Our aim in this part was to illustrate ourmethod as a good registrationmethod as well, but
not to demonstrate it as a replacement for the existing advanced methods. The experimental
results are presented in Table 3. As can be seen, NCC achieved the worst registration accuracy
among these methods. The reason for this is as follows. The area-based method using NCC
metrics to detect the correspondences cannot effectively handle nonlinear radiometric differ-
ences between images, so that it affects the distribution and quality of the correspondences
and then affects the transformationmodel estimation. MI obtained the best registration result
in this case, while its variant RMI yielded almost identical transformation model with the
exception of one-pixel difference in the x-direction. On the basis of the structural properties of
multimodal images, HOPC adopted a histogram of oriented phase congruency to construct
feature descriptors. Furthermore, the NCC of HOPC descriptors, i.e. HOPCncc is utilized to
register multimodal images based on a fast template matching scheme. In this experiment,
HOPC achieved slightly lower registration accuracy than MI. Unlike HOPC which uses Log-
Gabor to obtainphase congruencyorientation as so togenerate the featuredescriptors, LGEPC
uses the filtered results of multi-scale Log-Gabor to enhance the structural information at
different scales. The registration accuracy of LGEPC is basically the same as that of HOPC, and
the difference in translation is within 0.7 pixels. It is worth noting that the location accuracy of
CPs obtainedbyHOPC is pixel-wise. Therefore, the registration accuracymust also be thepixel-
wise in theory as long as the transformation model is strictly correct. That is to say that the
registration results within one pixel can be both considered reliable. Therefore, both MI, RMI,
HOPC and LGEPC obtained the correct transformation model in this test. In addition, the
statistically weak advantage of LGEPC is not sufficient evidence that it is better or worse than
the compared methods.

3.5. Failure case and limitations

The LGEPC algorithm is still essentially an extended phase correlation algorithm, which
forces a similarity transformation model between image pairs. However, the complex
transformation models between image pairs such as non-similarity transformation may
lead to its failure. We will give an example under this case.

The test data was visible spectral (Google Earth) and SAR imaging (TerraSAR-X), 528	
520 and 320	 320 in size, respectively, as shown in Figure 9(a-b). The images contained

Table 3. Transformation model and registration accuracy of NCC, MI, RMI, HOPC and LGEPC on test 3.
Method Scale Rotation ð�Þ Translation (pix.) RMSE (pix.) Max error (pix.)

NCC 1.0082 −0.120 (72.188, 91.240) 1.197 2.116
MI 1.0000 0.000 (71.000, 89.000) 0.284 1.000
RMI 1.0000 0.000 (70.000, 89.000) 1.000 1.414
HOPC 1.0002 0.054 (70.748, 89.258) 0.691 0.871
LGEPC 1.0000 0.000 (70.512, 88.579) 0.701 1.502

INTERNATIONAL JOURNAL OF REMOTE SENSING 19



mainly urban areas covered by dense artificial buildings. Compared to the visible spectral
image, there was a significant noise on the SAR image that made the building roofs on the
SAR image appear less smooth than those on the visible spectral image. In addition, there
have significant local deformation caused by relief displacement of buildings.

The phase correlation result in solving translation via LGEPC is shown in Figure 9(c).
As shown, the translation cannot be explicitly determined because the maximum
response peak was not significant. This may be mainly caused by the following two
reasons. On one hand, there are more noise on the SAR image than the visible spectral
image, leading to a difference in the geometric structural information extracted by
LGEPC using Log-Gabor filtering as shown in Figure 10. On the other hand, although
the SAR image and the visible spectral image conformed to a similar transformation
model on a global scale, there was still a scale difference in the local region because of

(a) (b)

(c)

Figure 9. A failure case. (a) reference image (visible). (b) sensed image (SAR). (c) phase correlation
result in solving translation via LGEPC. The meanings of x, y, z are the same as those in Figure 6.

20 X. XIE ET AL.



the inconsistent scale caused by the radar imaging mode. Meanwhile, the tilted imaging
viewpoint of SAR image also leads to the relief displacement of buildings. And
the second argument demonstrated that we cannot utilize a simple translation model
to express their relationship under the situation with local distortions. And this situation
cannot be solved by using an image-to-image registration method, such as EPC or
LGEPC, until an orthorectification is applied to the image with local distortions.

In addition, the layer number of our multi-scale atlases space is three, which does
not guarantee that our algorithm is suitable for the image pair with any scale
difference. Also, the optimal multi-scale atlas building will be most consideration in
our future work.

4. Conclusions and discussions

In this paper, we proposed a novel extended phase correlation algorithm based on Log-
Gabor filtering, called LGEPC, for multimodal remote sensing image registration. LGEPC
mainly focuses on the issue of significant nonlinear radiometric and large scale differ-
ences that traditional extended phase correlation cannot well handle. First, the multi-
scale atlas spaces of the reference and sensed images, which are both composed of
different geometric structural information, are respectively built based on their magni-
tudes obtained by using Log-Gabor filtering with different central frequencies. And
a process of atlases phase correlation is conducted using phase correlation module,
among which we obtain the optimal result that determines the scale factor and rotation
angle between image pairs. Then, we rectify the sensed image using the rotation and
scale parameters. Thereafter, the multi-scale filtered structural spectra of the reference
and rectified sensed images, which are obtained by using the Log-Gabor filtering with

(a) (b)

Figure 10. Results of Log-Gabor filtering on the image pair shown in Figure 9(a-b). (a) reference
image. (b) sensed image. The results show the results of Log-Gabor filtering of the reference image
and the sensed image corresponding to the shortest wavelength λmin ¼ 3. Compared with the
results of Log-Gabor filtering of the reference image, the filtering results of the sensed image have
many noises, causing a difference in the structural information between them.
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different central frequencies, were superimposed to obtain the final structural spectra.
This can eliminate the interference of radiometric differences in solving translation when
using the phase correlation module as much as possible. Our qualitative and quantita-
tive experiments demonstrated that LGEPC was very resistant to significant nonlinear
radiometric differences and geometric differences and can meet some needs of multi-
modal remote sensing image registration tasks. For image pairs that conform to the
similarity transformation model, the registration accuracy of LGEPC can ideally reach
within one pixel. However, the registration accuracy of LGEPC may be unsatisfactory and
even failure may occur for image pairs with more complex non-similarity transformation
model.

Since LGEPC depends on geometric structural information, the performance of LGEPC
may decline if the image pairs contain few structures. In this situation, an image
enhancement method would be conducive to enhance the edge or contour features
of the images in order to be beneficial to their registration via LGEPC. However, the
situation that lacks structures may also lead its failure. In addition, more quantitative
comparison experiments and evaluations between LGEPC and other state-off-the-art
algorithms should be addressed in the future research using more multimodal remote
sensing images.
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