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A Mixture Likelihood Model of the Anisotropic
Gaussian and Uniform Distributions for Accurate

Oblique Image Point Matching
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Abstract— In this letter, we propose a mixture likelihood model
for accurate oblique image point matching. The basic prior
assumption is that the noises are anisotropic with zero mean
and different covariances in x- and y-directions for inliers, while
the outliers have uniform distribution, which is more suitable
for tilted scenes or viewpoint changes. Furthermore, the oblique
image point matching problem is formulated as an improved
maximum a posteriori (IMAP) estimation of a Bayesian model.
In this model, based on the vector field interpolation framework,
we combined the mixture likelihood model and our previous
adaptive image mismatch removal method, where a two-order
term of the regularization coefficient is introduced into the
regularized risk function, and a parameter self-adaptive Gaussian
kernel function is imposed to construct the regularization term.
Subsequently, the expectation–maximization algorithm is utilized
to solve the IMAP estimation, in which all the latent variances
are able to obtain excellent estimation. Experimental results
on real data sets verified that our method was superior to
some similar methods in terms of precision and also had better
self-adaptability characteristic than some hypothesis-and-verify
methods. More experiments on viewpoint changes demonstrated
our method’s effectiveness without loss of precision–recall trade-
offs, besides significant efficiency improvement.

Index Terms— Mixture likelihood model, oblique image,
parameter adaptation, point correspondence.

I. INTRODUCTION

POINT matching is a critical prerequisite in applica-
tions including registration, camera self-calibration, bun-

dle adjustment, and object recognition between images, but it
continues to be a fundamental problem in photogrammetry
and computer vision [1]–[4]. The common point matching
problem can be regularized by a similarity constraint and a
geometric constraint. Especially geometric constraint means
that the matches satisfy some geometrical requirements, such
as homography geometry, epipolar geometry, or nonrigid
geometry [5]. However, the efficient ways are still required to
obtain the best solution in the regularized method for rejecting
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mismatches. For the oblique image point matching problem,
it becomes harder because of the presence of mismatches in
two point sets due to the viewpoints.

The essence of point matching is to identify inliers and
reject outliers and estimate the geometric parameters [6].
It commonly makes use of a general hypothesis-and-verify
flowchart: estimate a parametric model from a minimum
number of the randomly selected point sets; assess the quality
of the model by some criteria; and choose the hypothesis
with the highest score to identify inliers. Random sample
consensus (RANSAC) [7] and maximum likelihood estima-
tion sample consensus (MLESAC) [8] are the representatives
of this flowchart in the literature. RANSAC evaluates the
hypothesis with the count of inliers whose residuals are
below a given threshold. However, MLESAC uses a weighted
voting strategy and regards the solution that maximizes the
likelihood as the final optimal estimation [5]. A similar vote-
and-verify strategy also achieved verification accuracy similar
to some hypothesis-and-verify methods [9]. These methods are
successfully utilized in some situations with excellent ability
of identifying inliers from the correspondences with large
outlier percentages. However, the requirement of different
thresholds for different scenes, which usually have to be
manually selected, limits their wide application. For example,
RANSAC and MLESAC are affected by the residual threshold
while estimating the epipolar geometry.

Benefit from the developments in the minimal mapping
theory and motion coherence theory [10], [11], the point
matching problem can also be formulated as a vector field
interpolation with a high-dimensional mapping constraint.
The vector field can be solved by the regularization theory.
Yuille and Grzywacz [11] introduced the motion coherence
theory to compute the vector field using a quadratic regular-
ization to impose nonparametric geometric constraints on the
correspondences, and this was equivalent to formulating the
problem in terms of a space of kernels [5]. The components of
the vector fields can be directly encoded by a series of opera-
tions in a reproducing kernel Hilbert space (RKHS), associated
with a certain regularization choice to obtain a meaningful
solution [4], [12]. Based on Yuille’s motion coherence the-
ory, a general framework is established for correspondence
problem [13]. On the basis of this framework, a robust vector
field consensus method was proposed in [5]. It associates
each correspondence with a latent variable that determines if
it is an inlier and obtained good performance for mismatch
removal problem. Ma et al. [14] also extended the vector
field’s nonparametric geometric constraints to a local linear
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transformation (LLT) that can preserve some local structures
among neighboring correspondences, whose different variants
obtained robust point matching results for remote sensing
image registration. Other vector field interpolation-like meth-
ods for correspondence problem can also be found in [15] and
[16]. However, most of these methods suffer from a suitable
kernel function choice and the sensitive parameter settings,
which limit their wide application in different situations.
Therefore, in our previous work [i.e., adaptive image mismatch
removal (AIMR)], a two-order term of regularization coeffi-
cient was introduced into the regularized risk function, and a
parameter self-adaptive Gaussian kernel function was imposed
to construct the regularization, so as to overcome this issue
[4]. Most of these methods were built on a mixture likelihood
model of the isotropic Gaussian and uniform distributions [4],
[5], [14], in which they followed the assumption that the
noises are Gaussian on each component for inliers. However,
this assumption is not rigorous under the scene of viewpoint
changes, because different parts of oblique images are different
trapezoids with significant resolution differences on the ground
due to the specific characteristic of tilted viewpoints [17].

Thus, on basis of AIMR, we propose a new method, accu-
rate oblique image point matching (AOPM), which introduces
a mixture likelihood model of the anisotropic Gaussian and
uniform distributions in terms of the noises of correspondences
considering the scenes with viewpoint changes. Experiments
on oblique image pairs and a public benchmark with viewpoint
changes verified that the proposed AOPM not only preserves
the adaptive characteristics of AIMR but also obtains higher
vector field interpolation accuracy than the compared vector
field interpolation-like methods, demonstrating its good per-
formance.

II. METHODOLOGY

A. Mixture Likelihood Model

Given a set of N putative correspondences S =
{(un, vn)}Nn=1, where un and vn are the normalized samples
in the left and right images, respectively; our aim is to fit a
mapping f interpolating the sample set, i.e., ∀n, vn = f (un).
The purpose of data normalization is to control the influence of
the point coordinate system on the method’s performance [5].
According to the motion field theory, we convert the normal-
ized correspondence (un, vn) into a motion field sample by
a transformation, i.e., (un, vn) ← (un, vn − un), in order to
be applied to the framework of the vector field interpolation
method [4].

We make the assumption that the noises are anisotropic
Gaussian with zero mean and uneven standard deviations
(σx , σy) for inliers, and the distribution is uniform 1/a for
outliers, where a is the volume of uniform distribution.
A latent variable zn ⊆ {0, 1} is associated with the nth sample
correspondence, where zn = 1 indicates that the sample is an
inlier, otherwise it is an outlier. Let U and V be the sets of
inputs and outputs, in which the nth row represents a motion
field correspondence (un, vn). Thus, the mixture likelihood
model of the anisotropic Gaussian and uniform distributions

has the following form:
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N�
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where θ = ( f, σx , σy, χ) is the set of unknowns that should
be determined; χ represents the mixing coefficient specifying
the marginal distribution over the latent variable, i.e., p(zn =
1) = χ ; σx and σy represent that the noises follow the different
standard deviations in the x- and y-directions on an image;
vx

n and v
y
n represent the corresponding normalized x- and

y-coordinates in the right image, while [ f (un)]x and [ f (un)]y
represent the corresponding x- and y-coordinates interpo-
lated by vector field f (the same expressions are used in
Sections II-B–II-D).

In order to solve (1), we imposed a prior probability dis-
tribution of vector field f , denoted by p( f ), into the mixture
likelihood model. The prior of f is modified on the basis of
the slow-and-smooth model [4], as in

p( f ) = e−[λψ( f )+ξ], ξ = −λ2/2 (2)

where ψ(f) is a smoothness term and λ is a positive number.
As the new prior probability distribution is imposed on the

vector field, we estimated an improved maximum a posteriori
(IMAP) solution of θ . The optimal solution of IMAP is θ∗ =
arg maxθ p(V |U, θ )p( f ), which is equivalent to minimizing
the negative log-likelihood function

E(θ) = −
N�

n=1

ln
�

zn

p(vn, zn |un, θ)− ln p( f ). (3)

Then, the vector field f can be obtained from the optimal
solution θ∗. We will demonstrate how to solve the IMAP
estimation, i.e., (3), in Section II-B.

B. Solution of IMAP Estimation

To solve the IMAP estimation, an expectation–maximization
(EM) algorithm that includes expectation step (E-step) and
maximization step (M-step) is used. As the complete data
log-likelihood is hardly computed directly, we considered
its expectation under the posterior distribution of the latent
variable in the E-step and maximized the expectation in the
M-step so as to update θ based on the current estimation [18].
The complete-data negative log posterior, which omitted some
constant terms, is given by
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where pn = P(zn = 1|un, vn, θ
old) is a posterior probability

that determines how the current sample fits an inlier.
1) E-Step: Denote a diagonal matrix P = diag(p1, . . . ,

pn), where pn can be computed by using Bayes rules, as

pn=1− 2πσxσy(1− χ)
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2) M-Step: The unknown θ is reestimated by using the
current estimation: θ = arg maxθQ(θ, θold). Taking first deriv-
atives of Q with respect to σ 2

x , σ 2
y , χ , and λ, and setting them

to zero, we can obtain the following expressions:�
σ 2

x , σ
2
y

� = (V − F)T P(V − F)/2trace(P)

χ = trace(P)/N

λ = ψ( f ) (6)

where F = ( f (u1)
T, . . . , f (un)

T)T. In order to complete
M-step, the mapping f also should be estimated in (6). We will
discuss it in Section II-C.

After the EM converges, given a present threshold τ ,
the inlier set SI can be obtained by

SI = {(un, vn)→ pn > τ }. (7)

In our previous work [4], τ was verified that it was insen-
sitive to its choice by experiments.

C. Regularization and Kernel Function Choice

In the regularized vector field interpolation, the mapping
f is modeled by requiring it to lie within a specific functional
space, i.e., RKHS [14]. Specifically, f can be expressed as

f (u) =
N�

n=1


(u, un)cn (8)

where 
 is the N×N Gram matrix with (i, j) block 
(ui , u j ),
and cn is the coefficient.

When the terms of Q with respect to p( f ) is considered,
a modified regularized risk functional can be obtained⎧⎪⎪⎪⎪⎪⎨
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where the first term is a weighted empirical error; the second
and third terms control the tradeoff with respect to the first
term.

The solution of (9) is given by (8) with the coefficient set
{C = {cn}, cn = [cx

n , cy
n ], n ∈ N} solved by the following

equation (10): ��
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+λσ 2
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�
C y = V y . (10)

To this end, λ in (6) can be computed by

λ = � fN �2RKHS = CT
C (11)

where fN ⊆ RKHS. The detailed proofs of (10) and (11) can
be referenced in [4], [5], and [14].

In our previous work, AIMR [4], a Gaussian kernel function
was chosen to construct the Gram matrix 



(ui , u j ) = exp(−�ui − u j�2/2δ2). (12)

Consider the correspondence problem, the width of kernel-δ
was computed by the diagonal of the maximal enveloping
rectangle of the sampled motion correspondence set [4]

δ2 = max �ui − u j�2. (13)

In AIMR, a simple training method was also proposed to
calculate δ2 for the extreme distribution situation of correspon-
dence locations.

D. Optimization With Spare Approximation

As the putative point set may contain thousands of cor-
respondences, a heavy computational burden exists when
directly solving the linear system (10). Inspired by [5], a sparse
approximation and a suboptimal solution searching in the
RHKS space were adopted to overcome this issue. According
the sparse approximation, the linear system (10) in this letter
is equivalent to a linear system as follows:⎧⎨
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(
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• means the computational component with respec-
tive to the randomly selected correspondence set.

The sparse approximation can obtain a significant increase
both in time and space complexities with negligible decrease
in accuracy. M is fixed to 16 in our later experiments.

III. EXPERIMENTS AND DISCUSSION

We use precision and recall as evaluation criteria, where
precision is the ratio of the number of preserved correct
matches and preserved total correspondences, and recall is
the ratio of the number of preserved correct matches and
the ground truth inliers. We compared AOPM with RANSAC
[7], MLESAC [8], SparseVFC [5], the nonrigid version of
Local Linear Transformation (LLT) [14], and AIMR [4]. For
SparseVFC and LLTV, we implemented them with the publicly
codes using default parameters. All the experiments were
performed on a laptop with 2.5Gz Inter(R) Core(TM) i5-
3210M CPU, 8-GB memory, and MATLAB Codes.
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TABLE I

PRECISION RECALL OF RANSAC, MLESAC, SPARSEVFC, LLTV, AIMR, AND AOPM (%)

TABLE II

MEAN AND STANDARD DEVIATION OF THE RESIDUALS OF INLIERS IDENTIFIED BY SPARSEVFC, LLTV, AIMR, AND AOPM (PIXELS)

Fig. 1. Airborne oblique image pairs in Yangjiang City, Guangdong Province,
China. Left: Forward. Middle: Nadir. Right: Backward.

A. Test on Airborne Oblique Image Pairs

We tested AOPM on three airborne oblique image pairs,
i.e., Nadir–Forward (N–F), Nadir–Backward (N–B), and
Backward–Forward (B–F) as shown in Fig. 1, to assess our
method. We use scale invariant feature transform (SIFT) [19]
to generate putative point set in these cases, and the SIFT
distance ratio threshold was set as 0.8. The ground truth inliers
were manually selected from the correspondences visually.
There are 922, 731 and 460 putative correspondences with
749, 583 and 331 inliers, respectively; the inlier percentages
are 81.24%, 79.75%, and 71.96% with respective to N–F,
N–B, and B–F, respectively. Based on the epipolar geometry
constraint, we performed RANSAC and MLESAC with the
residual threshold as [1:1:8] pixels.

The results of six methods are presented in Table I, where
each digital pair in parentheses represents a precision–recall
pair. For RANSAC and MLESAC, we calculated their average
precision–recall of the eight experiments with different para-
meter settings for each image pair. The total average precision–
recall of these three image pairs is (96.08%, 81.25%),
(96.20%, 80.66%), (94.95%, 90.46%), (93.84%, 94.81%),
(94.96%, 89.88%), and (95.09%, 88.61%) for RANSAC,
MLESAC, SparseVFC, LLTV, AIMR, and AOPM, respec-
tively. RANSAC and MLESAC owned the worst average
precision–recall tradeoff, as they will have different perfor-
mances when different parameters are adopted. However, if an
optimal parameter is known in advance, both RANSAC and
MLESAC can yield quite satisfactory performance. Their
limitations are that different parameters are required when
encountering different scene structures, different imaging con-
ditions, and different image distortions, which limit their wide

application. AIMR with good parameter self-adaptability had
almost the same performance in terms of precision–recall
tradeoff as SparseVFC. LLTV showed a little lower precision
and higher recall, because its identified inliers were corrupted
by considerable outliers whose number is 46, 50, and 14 with
respective to N–F, N–B, and B–F, respectively. AOPM inherits
the self-adaptive characteristic of AIMR and shows a better
precision for these oblique image pairs.

To illustrate the accuracy of AOPM, we compared the
residual distribution of the inliers identified by these four vec-
tor field interpolation-like methods. For SparseVFC, AIMR,
and AOPM, the posterior vector field f was used
to calculate the fitting residuals solved by the form
{resn = �vn − f (un)�2}, and for LLTV, the posterior transfor-
mation model T [14] was used to calculate the transformed
residuals solved by the form {resn = �vn − T (un)�2}. The
mean and standard deviation of residuals of their identified
inliers are presented in Table II, where each parenthesis
represents a mean–standard deviation pair. As shown, AOPM
has the smallest mean and standard deviation when compar-
ing with the other three methods. This may be explained
by two reasons: 1) adaptive parameter design makes the
empirical error closeness to the data term and prevents over-
fitting or underfitting that may be caused by a fixed regular-
ization coefficient in (9) and 2) the mixture likelihood model
of the anisotropic Gaussian and uniform distributions is much
more suitable for the scenes with viewpoint changes. The first
argument can be verified that the fitting accuracy of AIMR
was much better than that of SparseVFC, due to its self-
adaptability. LLTV showed the worst fitting residual results for
these tilted scenes due to the improper regularization, although
it performed well in terms of recall. This can be explained
that the difference between the disparities of the point set
in local areas is not quite small for airborne oblique image
pairs, unlike that for remote sensing satellite image pairs.
Thus, the nonoptimal local geometrical constraint naturally
has a negative influence on the regularization with respective
to its transformation T , which leads to an abnormal mean and
standard deviation.

In summary, AOPM is superior to some hypothesis-and-
verify methods in terms of parameter self-adaptability, such
as RANSAC and MLESAC, and it is also superior to some
vector field interpolation-like methods in terms of precision–
recall tradeoffs and accuracy of vector field fitting, such as
SparseVFC, LLTV, and AIMR.
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TABLE III

AVERAGE PRECISION RECALL AND EFFICIENCY OF THE SIX METHODS ON VGG BENCHMARK WITH VIEWPOINT CHANGES

B. Test on VGG Affine Benchmark With Viewpoint Changes

We also tested AOPM on VGG affine benchmark [20]
with viewpoint changes, compared with other five methods in
terms of average precision–recall and efficiency. The test data
contain 10 image pairs. In these cases, the camera position
is fixed during acquisition, thus they obey homographies, and
the ground truth homographies are supplied by the benchmark.
We use the Hessian-affine method [21] in these cases to
generate the putative point set, because it is more robust
against big viewpoint variations than SIFT. The distance ratio
threshold was set as 0.9, and there are four image pairs
with inlier percentage below 50%. Based on the homography
geometric constraint, the residual threshold for RANSAC and
MLESAC was set as 6.0 pixels.

The experimental results of average precision–recall and
efficiency are given in Table III. As shown, AOPM is superior
to RANSAC both in precision and recall and slightly infe-
rior to MLESAC in terms of recall. However, this is based
on the prerequisite that the approximate optimal parameter
threshold of RANSAC and MLESAC was well set in advance.
Compared with other vector field interpolation-like methods,
AOPM also yields obvious advantages in precision due to
the fact that the proposed mixture likelihood model is more
adapted to the image pairs with viewpoint changes for corre-
spondence problem. In these cases, LLTV showed the worst
precision–recall tradeoff for its much lower ability of rejecting
outliers. AOPM showed a little lower recall than SparseVFC
and AIMR for the reason that it is more likely to eliminate the
correspondence with relatively large gross error, which directly
demonstrated the good accuracy of AOPM. In addition, AOPM
achieves a significant speedup with respect to RANSAC and
MLESAC without degrading any performance. Meanwhile,
AOPM also is slightly more efficient than SparseVFC due to
its self-adaptive design as AIMR, further reducing the iteration
number of EM algorithm so as to improve efficiency.

IV. CONCLUSION

In this letter, we propose a method for AOPM. Based on
the vector field interpolation framework for correspondence
problem, AOPM combines the mixture likelihood model of
the anisotropic Gaussian and uniform distributions and our
previous AIMR method. It guarantees that AOPM not only has
the same good self-adaptive characteristic as AIMR but also
is more adapted to the image pairs with viewpoint changes
than the latter for mismatch removal problem. Experiments on
real data sets demonstrated that AOPM outperformed some
hypothesis-and-verify methods in terms of self-adaptability
and efficiency, such as RANAC and MLESAC, and also won
out on precision–recall tradeoff and yielded more accurate
vector field fitting results without loss of efficiency when
comparing with other state-of-the-art vector field

interpolation-like methods, such as SparseVFC, LLTV,
and AIMR. In future work, more quantitative experiments
comparing with other advanced methods should be taken into
consideration.
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