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A Lightweight and Discriminative Model for Remote
Sensing Scene Classification With Multidilation

Pooling Module
Bin Zhang , Yongjun Zhang , and Shugen Wang

Abstract—With the growing spatial resolution of satellite im-
ages, high spatial resolution (HSR) remote sensing imagery scene
classification has become a challenging task due to the highly com-
plex geometrical structures and spatial patterns in HSR imagery.
The key issue in scene classification is how to understand the se-
mantic content of the images effectively, and researchers have been
looking for ways to improve the process. Convolutional neural net-
works (CNNs), which have achieved amazing results in natural im-
age classification, were introduced for remote sensing image scene
classification. Most of the researches to date have improved the final
classification accuracy by merging the features of CNNs. However,
the entire models become relatively complex and cannot extract
more effective features. To solve this problem, in this paper, we
propose a lightweight and effective CNN which is capable of main-
taining high accuracy. We use MobileNet V2 as a base network and
introduce the dilated convolution and channel attention to extract
discriminative features. To improve the performance of the CNN
further, we also propose a multidilation pooling module to extract
multiscale features. Experiments are performed on six datasets,
and the results verify that our method can achieve higher accuracy
compared to the current state-of-the-art methods.

Index Terms—Attention mechanism, convolutional neural net-
work (CNN), dilated convolution, remote sensing image, scene
classification.

I. INTRODUCTION

R EMOTE sensing technology has developed rapidly in re-
cent years, and a variety of remote sensing platforms and

sensors are used to observe the earth. As a result, the volume of
image has increased dramatically and the spatial resolution has
been continuously improved. High spatial resolution (HSR) im-
ages can provide abundant information about the shape, texture,
and other features of the object of interest, which are helpful for
improving the accuracy of object recognition. Nowadays, many
satellites can provide remote sensing images with spatial resolu-
tion up to submeters, which triggers an important need: whether
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Fig. 1. Scene classification based on a CNN.

land use and coverage categories can be identified intelligently
from remote sensing images. Due to the need for remote sens-
ing applications, it is particularly important to understand the
semantic content of images effectively. In this paper, we mainly
discuss remote sensing scene classification, which automatically
assigns a semantic tag to each remote sensing image [1]. In the
past few decades, scene classification has played an important
role in a wide range of applications, such as land use and cover
classification, geographic target detection, geographic image re-
trieval, and urban planning [2].

Considerable progress has been made in the past in the
development of scene classification methods [1]–[23]. In order
to obtain the high accuracy results, effective and discriminative
features representation play an important role. Existing scene
classification methods can be divided into three categories
according to the features they use: handcrafted feature-based
methods, unsupervised-feature-learning-based methods, and
deep-learning-based methods [2]. These three categories are
not necessarily independent of each other and sometimes a
method involves two or even three of them.

Since the study [24] has shown that convolutional neural net-
works (CNNs) can extract mid-to-high-level abstract features
from the original images, CNNs have become the preferred
model for many applications. Thus, CNNs have been introduced
into remote sensing image scene classification (RESISC) task
[3], [4]. As shown in Fig. 1, the hidden layers of a CNN typ-
ically consist of the convolutional layers, pooling layers, and
fully connected (FC) layers. A CNN has strong generalization
ability and can be well generalized to the task of RESISC even
in domains considerably different from the ones for which they
were trained [4]. There are typically three empirically possible
strategies to take advantage of the capabilities of existing CNNs
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in different scenarios for the scene in which they are trained: full
training, fine tuning, and using CNNs as feature extractors [8].
Due to the small data volumes of available HSR scene datasets,
which is far less than that of the natural image datasets, such as
ImageNet dataset [25], it is infeasible to fully design and train
a new CNNs. Training a new CNN usually requires a consid-
erable amount of labeled data and demands high computational
costs. Therefore, most scholars use CNNs through fine tuning or
feature extractors or both [3]–[5], [8], [10], [12]. In addition, the
past literature includes studies that train a new network through
data augmentation or other tricks [7], [19], [22], [26]. In recent
years, various feature fusion and feature encoding methods have
been used to improve the classification accuracy [13], [15]–[18],
[20], [21].

However, these models have two drawbacks: 1) have a large
number of parameters and become very complex; and 2) cannot
extract more effective features for complex geometrical struc-
tures and spatial patterns. To solve these problems, we construct
a lightweight and discriminative CNN named SE-multidilation
pooling network (SE-MDPMNet). Recently, MobileNet v2 [27],
an improved version of MobileNet [28], proposed an inverted
residual block and improved the state-of-the-art performance
of mobile models on multiple tasks and benchmarks with a
good tradeoff between accuracy and the number of parameters.
Therefore, we use MobileNet V2 as a base network. Also, the
dilated convolution and channel attention in SENet [29] have
been added to extract discriminative features. The dilated con-
volution can enlarge the receptive field of filters without in-
creasing the number of parameters. The channel attention fo-
cuses on the channel relationship and can produce significant
performance improvements at a minimal additional computa-
tional cost. To improve the performance of the CNN further, we
propose a multidilation pooling module to extract multiscale fea-
tures. Previous works were performed with only a few datasets.
To verify the validity of our method, extensive experiments are
performed on six datasets: UC Merced [30], WHU-RS19 [31],
RSSCN7 [32], SIRI-WHU [33]–[35], AID [1], Northwestern
Polytechnical University (NWPU)-RESISC45 [2]. The results
show that our method can achieve higher accuracy compared
with the state-of-the-art methods.

The major contributions of this paper are as follows.
1) Using the dilated convolution preserves the spatial res-

olution and enlarges the receptive field of filters in the
classification task. Our results show that this method does
not require extra parameters but effectively improved the
performance of CNN.

2) A multidilation pooling module is proposed to extract mul-
tiscale features. Our results show that this module can ef-
fectively increase CNN accuracy.

3) A lightweight end-to-end deep network is proposed. Our
network provides a new baseline for remote sensing scene
classification.

The remainder of this paper is organized as follows. In
Section II, the recent methods based on CNNs and the progress
of remote sensing scene classification are addressed. In Section
III, the detailed methods of the proposed scene classification
model are discussed. In Section IV, the datasets and the analysis

of the experimental results are presented. Section V discusses
the proposed method and Section VI concludes this paper.

II. RELATED WORK

The early research works based on handcrafted features for
scene classification mainly focused on using a considerable
amount of engineering skills and domain expertise to design
various handcrafted features, such as color, texture, shape, spa-
tial and spectral information, or combinations. These features
are the primary feature representation of an image and hence
can map images into feature spaces. Some handcrafted features
have been frequently used in the past: Gabor feature [36]; lo-
cal binary pattern (LBP) [37]; GIST [38]; scale-invariant feature
transform [39]; histogram of oriented gradients [40]; and bag-of-
visual words [41]. In addition, many feature encoding methods
have been proposed in the past few years, such as Fisher vector
coding [34] and spatial pyramid matching [42].

Unsupervised-feature-learning-based methods can infer a
function or feature to describe the hidden structures from “un-
labeled” data automatically. Thus, for the tasks that do not have
labeled data or only little labeled data, unsupervised learning
performs better than supervised learning. Typical unsupervised
feature learning methods include principal component analysis
(PCA), k-means clustering, sparse coding [43], and autoencoder
[11], [44].

Deep learning architectures such as deep CNNs, recurrent
neural networks, and generative adversarial networks [45] have
been applied in computer vision, speech recognition, natural
language processing, audio recognition, social network filtering,
machine translation, bioinformatics and drug design, where they
have produced results comparable to human and in some cases
superior to human. In 2012, deep learning achieved amazing
results in the field of image classification. AlexNet [46] achieved
a top-5 test error rate of 15.3% in the ImageNet competition,
exceeding the classification performance of the second place
competitor by a large margin. As CNNs become increasingly
deeper [47], [48], residual networks [49] have surpassed the
100-layer barrier.

Because deep learning has achieved amazing results in the
field of natural images, these architectures have also been suc-
cessfully applied to the field of remote sensing image process-
ing, such as scene classification [5], [8], [10], [12], semantic
segmentation [50]–[52], geographic object detection [53], hy-
perspectral image classification [54], [55], and so on. Existing
scene classification methods based on CNN can be divided into
two categories according to how they used CNN: 1) use CNN
through fine-tuning or feature extractors or both; and 2) propose
a new structure or network. Both of these two methods include
some feature fusion methods or feature encoding methods to
improve classification accuracy.

Hu et al. [3] proposed two scenarios for generating image
features via extracting CNN features from the fully connected
layers and the last convolutional layer at multiple scales respec-
tively. Marmanis et al. [5], Li et al. [9], and Chaib et al. [13]
exploited pretrained CNN as deep feature extractor to extract

Authorized licensed use limited to: Wuhan University. Downloaded on March 08,2024 at 07:32:14 UTC from IEEE Xplore.  Restrictions apply. 



2638 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 12, NO. 8, AUGUST 2019

Fig. 2. The general architecture of the proposed network.

informative features from original HSR images to construct the
final representation of the HSR image scenes. Li et al. [16],
Liu et al. [21], and Wang et al. [15] explored the benefits of
multilayer features for improving scene classification. Qi et al.
[14], Liu et al. [17], Yu and Liu [20], and Liu et al. [22], [56] in-
tegrated spatial information at multiple scales for land-use scene
classification. Anwer et al. [23] used LBPs for encoding CNN
models, called TEX-Nets, which provide complementary tex-
ture information to the standard RGB deep models.

Zhang et al. [6] proposed a gradient boosting random convo-
lutional network (GBRCN) framework for scene classification,
which can effectively combine many deep neural networks.
Zhong et al. [57] proposed an agile CNN architecture, called
SatCNN, which used smaller kernels to build an effective CNN
architecture. Zhong et al. [69] proposed a practical CNN archi-
tecture, called the large patch CNN (LPCNN), which was used
to generate hundreds of possible scene patches for the feature
learning. Han et al. [12] improved a pretrained AlexNet archi-
tecture called pretrained AlexNet-SPP-SS, which incorporated
scale pooling—spatial pyramid pooling (SPP) and side super-
vision (SS) to improve accuracy. Wang et al. [10] designed a
linear PCA network to synthesize spatial information of remote
sensing images in each spectral channel which shortened the
spatial “distance” of target and source datasets for pretrained
deep CNNs. Yu and Liu [18] proposed a two-stream deep fusion
framework which combines saliency detection images and RGB
images. Liu and Huang [58] proposed a novel scene classifi-
cation method via triplet networks, which used weakly labeled
images as network inputs. Yang et al. [19] proposed “Drop-
Band,” which was a simple and effective method of promoting
the classification accuracy of CNNs for very-high-resolution
remote sensing image scenes, whereby training samples are
generated by dropping certain spectral bands out of the original
images. Gong et al. [59] first introduced deep structural ML into
the literature of remote sensing scene classification to specifi-
cally capture and use the structural information in training.

Because previous methods do not take full consideration of
spatial context information and multiscale features, those net-
work structures cannot extract more effective and discriminative

features. To solve these problems, we propose a lightweight and
discriminative CNN, which can achieve higher accuracy com-
pared with the current state-of-the-art methods.

III. PROPOSED METHOD

A. General Architecture

The general architecture is shown in Fig. 2. The proposed
network mainly comprises two parts: a convolutional network
based on MobileNet v2 [27] and a multidilation pooling mod-
ule. We use MobileNet v2 as a base network to extract deep fea-
tures. Due to the small data volumes available for HSR remote
sensing scene datasets, MobileNet V2 was pretrained on Ima-
geNet [25]. Our network is a lightweight CNN. Although Zhong
et al. [57] proposed a lightweight CNN architecture, which used
smaller kernels to build a lightweight CNN architecture, the net-
work cannot have a good feature representation. Furthermore,
the author experimented on the SAT-4 and SAT-6 dataset [60]
only. Unlike the original MobileNet v2 [27], we make two ma-
jor changes to the network. First, the dilated convolution is used
to enlarge the receptive field of filters without increasing the
number of parameters. Therefore, our network encodes image
of 224 × 224 pixel size into 28 × 28 feature maps. Second,
the channel attention is used to perform dynamic channel-wise
feature recalibration, which only increases a few parameters.
These modifications can enhance the ability of the network to
extract discriminative features. Then, the multidilation pooling
module is applied to extract features at multiple scales and pool
the feature maps to learn multiscale contextual information by
concatenating the multiscale features. Finally, the classification
result is obtained by a FC layer on the concatenated feature
vector. Therefore, our model can be trained directly by an end-
to-end manner. In Section IV, the experimental evaluations on
the six remote sensing scene classification datasets demonstrate
that our network is superior to the state-of-the-art methods. In the
following parts, details about the MobileNet v2, dilated convo-
lution, channel attention, and multidilation pooling module are
illustrated.
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Fig. 3. Inverted residual block. Figure reproduced from [27].

B. MobileNet V2

MobileNet V2 [27] is based on many bottleneck blocks
(see Fig. 2). Bottleneck block is a residual structure (see
Fig. 3). The architecture of bottleneck block consists of two
branches: a shortcut connection branch and a residual branch.
The shortcut connection branch is the identity mapping (black
line in Fig. 3). Moreover, the residual branch can decom-
pose three convolution layers, a 1 × 1 convolution, a 3 ×
3 depthwise convolution, and another 1 × 1 convolution (red
cone in Fig. 3). The four blue blocks in Fig. 3 represent feature
maps. In this residual structure, due to the number of channels is
fewer at start and end of the structure and there are more chan-
nels at the middle, the shape is like a “bottleneck,” so it is called
the bottleneck layer. The 3 × 3 depthwise convolution and latter
1 × 1 convolution have another name, depthwise separable con-
volution (denote Dwise in Fig. 3). Namely, depthwise separable
convolution is a form of factorized convolution, which factor-
izes a standard convolution into a depthwise convolution and a 1
× 1 convolution called pointwise convolution [28] (see Fig. 4).
The depthwise separable convolution is lightweight and is a key
building block for MobileNet V2. Thus, many efficient neural
network architectures use the depthwise separable convolution
in their networks [28], [61], [62].

A standard convolutional layer has N different convolution
kernels K of DK ×DK ×M size. It takes a DF ×DF ×M
feature map F as input. DF is the spatial width and height of a
square input feature map F, M is the number of input channels, N
is the number of output channels andDK is the spatial dimension
of the kernel. If the output feature map is of the same size, the
computation will be reduced to

DK×DK×M×DF×DF+M×N×DF×DF

DK×DK×M×N×DF×DF
= 1

N + 1
D2

K
. (1)

The architecture of MobileNet V2 [27] contains the initial
fully convolution layer with 32 filters, followed by the 19 bot-
tleneck layers described in Table I. MobileNet V2 uses 3 × 3
depthwise separable convolutions, which reduce eight to nine
times computation than standard convolutions. MobileNet V2
can achieve the top-1 accuracy of 72.0% on ImageNet, which
only has about 3.5 M parameters and 300 M multiply adds.
Therefore, MobileNet V2 is chosen as our basic model. In our
network, we take out the last 1 × 1 convolution. In our intuition,
the 1 × 1 convolution just nonlinearly maps features to 1280

Fig. 4. Depthwise separable convolution can decompose into a depthwise
convolution and a 1 × 1 convolution called pointwise convolution.

TABLE I
ARCHITECTURE OF MOBILENET V2 IN DETAIL [27]

dimensions; thus, we take it out to reduce the number of param-
eters. Our experiment proves this modification has a very small
effect on the network performance.

C. Dilated Convolution

In image classification task, convolutional networks usually
progressively reduce resolution until the feature maps are tiny.
Therefore, the spatial structure of the scene in the feature map
is no longer discernible. However, preserving the contribution
of small and thin objects may be important for correctly un-
derstanding the content of the image. Such loss of spatial loca-
tion can limit image classification accuracy. For complex natural
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Fig. 5. Two-dimensional dilated convolution with different dilation rate r.
(a) r = 1. (b) r = 2. (c) r = 3.

scenes, multiple objects and their relative position must be con-
sidered. In remote sensing images, scenes are more varied and
diverse. This problem can be alleviated by the dilated convolu-
tion, which increases the resolution of output feature maps and
expands receptive fields without losing resolution [63]. How-
ever, it requires additional memory and time. In recent years,
the dilated convolution has been widely used in the semantic
segmentation networks, such as [63]–[70]. To our best knowl-
edge, this is the first time to use the dilated convolution in remote
sensing scene classification.

In 1-D, the dilated convolution is defined as

y[i] =

K∑

k=1

x[i+ r · k]w[k] (2)

where y[i] is the output of dilated convolution, x[i] is the input
signal of the dilated convolution, and w[k] is a filter of lengthK.
The parameter r is the dilation rate, which corresponds to the
stride with which we sample the input signal. Obviously, in stan-
dard convolution, r = 1.

In 2-D, the dilated convolution is constructed by inserting
“holes” (zeros) between each pixel in the convolutional kernel
(see Fig. 5). For a convolution kernel with size k × k, the di-
lated convolution with rate r introduces r − 1 zeros between
consecutive filter values, effectively enlarging the kernel size
to kd = k + (k − 1) · (r − 1) without increasing the number of
parameters. State-of-the-art CNNs typically employ spatially
small convolution kernels (typically 3 × 3) in order to keep
both computation and the number of parameters. In Fig. 5, we
show three 3 × 3 2-D dilated convolution kernels with different
dilation rates. In Fig. 5, the convolution kernels have receptive
field of 3 × 3, 5 × 5, and 7 × 7, respectively.

The dilated convolution is used to maintain high resolution of
feature maps through replacing the max-pooling layer or stride
convolution layer while maintaining the receptive field (or field
of view) of the corresponding layer. For example, if a convolu-
tion layer has a stride s = 2, then the stride is set to 1 to remove
downsampling, and the dilation rate r is set to 2 for all convo-
lution kernels of subsequent layers. This process is applied iter-
atively through all layers that have a downsampling operation;
thus, the feature map in the output layer can maintain the same
resolution. It thus offers an efficient mechanism to control the
receptive field and finds the best tradeoff between localization
and context.

However, the using of dilated convolutions can cause gridding
artifacts [67], [69], [70]. Since the dilated convolution introduces

Fig. 6. SE block. Figure reproduced from [29].

zeros in the convolutional kernel, the actual pixels that partici-
pate in the computation from the kd × kd region are just k × k,
with a gap of r − 1 between them. As a result, a kernel can only
view information in a checkerboard fashion, and loses a large
portion of information. When r becomes large in the higher lay-
ers due to additional downsampling operations, the sample from
the input can be very sparse, which may not be good for learn-
ing, because 1) local information is completely missing; and 2)
the information can be irrelevant across large distances [67].

In order to avoid grid effects, we use the hybrid dilated strategy
[67], [69], [70] in our network. The key of the hybrid dilated
strategy is not having a common factor. Instead of using the
same dilation rate for all layers after the downsampling occurs,
we use the different dilation rate for each layer. Specifically, the
original Mobilenet V2 [27] has seven groups of bottleneck block
(see Table I). We begin using the dilated convolution form the
fourth bottleneck block. The stride of the fourth bottleneck block
is set to 1 and the dilation rates of four depthwise convolutions in
the fourth bottleneck block are set to 1, 2, 3, and 4, respectively.
Therefore, for an input image with a size of 224 × 224, the
output shape of the fourth bottleneck block 28 × 28 is the same
as previous bottleneck block (see Fig. 2). Similarly, in the fifth
and the sixth bottleneck block, the dilation rates are set to 2,
3, and 4 and the stride in the sixth bottleneck block is set to
1. Finally, the output shape of our network before multidilation
pooling module can maintain 28 × 28 in size.

D. Channel Attention

To help the network get a more robust feature representation,
we add a reweighting layer to tackle this issue and exploit chan-
nel dependencies efficiently. SENet [29] focuses on the channel
relationship and proposes a novel architectural unit, squeeze-
and-excitation (SE) block (see Fig. 6), which adaptively recal-
ibrates the channel-wise feature maps by explicitly modeling
the interdependences between channels. The feature maps U are
passed through a squeeze operation, which aggregates the fea-
ture maps across spatial dimensions H×W to produce a channel
descriptor. This descriptor embeds the global distribution of the
channelwise feature responses, enabling information from the
global receptive field of the network to be leveraged by its lower
layers. This is achieved by using global average pooling to gen-
erate channelwise responses. Formally, the squeeze operation is
achieved by

zc = Fsq(uc) =
1

H ×W

H∑

i=1

W∑

j=1

uc(i, j) (3)
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where uc(i, j) refers to the pixel value at the position (i, j) in
channel c, Fsq refers to the squeeze operation, and zc refers to
response in channel c.

Then, the squeeze operation is followed by an excitation op-
eration, in which the activations, learned for each channel by
attention mechanism, produces the weight of each channel. To
reduce block complexity and increase generalization ability, the
attention mechanism is parameterized by forming two FC lay-
ers. The first FC layer uses ReLU as the activation function and
the second layer uses sigmoid

s = Fex(z,W ) = σ(W2 · ReLU(W1 · z)) (4)

where W1 and W2 refer to weight in FC layer, σ refers to sigmoid
activation, Fex refers to the squeeze operation, and s refers to
channelwise weights.

Finally, the feature maps U are reweighted to generate the
output of the SE-block [see (5)]. The reweighted feature maps
are fed directly into subsequent layers

x̃ = Fscale(u, s) = sc · uc (5)

where sc and uc refer to weight and feature maps in channel c,
Fscale refers to reweighted operation, and x̃ refers to reweighted
feature maps.

The entire SE-block [29] can be seen as a dynamic feature ex-
traction mechanism, which handles some layers through chan-
nelwise attention to pay more attention to the feature maps which
are helpful for classification. Thus, the SE-block [29] can im-
prove the representational capacity of a network, which is use-
ful for remote sensing scene classification. For example, when a
scene is predicted as aircraft, the channelwise attention increases
the weight of the feature map which is highly related to aircraft’s
characteristics. The generation of high-level feature maps de-
pends on the low-level feature maps; therefore, it is natural to
consider multilayer feature maps. For example, only the low-
level convolution kernel extracts more aircraft edge features,
and the high-level maps can better abstract the characteristics of
the aircraft.

In our network, we use the SE-block in every bottleneck block
(see Fig. 2). Fig. 7 (left) shows the original bottleneck block and
Fig. 7 (right) depicts the schema of the SE-bottleneck module.
SE-block modules are added after each bottleneck where SE-
block transformation Ftr is taken by a bottleneck module. Both
SE are employed after summation with the identity branch. Our
SE-bottleneck module is different from the original SE-block
[29]. After the first FC layer, batch normalization [71] is added,
which can accelerate training of SE-block by reducing internal
covariate shifts.

E. Multidilation Pooling Module

To achieve a multiscale feature representation, we add a mul-
tidilation pooling module. Detail of the multidilation pooling
module structure is illustrated in Fig. 8. The multidilation pool-
ing module is a pyramid pooling module. The idea of the pyramid
pooling starts from SPPNet [72]. In SPPNet, the SPP layer is in-
troduced to remove the fixed-size constraint of the network, so
the FC layer can get the fixed-size input. The SPP layer can pool

Fig. 7. Schematic of the original bottleneck block (left), SE-bottleneck block
(right).

Fig. 8. Structure of the multidilation pooling module.

features extracted at variable scales thanks to the flexibility of
input scales. Therefore, SPPNet shows great strength in object
detection. In semantic segmentation, the pyramid pooling mod-
ule is also used in DeepLab [65] and PSPNet [66], which can
well handle scale variability in semantic segmentation.

As shown in Fig. 8, the multidilation pooling module in our
network has multiple branches, which extract the features of
different scales, respectively. One branch uses the global av-
erage pooling directly. The other branches comprise three lay-
ers: dilated convolution, SE layer, and global average pooling.
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TABLE II
COMPARISON OF DIFFERENT DATASETS

Finally, the features of multiple branches are concatenated to
obtain global multiscale feature representation. In the experi-
ment, we use four branches. We set multiple dilation rates of 3,
5, and 7, respectively, in three dilated convolutions, which can
extract the features of different scales. In order to emphasize
the importance of different channels adaptively, we also use
the SE layer after the dilated convolution. The experiment in
Section V shows using the SE layer in this module can have a
better performance.

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Setup

In order to test the performance of our method, the following
commonly used datasets are employed: UC Merced [30], WHU-
RS19 [31], RSSCN7 [32], SIRI-WHU [33]–[35], the challeng-
ing large-scale AID [1] and NWPU-RESISC45 [2]. In Table II,
the six publicly available datasets are compared about the num-
ber of images per class, the number of scene class, total images,
the spatial resolution of images and image size.

To compute overall accuracy (OA), following Xia et al. [1],
two different settings are adopted for UC-Merced, WHU-RS19,
RSSCN7, and AID datasets. For the UC-Merced dataset, the
training ratios are set at 50% and 80%; for the WHU-RS19
dataset, the ratios are fixed at 40% and 60%; for the RSSCN7
dataset and AID dataset, the ratios are fixed at 20% and 50%.
In addition, for the SIRI-WHU datasets, the ratios are fixed at
50% and 80%. Following Cheng et al. [2], the ratios are fixed at
10% and 20% for NWPU-RESISC45 dataset.

In order to alleviate the overfitting problem, we use the data
augmentation as follows: the training images first are resized to
256 × 256. Then, the images are randomly sampled with ran-
domly horizontal flip, randomly vertical flip, and randomly rota-
tion. After that, the images are randomly sampled with randomly
changing the brightness, contrast, and saturation. Finally, the
sample images are cropped to 224 × 224 randomly. The test
images only are resized to 224 × 224. Both the training and test
images are subtracted from the mean and divided by the standard
deviation of the dataset.

We use stochastic gradient descent with a minibatch size of
32. The initial learning rate starts at 0.01 and is divided by
10 when epoch reaches 30 and 60. The models are trained for

TABLE III
OVERALL ACCURACY (%) COMPARISON WITH THE UC MERCED DATASET

100 epochs. We use a weight decay of 0.0001 and a momentum
of 0.9. All the CNN models are implemented on a PC with a
2.10 GHz 8 core CPUs and 32-GB memory. In addition, a GTX
Titan X GPU is also used for acceleration. In order to test the
performance of our method, we also fine-tune the MobileNet V2
on each dataset as a baseline.

To compute the OA, following Xia et al. [1], we randomly
split the datasets into training sets and testing sets for evaluation,
and repeat the process ten times to reduce the influence of the
randomness and obtain reliable results. The OA is computed for
each run, and the results are reported as the mean and standard
deviation of the OA from the individual runs.

To compute the confusion matrix, we use the best model in
training process. For dataset ratio, we choose the ratio of training
sets of the UC-Merced, WHU-RS19, RSSCN, SIRI-WHU, AID,
and NWPU-RESISC45 to be the commonly used ones at 80%,
60%, 50%, 80%, 50%, and 20%, respectively.

B. Experiment 1: The UC Merced Dataset

This dataset [30] has 21 land use classes: agricultural, air-
plane, baseball diamond, beach, buildings, chaparral, dense
residential, forest, freeway, golf course, harbor, intersection,
medium residential, mobile home park, overpass, parking lot,
river, runway, sparse residential, storage tanks, and tennis court.
For each of the classes, there are 100 images, each measuring
256 × 256 size. The images are manually extracted from large
images from the USGS National Map Urban Area Imagery col-
lection for various urban areas around the country. The pixel
resolution of this public domain imagery is 1 foot.

The experimental results of the existing methods and our
method for the UC Merced dataset are listed in Table III. Because
previous works [1], [2] have shown that the deep-learning-based
methods have far surpassed handcrafted feature-based methods,
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Fig. 9. Confusion matrix of our proposed network with the UC Merced dataset.

we do not compare with the traditional handcrafted feature-
based methods. As can be seen in Table III, when the training
ratio is 50%, the fine-tuned MobileNet V2 has already surpassed
all the previous methods, which indicates that the residual struc-
ture in MobilNet V2 is crucial as it prevents non-linearity from
destroying too much information. By introducing the SE-block,
dilated convolution and multidilation pooling module, out net-
work obtains higher accuracy. When the training ratio is 80%,
our method narrowly surpasses the previous best method [16].
The previous best method is able to achieve 98.81%, because
they integrate multilayer features of a pre-trained CNN model for
scene classification. Moreover, those methods use fusion strate-
gies to improve accuracy and their models are more complicated.
However, our method does not use any fusion strategy and the
accuracy of our model can achieve 98.95%. The authors [12]
also utilize pyramid pooling module in AlexNet [46], but the
performance of our network is 2.28% higher than theirs, which
indicates that multidilation pooling module could extract better

multiscale features than their pyramid pooling module. Com-
pared with the fine-tuned MobileNet V2, our network is 0.69%
and 0.82% higher for the ratio of 50% and 80%, respectively.

In Fig. 9 we display the confusion matrix of our result. As
can be seen, most of the scene categories are fully recognized by
our model with the exception three categories: dense residential,
freeway, and medium residential. We believe that there is major
confusion between dense residential and medium residential,
because the images of dense residential and medium residential
all have some similarities in the distribution of buildings.

C. Experiment 2: WHU-RS19

This dataset [31] was constructed by the Computational and
Photogrammetric Vision team. All the scenes in the dataset were
extracted from a set of satellite images exported from Google
Earth with spatial resolution up to 0.5 m. The whole dataset
contained 19 classes of high-resolution remote sensing scenes
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Fig. 10. Confusion matrix of our proposed network with the WHU-RS19 dataset.

including airport, beach, bridge, commercial area, desert, farm-
land, football field, forest, industrial area, meadow, mountain,
park, parking lot, pond, port, railway station, residential area,
river, and viaduct. For each scene category, there are about 50
images, with 1005 total images in the entire dataset. The image
sizes are 600 × 600. This dataset is very challenging due to the
changes in resolution, scale, orientation, and illumination of the
images.

The experimental results of existing methods and our method
for the WHU-RS19 dataset are listed in Table IV. As can be seen
in Table IV, when the training ratio is 40%, the classification
result of fine-tuned MobileNet V2 is better than CaffeNet [1],
VGG-VD-16 [1], and GoogleNet [1], meaning that MobileNet
V2 has a stronger feature representation power. Moreover,
our network achieves 98.46% accuracy, which is worse than
the previous best method TEX-Net-LF [23]. This may due to
TEX-Net-LF [23] has good feature representation power on a
small dataset. When the training ratio is 60%, our model can

TABLE IV
OVERALL ACCURACY (%) COMPARISON WITH THE WHU-RS19 DATASET

achieve up to 98.97%, outperforming all the previous methods.
Compared with the feature fusion-based methods, such as the
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TABLE V
OVERALL ACCURACY (%) COMPARISON WITH THE RSSCN7 DATASET

fusion of saliency detection features [18], our classification re-
sult is better, which may indicate that our network can extract
more discriminative feature than the feature fusion-based meth-
ods. Moreover, compared with the fine-tuned MobileNet V2, our
network is 1.64% and 0.83% higher. We display the confusion
matrix in Fig. 10. As can be seen, most of the scene categories
are fully recognized except the following two classes: forest and
river. These samples are misclassified perhaps due to the smaller
interclass dissimilarity. For example, the scenes with a river are
classified as a forest scene, which may be explained by the fact
that there are more trees on both sides of the river.

D. Experiment 3: RSSCN7

This dataset [32] was also collected from Google Earth and
included 2800 remote sensing images, which were from seven
typical scene categories—grass land, forest, farm land, parking
lot, residential region, industrial region, and river and lake. For
each category, there are 400 images, which are sampled on four
different scales, and each image is 400× 400 in size. This dataset
is rather challenging due to the wide diversity of the scene im-
ages, which are captured under changing seasons and varying
weathers condition and are sampled with different scales.

The experimental results of our method applied to the
RSSCN7 dataset are listed in Table V. As can be seen, the ac-
curacy of our network can achieve 92.65% and 94.71%, respec-
tively, when the training ratios are 20% and 50%. When the
training ratio is 20%, our model is only 0.2% higher than TEX-
Net-LF [23]. Nevertheless, when the training ratio is 50%, the
accuracy of our model can gain 0.71%. In addition, our network
is more lightweight compared to TEX-Net-LF [21]. Compared
with the fine-tuned MobileNet V2, our network is 3.61% and
2.25% higher. We display the confusion matrix in Fig. 11. As
can be seen, it achieves the best accuracy for the forest scene,
which means that this class has higher interclass dissimilarity.
On the other hand, the results of grass and industry experience
poor results. We argue that the field and grass scenes are similar.
They clearly have smaller intraclass variation, which results in
more misclassification samples in the grass class.

Fig. 11. Confusion matrix of our proposed network with the RSSCN7 dataset.

TABLE VI
OVERALL ACCURACY (%) COMPARISON WITH THE SIRI-WHU DATASET

E. Experiment 4: SIRI-WHU

This dataset [33]–[35] also was acquired from Google Earth
and mainly covers urban areas in China. The scene dataset
was designed by RS_IDEA Group in Wuhan University (SIRI-
WHU) and served as a 12-class Google image dataset for re-
search purposes. There are 200 images for each of the following
classes: agriculture, commercial, harbor, idle land, industrial,
meadow, overpass, park, pond, residential, river, and water. Each
image is 200 × 200 with a 2-m spatial resolution.

The experimental results of our method are shown in
Table VI. The classification results of our method are better
than all the existing methods, which indicates that our CNN can
extract better global features than the other models. Our net-
work reaches 96.96% and 98.77% at training set ratios of 50%
and 80%, respectively, which confirms that the proposed model
is an effective approach for remote sensing scene classification.
Moreover, the experimental result of our network is better than
fine-tuned MobileNet V2, 1.19% and 2.56%, respectively. We
display the confusion matrix of our network in Fig. 12. Three-
fourths of the scene categories are correctly classified, and other
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Fig. 12. Confusion matrix of our proposed network with the SIRI-WHU
dataset.

misclassified categories industrial, park, and river reach at least
0.95. Among the misclassified scene categories, the industrial
scene is poorly classified. Some river scene images are misclas-
sified as water, which is likely because the images of river scene
contain more water. So, these images may be misclassified as
water scene by the network.

E. Experiment 5: AID

This dataset [1] was collected from Google Earth imagery in-
cluding the following 30 aerial scene types: airport, bare land,
baseball field, beach, bridge, center, church, commercial, dense
residential, desert, farmland, forest, industrial, meadow, medium
residential, mountain, park, parking, playground, pond, port,
railway station, resort, river, school, sparse residential, square,
stadium, storage tanks, and viaduct. All the images were labeled
by specialists in the field of remote sensing image interpretation.
The number of sample images varies a lot with different aerial
scene types from 220 up to 420. In all, the AID dataset contains
10 000 images in the 30 classes. The images in AID are actually
multisource, which brings more challenges for scene classifica-
tion than the single source images. In contrast with the existing
remote sensing image datasets, e.g., UC-Merced dataset [30] and
WHU-RS19 dataset [31], AID dataset has the following proper-
ties: higher intraclass variations, smaller interclass dissimilarity,
and relatively large scale.

The experimental results of our method for the AID dataset are
listed in Table VII. As can be seen, when the training ratio is 20%,
our model achieves the best performance on the AID dataset.
Our model achieved 94.68%, which is about 8.09% higher than
VGG-VD-16 [1] and it also exceeded by 2.36% and 0.87% for
the two-stream deep fusion framework [18] and TEX-Net-LF
[23], respectively. Moreover, the proposed network is 0.55%
higher than fine-tuned MobileNet V2. When the ratio is fixed at

TABLE VII
OVERALL ACCURACY (%) COMPARISON WITH THE AID DATASET

50%, our model also achieves the highest classification accuracy.
In addition, our model is even 1.18% higher than the fine-tuned
MobileNet V2, which verifies that our model has stronger feature
expression ability and can learn more discriminative features
without adding any handcraft features or fusion strategies.

We display the confusion matrix in Fig. 13. Its classification
accuracy for most of the scene categories reaches 90%. Even the
results of baseball fields, forest, mountains, port, and viaducts
reach 100%. However, the worse scene category square has ac-
curacy with 89%, which greatly affected the final overall clas-
sification accuracy. We think that the most notable confusion
is resort and park, because they contain similar structures, e.g.,
buildings, plants, and ponds.

F. Experiment 6: NWPU-RESISC45

The NWPU-RESISC45 dataset [2] is a publicly available
benchmark for RESISC, which was created by the NWPU. This
dataset contains 31 500 images, covering 45 scene classes with
700 images in each class. The size of each image is 256 × 256.
These 45 scene classes are: airplane, airport, baseball diamond,
basketball court, beach, bridge, chaparral, church, circular
farmland, cloud, commercial area, dense residential, desert,
forest, freeway, golf course, ground track field, harbor, industrial
area, intersection, island, lake, meadow, medium residential,
mobile home park, mountain, overpass, palace, parking lot, rail-
way, railway station, rectangular farmland, river, roundabout,
runway, sea ice, ship, snow berg, sparse residential, stadium,
storage tank, tennis court, terrace, thermal power station, and
wetland. The spatial resolution varies from about 30 to 0.2 m
per pixel for most of the scene classes except for island, lake,
mountain, and snow-berg, which have lower spatial resolu-
tions. The NWPU-RESISC45 dataset has the following three
notable characteristics: large scale, rich image variations, high
within-class diversity, and between-class similarity.

The experimental results for existing methods and our method
for the NWPU-RESISC45 dataset are listed in Table VIII. Our
model achieves 91.8% and 94.11% when the training set ra-
tios are 10% and 20%, which is 4.65% and 3.75% higher than
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Fig. 13. Confusion matrix of our proposed network with the AID dataset.

TABLE VIII
OVERALL ACCURACY (%) COMPARISON WITH THE

NWPU-RESISC45 DATASET

the highest accuracy of previous work, 87.15% and 90.36%, re-
spectively. For the 10% training ratio, our model achieves 1.64%
higher than the fine-tuned MobileNet V2. For the 20% training
ratio, our model is 1.11% higher than the fine-tuned MobileNet
V2. The two-stream deep fusion framework [18] method per-
forms worse on this dataset than other datasets, which achieves
80.22% and 83.16%. However, our model performs well on this
dataset. This shows that for rich image variations, high within-
class diversity, and between-class similarity, our model can ex-
tract more discriminative features.

We display the confusion matrix in Fig. 14. As can be seen,
similar to the AID dataset results, the classification accuracy
of most of the scene categories reaches 90%. However, because
this dataset is challenging and contains 45 scene categories, none
of the categories are correctly classified completely. The worst
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Fig. 14. Confusion matrix of our proposed network with the NWPU-RESISC45 dataset.

results are church and palace, which reach 81.1% and 77.3%,
respectively. This is understandably confusing due to the very
similar architecture and shape of churches and palaces.

V. DISCUSSION

In this section, five factors, data augmentation, the effect of
modified MobileNet v2, dilated convolution, channel attention
and pyramid pooling module, are tested to analyze how these
factors affect classification accuracy. In addition, we also use
the class activation maps (CAM) [74] and t-distributed stochas-
tic neighboring embedding (t-SNE) algorithm [75] to visualize
internal mechanism. In all experiments, the AID [1] dataset of
50% training ratio is chosen for the analysis of the above factors.
The experimental setup is the same with previous experiments.

For comparison, we use the average accuracy of the last ten
epochs as the evaluation indicator.

A. Evaluation of Data Augmentation

In deep learning, a large dataset is crucial to train an effective
model. However, in the remote sensing scene classification
community, there are small data volumes of available scene
classification datasets. Moreover, small data volumes are easier
to overfitting. Therefore, to alleviate this problem, we use the
data augmentation in the training process as follows: randomly
horizontally and vertically flip, randomly rotation, randomly
scale from 0.8 to 1.2, randomly crop and randomly changing
the brightness, contrast, and saturation. As we can see in
Table IX second row, after using the data augmentation, the
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TABLE IX
ACCURACY (%) COMPARISON WITH DIFFERENT FACTORS

accuracy of the fine-tuned MobileNet V2 is 96.3%, which
shows that the data augmentation is very effective.

B. Evaluation of Dilated Convolution and Channel Attention

To evaluate the effect of dilated convolution, we use dilated
convolutions in the original MobileNet V2 [27]. Specifically, we
experiment with several variants of the dilated convolution (see
Table IX).

1) Standard convolution: for all convolutions, we set their
dilation rates to 1 (see Table IX second row).

2) Same dilation rate: for seven groups bottleneck blocks (see
Table I), we begin using the dilated convolution form the
fourth bottleneck block. The stride of the fourth and the
fifth bottleneck blocks are set to 1 and the dilation rates
are set to 2. Similarly, in the sixth and seventh bottleneck
blocks, the dilation rates are set to 4 and the stride in the
sixth bottleneck block is set to 1 (see Table IX third row).

3) Hybrid dilation rate: we begin using the dilated convolu-
tion from the fourth bottleneck block. The stride of the
fourth bottleneck block is set to 1 and the dilation rates of
four depthwise convolutions in the fourth bottleneck block
are set to 1, 2, 3, and 4, respectively. Similarly, in the fifth
and sixth bottleneck blocks, the dilation rates are set to 2,
3, and 4 and the stride in the sixth bottleneck block is set
to 1 (see Table IX fourth row).

The experimental results show that using the dilated convolu-
tion in the network is beneficial to classify scene images. How-
ever, for the same dilation rate strategy, due to the grid effect, the
classification accuracy is greatly limited, only increasing 0.2%.
However, using the hybrid dilation rate strategy can alleviate
this problem to a great extent and the final result can promote
0.41%.

SE-block has an attention mechanism, which can make the
discriminative feature maps have larger weights. To evaluate the
effect of channel attention, we use SE-block in every bottleneck
layer. As we can see in the fifth row of Table IX, adding the SE-
block can improve accuracy the accuracy to 96.73%. Therefore,
we combine the dilated convolution and channel attention to-
gether. In Table IX sixth row, the performance of network can
reach 97.0%.

TABLE X
ACCURACY (%) COMPARISON WITH SEVERAL VARIANTS OF MULTIDILATION

POOLING MODULE

C. Evaluation of the Effect of Modified MobileNet V2

In the original MobileNet V2 [27], the number of channels
of the last feature maps is 1280 and the kernel size of the last
convolution is 1 × 1. We think that the 1 × 1 convolution just
nonlinearly maps features to 1280 dimensions. Therefore, in our
network, we take out the last 1 × 1 convolution. Removing the
last 1 × 1 convolution can reduce the number of parameters by
387 840 (320 × 1280 + 1280 = 387 840). In Table IX, the
accuracy after removing the last 1 × 1 convolution can reach
96.96%, which only drops 0.04%. This is acceptable and the
result proves that this modification does not hinder the network
performance a lot.

D. Evaluation of Multidilation Pooling Module

To evaluate the effect of multidilation pooling module, we
use the multidilation pooling module on the basis of dilated
convolution and channel attention. We try several variants of
this module: different number of branches and different dilation
rates. And the 3 × 3, 5 × 5, and 7 × 7 convolutions are baseline.

As can be seen in Table X, using the 3 × 3, 5 × 5, and 7 × 7
convolutions to replace the dilated convolution in the multidila-
tion pooling module would hinder the network performance. At
the same time, using large convolutional kennels will increase
the number of parameters (about three times parameters of three
3 × 3 convolutions), which is not conducive to optimize the
network. Comparing with using 3 × 3, 5 × 5, and 7 × 7 convo-
lutions, the multidilation pooling module (without SE-layer) can
extract multiscale features with fewer parameters. To get more
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Fig. 15. Examples of the CAMs generated from the AID dataset. We show the original images, CAMs generated from baseline model and our proposed model,
respectively.

meaningful and context-sensitive analysis results of the multidi-
lation pooling module, we attempt four different settings about
dilation rate and two kinds of number of branches. For a 224 ×
224 image, the best dilation rate is 3, 5, and 7 for three dilation
convolution branches and 3, 5, 7, and 9 for four dilation convolu-
tion branches, respectively. For the large dilation rate, the result
gets worse. When rates become large, the sample locations be-
come very sparse, which may not be good for learning, because
the local information is completely missing and the informa-
tion can be irrelevant across large distances. The multidilation
pooling module with rate 3, 5, and 7 can reach 96.85%, which
has a good tradeoff for accuracy and FLOPs. To move forward
a single step, we use the channel attention mechanism in the
multidilation pooling module. The experiment shows that it is
beneficial to training and can make this module to obtain more
powerful feature representation. On the basis of dilated convo-
lution and channel attention, our network with the multidilation
pooling module can get 97.14% finally.

CAMs [74] can highlight the discriminative object parts de-
tected by the CNN. For a better understanding of our model, we
use CAM to visualize whether the network can recognize cor-
rect parts of the image corresponding to the true class. We show
the CAMs generated from the baseline model (MobileNet V2)
and our model in Fig. 15. The original images are from the AID
dataset. As can be seen, the baseline model and our model both
can highlight the semantic object corresponding to the true class,
which indicates that CNN has the capability of object localiza-
tion and recognition. In addition, it is interesting that the CAMs
generated from our model can better cover the semantic objects
and have a wider range of highlights. We believe that this is due

to the widespread using of dilation convolutions in our network,
which enables the network to utilize context information.

Besides, we also use t-SNE algorithm [75] to visualize global
feature representations learned by the baseline model (Mo-
bileNet V2) and our model in Fig. 16. It is noted that we only use
the test data, because these two networks have trained on train-
ing data. We use the features after global pooling layer as input.
It is clear that some classes are well separated by the baseline
model and our model. But the center part of the baseline model
result seems to have a little confusion for similar categories.
However, our model’s result increases the separability and rel-
ative distance between the individual semantic clusters, which
means that our model has better global feature representations
and can prepare better features for the fully connected layer.

E. Evaluation of Size of Model

We also compare the size of model with different methods.
The CaffeNet [1], VGG-VD-16 [1], GoogLeNet [1], MobileNet
V2 [27], and our model are compared about the number of pa-
rameters and FLOPs. The number of parameters stands for the
size of model and the number of FLOPs stands for the computa-
tion complexity. The results are listed in Table XI. It is clear that
our model is superior to CaffeNet and VGG-VD-16 about the
model size and computation complexity. And when compared
with lightweight models, GoogLeNet and MobileNet V2, our
model has a better tradeoff about the accuracy and model size.
However, due to introducing the dilated convolution, the size
of subsequent feature map does not reduce. We can see that the
computation complexity of our model increases about ten times.
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Fig. 16. Two-dimensional feature visualization of image global feature representations learned from the AID dataset using the t-SNE algorithm. Baseline model
(left), our proposed model (right).

TABLE XI
ACCURACY (%) COMPARISON WITH DIFFERENT METHODS

But compared with the extra high-computation VGG, our model
is still lightweight.

VI. CONCLUSION

In this paper, a lightweight end-to-end deep network is
proposed, which combines the advantages of the dilated con-
volution, channel attention, and multidilation pooling for HSR
remote sensing imagery scene classification. We introduce
the dilated convolution, and channel attention to MobileNet
V2 to extract more robust and discriminative features. To
improve the performance of the CNN further, the multiscale
features are also considered by adding the multidilation pooling
module. Experiments are performed on six datasets, and the
results verify that our method is robust and can achieve higher
accuracy compared with the current state-of-the-art methods.
We believe that our network provides a new baseline for remote
sensing scene classification.

The limitations of our research include the following. We
only focus on channel attention, and the future research should
consider adding spatial attention. For example, the saliency
detection can be incorporated into the CNN model. The spatial

attention can assign more weight to the key part. In addition,
various feature fusion strategies also can promote the accuracy
of scene classification.
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