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A Coarse-to-Fine Framework for Cloud Removal in
Remote Sensing Image Sequence

Yongjun Zhang , Fei Wen , Zhi Gao , and Xiao Ling

Abstract— Clouds and accompanying shadows, which exist
in optical remote sensing images with high possibility, can
degrade or even completely occlude certain ground-cover infor-
mation in images, limiting their applicabilities for Earth observa-
tion, change detection, or land-cover classification. In this paper,
we aim to deal with cloud contamination problems with the objec-
tive of generating cloud-removed remote sensing images. Inspired
by low-rank representation together with sparsity constraints,
we propose a coarse-to-fine framework for cloud removal in the
remote sensing image sequence. Leveraging on group-sparsity
constraint, we first decompose the observed cloud image sequence
of the same area into the low-rank component, group-sparse
outliers, and sparse noise, corresponding to cloud-free land-
covers, clouds (and accompanying shadows), and noise respec-
tively. Subsequently, a discriminative robust principal component
analysis (RPCA) algorithm is utilized to assign aggressive penal-
izing weights to the initially detected cloud pixels to facilitate
cloud removal and scene restoration. Moreover, we incorporate
geometrical transformation into a low-rank model to address the
misalignment of the image sequence. Significantly superior to
conventional cloud-removal methods, neither cloud-free reference
image(s) nor additional operations of cloud and shadow detection
are required in our method. Extensive experiments on both
simulated data and real data demonstrate that our method works
effectively, outperforming many state-of-the-art approaches.

Index Terms— Cloud and shadow removal, group-sparse,
low-rank representation, robust principal component analysis
(RPCA).

I. INTRODUCTION

REMOTE sensing images have been applied in a vari-
ety of applications, including Earth observation, change

detection, land-cover classification, and so on. Due to the
proliferation of satellites, such trend is continuously intensi-
fying. However, remote sensing images can be contaminated
by clouds and accompanying shadows with high possibility.
For example, the Enhanced Thematic Mapper Plus (ETM+)

Manuscript received June 30, 2018; revised October 19, 2018 and
February 21, 2019; accepted March 4, 2019. This work was supported in part
by the National Key Research and Development Program of China under Grant
2018YFB0505003 and in part by the National Natural Science Foundation of
China under Grant 41571434. (Corresponding author: Yongjun Zhang.)

Y. Zhang and F. Wen are with the School of Remote Sensing and
Information Engineering, Wuhan University, Wuhan 430079, China (e-mail:
zhangyj@whu.edu.cn; wenfei@whu.edu.cn).

Z. Gao is with the Temasek Laboratories, National University of Singapore,
Singapore 117411 (e-mail: gaozhinus@gmail.com).

X. Ling is with the Future Cites Laboratory, Singapore-ETH Center,
Singapore (e-mail: ling.xiao@arch.ethz.ch).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2019.2903594

Fig. 1. Cloud-contaminated satellite images. (a) GF-2 true color data.
(b) Landsat-8 natural-look data. (c) ZY-3 true color data.

land scenes are reported to be about 35% cloud covered
globally [1]. Ground-cover information is degraded by thin
clouds and shadows or even completely occluded by thick
clouds, which remarkably limits further analysis and appli-
cations of such images (see Fig. 1 for some examples).
Therefore, removing clouds and their shadows is of great
importance to facilitate the utilization of such contaminated
images. In particular, the effect of clouds varies according to
the thickness. Thin clouds allow part of underlying objects
being observed, which are often ambiguous and could be
fairly subtle to formulate and solve such cloud associated
problems. On the other hand, thick clouds allow no ground-
cover information being observed, thus solutions are required
urgently to overcome such a challenging problem. Despite
a substantial amount of efforts in this direction, removing
cloud contamination effectively for a batch of temporal images
remains an open problem. Therefore, in this paper, we focus
on the case of thick clouds and accompanying shadows in the
remote sensing image sequence.

Currently, the available methods of cloud removal can
be roughly classified into two categories [2]: individual-
based [3]–[5] and multitemporal-based methods [2], [6]–[14].
We will detail these works in Section II. In a nutshell,
although these methods can remove cloud contamination and
generate visually plausible results, their results are sensitive
to the size of the cloud and their efficiencies are quite low.
Moreover, extensive cloud-free reference images are usually
assumed to be available and accurately preregistered to the
cloud contaminated image(s), which is difficult, if not impos-
sible, to fulfill in practice. With the development of satellite
technologies and the easier access to their data, it has been
feasible to obtain a sequence of satellite images located in the
same position. Therefore, methods based on batch processing,
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which claim to press the maximal benefits from multitemporal
correlations, have been reported with promising results. In our
previous work [15], a two-pass robust principal component
analysis (TRPCA) method was proposed for cloud removal in
a satellite image sequence, which was significantly superior
to other methods, neither cloud-free reference images nor
specific algorithms of cloud detection [16], [17] were required.
Moreover, it has demonstrated to achieve better accuracy and
significant efficiency improvement compared to information
clone [8] and sparse representation methods [13]. However,
the first pass of TRPCA applied a plain RPCA followed
by morphological operation without taking into account the
cluster property of clouds and shadows. In addition, it required
that the image sequence should be accurately prealigned to
enforce the low-rank constraint.

On the basis of [15], here, we propose a coarse-to-fine
framework leveraging on group-sparsity for cloud removal in
the satellite image sequence. Considering the fact that clouds
and shadows are typically spatially coherent, group-structured
sparsity is formulated to better model sparse outlier clusters.
Moreover, adaptive weights are assigned to such groups to
facilitate convergence. Benefiting from the group-sparsity con-
straint, we obtain satisfied initial masks of clouds and shadows
without any postprocessing. In addition, we incorporate geo-
metrical transformation into RPCA to refine the alignment of
the image sequence. In other words, our method no longer
requires that the input images of a sequence are accurately
aligned in advance. In summary, our newly proposed method
outperforms [15] in terms of both accuracy and efficiency, and
with wider applicability as well.

The remainder of this paper is organized as follows.
Section II discusses related works. Section III is devoted to
the details of this paper. Section IV presents our extensive
experiments, and the conclusion is summarized in Section V.

II. RELATED WORKS

A. Individual-Based Methods

Assuming that the remaining cloud-free regions have similar
texture features as cloud contaminated regions, individual-
based methods typically deal with cloud contamination in a
single image without additional auxiliary information. Such
reconstruction is also called inpainting that synthesizes cloud-
contaminated regions via propagating from local or nonlocal
cloud-free pixels. For example, Chen et al. [3] improved a
fragment-based image completion algorithm [18] to remove
clouds and shadows in high-resolution remote sensing images.
It iteratively chose small image fragments of fixed size in the
clear parts guided by their confidence map and duplicated
it into the contaminated regions following a coarse-to-fine
multiscale strategy. Leveraging on the geometric flow curves
estimated by Bandelet transformation, Maalouf et al. [4] prop-
agated the geometrical information into cloud-contaminated
areas for reconstruction. In [5], three different strategies were
utilized to facilitate patch search for more accurate prop-
agation. These individual-based methods can yield visually
plausible reconstruction results in some cases. However, they
are sensitive to the land-cover types underneath clouds and the

size of the contaminated area due to the inherited limitation of
inpainting. Furthermore, as uncertainty and error accumulate
along with propagation, the individual-based methods can
hardly deal with thick cloud of large size.

B. Multitemporal-Based Methods

More relevant to our work, multitemporal-based meth-
ods that take advantage of other temporal remote-sensed
images have been more popularly investigated. As discussed
in [15], multitemporal information can be utilized either
explicitly or implicitly, depending on whether the correlation
between the contaminated regions and supplementary temporal
information is explicitly formulated or implicitly learned. In an
explicit manner, assuming that the differences between the
cloud image and reference images are small, Tseng et al. [6]
directly replaced cloud-contaminated pixels with the data of
the same location from other cloud-free images. By applying
color matching and multiscale wavelet fusion, those seam
effects around cloud region boundaries can be properly elim-
inated. Inspired by Poisson image editing [7], cloud-free
patches were cloned to their corresponding cloud regions
by solving a group of constrained Poisson equations in [8].
Thanks to the boundary constraint and gradient propagation,
such patch clone method can generate plausible results. To fur-
ther exploit the correlations between cloud regions in the target
image and cloud-free regions in both target and supplementary
cloud-free images, Cheng et al. [9] utilized Markov Random
Field (MRF) to locate local or nonlocal similar pixels in
the remaining cloud-free region of the target image. It is
similar to inpainting-based methods [5], but the strategy of
similar pixel estimation is more reliable with the guide of
multitemporal images. Moreover, Zhu et al. [10] improved
a neighborhood similar pixel interpolator (NSPI) approach
in [19] to predict cloud-contaminated pixels considering both
spectral–spatial and spectral–temporal information. Similarly,
Chen et al. [11] formulated a linear least-square regression
model to search candidate pixels spatially and temporally and
applied a weighted regression for the final reconstruction of
cloud areas. With the aid of using similar pixel information
from the same contaminated image when reconstructing cloud
pixels, the above three similar-pixel-based methods can handle
radiometric differences and seasonal changes of multitemporal
images to some extent.

Recently, a number of learning-based methods have been
introduced to remove clouds in remote sensing images.
Lorenzi et al. [12] assumed that pixels in the cloud-
contaminated region can be expressed as a linear combination
of sampled pixels in the remaining cloud-free region, thus the
problem was formulated and solved using sparse representa-
tion. Analogously, in [2], dictionary learning was performed on
target cloud image and reference image separately in the spec-
tral domain. Then, cloud removal was conducted by combining
dictionary learned from the target image and coefficients
learned from the reference image. However, such methods
were sensitive to land cover type and cloud size. Utilizing the
local temporal correlations and nonlocal spatial correlations,
Li et al. [13] introduced a patch-matching-based multitemporal



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: COARSE-TO-FINE FRAMEWORK FOR CLOUD REMOVAL 3

Fig. 2. Flowchart of the proposed coarse-to-fine framework for cloud removal
in remote sensing image sequence.

group sparse representation (PM-MTGSR) method to recover
cloud regions. Although sparse representation methods can
obtain consistent reconstruction results, they show a slight
blur effect because of their representation error. Inspired
by deep learning technique, Zhang et al. [14] proposed a
unified spatial–temporal–spectral framework based on deep
convolutional neural network (CNN) to reconstruct missing
information caused by sensor failure and remove thick cloud
in remote sensing images as well. However, it required large
amount of training data set and was sensitive to the properties
of data.

In summary, all available methods essentially recover only
one target cloud image at each time, no matter how the
relationship between contaminated pixels and cloud-free pixels
is exploited. Though visually plausible recovery results can be
generated by these methods, they are sensitive to cloud size
and inefficient to process image sequence. Hence, we propose
a batch-processing approach based on RPCA framework to
remove cloud from image sequence with high efficiency and
accuracy. In addition, our method is able to deal with the
registration error challenge faced by all available methods.
We introduce a 2-D affine transformation model to enable our
method to handle misaligned images of a sequence.

III. METHODOLOGY

Fig. 2 shows an overview of our coarse-to-fine framework.
The input image sequence of the same area obtained at
different times can be misaligned. First, simple linear itera-
tive clustering (SLIC) superpixel segmentation and arranging
each image to a column of a matrix are conducted as pre-
processing. Then, group-sparsity constrained RPCA (GRPCA)
combined with geometrical transformation is applied to detect
cloud and shadow regions initially and also generate a well-
aligned image sequence. The dotted box denotes our exten-
sion based on group sparsity to align the misaligned image
sequence. Finally, discriminative RPCA (DRPCA) is con-
ducted to remove clouds and shadows to obtain a sequence
of cloud removed images.

A. Overview of RPCA

RPCA [20] has obtained stunning performance in a variety
of applications including target detection, anomaly detection,
and so on. Leveraged on the intrinsic low dimensionality of
massive multidimensional data such as video and images,
RPCA assumes such data are composed of a low-rank com-
ponent and a sparse component. Mathematically, given a
sequence of images or frames of a video and arranging them
as the columns of a large matrix M ∈ Rm×n , then M can be
decomposed into a low-rank matrix L and a sparse matrix S,
which is estimated by minimizing the following constrained
optimization problem:

min
L ,S

|L‖∗ + λ‖S‖1
s.t. M = L + S (1)

as a surrogate for the original problem

min
L ,S

rank(L)+ λ‖S‖0
s.t. M = L + S (2)

where ‖L‖∗ denotes the nuclear norm of matrix L, i.e., the
sum of its singular values, ‖S‖0 denotes the number of nonzero
elements in the matrix, and ‖S‖1 denotes the sum of the
absolute value of each element of matrix S, and λ is a positive
balance value.

As an example in background and foreground separa-
tion [21], low-rank L corresponds to the background and
sparse S contains foreground moving objects. Similarly, when
dealing with satellite sequence of cloud images, the desirable
clear ground-cover can be treated as background, whereas
the clouds and accompanying shadows are treated as sparse
foreground. Modeling the background by low-rank approxi-
mation is known to be able to absorb the global illumination
changes. However, the sparsity prior with l1-norm regulariza-
tion treats each pixel independently, it ignores the possible
structure or relations between pixels [22]. In practice, the fore-
ground objects are usually spatially coherent clusters and
such spatial correlations should be incorporated to facilitate
detection.

B. Superpixel Group-Structured Sparsity

Inspired by recent studies of structured sparsity in com-
puter vision [23], [24], we introduce a nonoverlapping group-
sparsity norm that can incorporate prior structures on spatial
coherent outliers. Given an observed matrix M ∈ Rm×n and
M = [vec(I1)|vec(I2)|...|vec(In)], where Ii , i = 1, 2, ..., n,
are input images and vec denotes stacking an image as a
column, m is the number of pixels in each image, and n is the
total number of images. We define the group-sparsity norm as
follows:

ψ(S) =
n∑

j=1

K∑
i=1

wi
j

∥∥Sgi
j

∥∥∞ (3)

where K is the number of groups in each image, Sgi
j

denotes

every single group in sparse component S, and wi
j are the

groupwise weights which will be detailed in Section III-C.
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Fig. 3. Comparison of nonoverlapping groups of block-structured and
superpixel structured. (a) and (b) Blocks with size of 3 and 4, respectively.
(c) Superpixel groups.

‖ · ‖∞ denotes the l∞ norm of the vector, which is the
maximum value of pixels in a group. l∞ norm encourages
the rest of variables within the same group to take arbitrary
values, and that is exactly what we desire as the coherent
pixels of the same object have similar magnitude.

Considering the spatial coherence of foreground pixels,
a meaningful group of pixels should consider the shape and
structure of objects in the image. The straightforward idea
to segment pixels into groups is to cluster them into blocks
as in [25]. However, the block is too restrictive to deal with
a random shape in natural scenes. We show an example
in Fig. 3 that, for nonoverlapping groups, blocks are either
too small to encode spatial coherence prior or too large to
bring in too much background pixels, which will lead to
unsatisfactory detection results. To overcome such limitation,
we introduce a new group structure that adapts well to objects
in remote sensing images. As shown in Fig. 3, each image can
be segmented into superpixels. Superpixel technique clusters
pixels into perceptually meaningful regions according to their
feature similarity, such as color, texture, location, and so on,
which is flexible to cover random-shaped natural objects. Due
to their proper approximation to the boundaries of objects,
no further postprocessing is required to generate group-sparse
outlier regions.

As the preprocessing step in our framework, the superpixel
segmentation should be efficient and easy to use in practice.
Thus, we adopt the SLIC method that has been demonstrated
as the state-of-the-art superpixel method [26]. SLIC applies
k-means clustering to generate superpixels with higher speed
and better segmentation performance. Only two parameters
of the SLIC method are needed to be set, i.e., the number of
superpixels we want to obtain for an image and a compactness
factor that controls adherence of each superpixel to object
boundaries.

C. GRPCA With Geometrical Transformation

1) Problem Formulation: To overcome the deficiency of
plain RPCA which does not consider the spatial coherence of
natural objects, we introduce the group-structured sparsity into
RPCA framework. Apart from group-structured sparse out-
liers, there are many noiselike sparse entries with an arbitrary
large value in the observed matrix that are neither structured
nor belong to the low-rank model. Therefore, we modify the
decomposition into three parts, namely, a low-rank part and a

group sparse part as usual, and an additional part of noiselike
sparse outliers modeled by l1-norm. We formulate the new
GRPCA equation as

min
L ,S

‖L‖∗ + λψ(S) + γ ‖N‖1
s.t. D = L + S + N (4)

where ψ(S) is the superpixel group-structured sparsity norm
defined in (3), denoting group sparse outliers. ‖N‖1 denotes
noiselike sparse outliers. λ and γ are the positive values con-
trolling the sparsity of group-structured and noiselike outliers
respectively.

However, the low-rank assumption of background may no
longer hold if the images are not well aligned. Due to the
complicate acquisition processes, satellite images acquired at
different times are always misaligned to some extent. Inspired
by the work in [27], we can model the alignment between
satellite images as 2-D affine transformation. Suppose that
I1, I2, ..., In denote n input images of the same area but not
well aligned, and there exist n transformations τ1, τ2, ..., τn

such that the transformed images I1 ◦ τ1, I2 ◦ τ2, ..., In ◦ τn

are pixel-level aligned, where τi ∈ R p, i = 1, 2, ..., n and
p = 6 indicates affine transformation. Then, the matrix
D ◦ τ = [I1 ◦ τ1, I2 ◦ τ2, ..., In ◦ τn] has low rank, where
D = [vec(I1)|vec(I2)|...|vec(In)], and τ represents the set of
n transformations. Therefore, the final constrained optimiza-
tion problem is formulated as

min
L ,S

‖L‖∗ + λψ(S) + γ ‖N‖1
s.t. D ◦ τ = L + S + N. (5)

2) Iterative Optimization: We adopt Augmented Lagrange
Multiplier (ALM) [28] method to solve the optimization
problem of (5) since it has been widely used to solve RPCA-
based problems [29], [30]. The augmented Lagrange function
is defined as

f (L, S, N, τ,Y, μ) = ‖L‖∗+λψ(S)+γ ‖N‖1
+〈Y, D ◦ τ−L−S−N〉
+μ

2
‖D ◦ τ−L−S−N‖2F (6)

where ‖ · ‖F denotes the Frobenius norm, Y is the Lagrange
multiplier, and μ is a positive scalar. ALM optimizes variables
L, S, N , and τ alternatively and updates Y , μ iteratively. Espe-
cially, L, S, N , and τ are estimated by solving subproblems
as follows:

Lk+1 = min
L

f (L, Sk , Nk , τ,Yk , μk)

Sk+1 = min
S

f (Lk, S, Nk , τ,Yk , μk)

NK+1 = min
N

f (Lk, Sk , N, τ,Yk , μk)

τ = τ +	τ (7)

and the Lagrange multiplier Y and balance value μ are
updated as

Yk+1 = Yk + μk(D ◦ τ − Lk − Sk − Nk)

μk+1 = ρμk . (8)
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Given the support of other variables at the kth iteration,
the estimation of Lk+1 for the first subproblem of (7) is
formulated as

arg min
L
‖L‖∗ + μ

2

∥∥∥∥
(

D ◦ τ − Sk − Nk + 1

μ
Y

)
− L

∥∥∥∥2

F
. (9)

According to the lemma in [31], given a matrix Z , the solu-
tion to the optimization problem

min
X

1

2
‖Z − X‖2F + α‖X‖∗ (10)

is given by X = �α(Z), where �α means the singular value
thresholding

�α(Z) = U	αV T . (11)

Here, 	α = diag[(d1−α)+, ..., (dr−α)], U	V is the singular
value decomposition (SVD) of Z , 	 = diag[d1, ..., dr ], and
t+ = max(t, 0). Therefore, the solution of (9) is U	1/μ(D ◦
τ − Sk − Nk + 1/μY )V T .

For the second subproblem of (7), the optimization of S can
be written as

min
S
λψ(S) + μ

2

∥∥∥∥
(

D ◦ τ − Lk − Nk + 1

μ
Y

)
− S

∥∥∥∥2

F
. (12)

Since the superpixel-structured groups are nonoverlapping,
we can minimize (12) with respect to each group Sgi separately
(we remove j to help understanding). For brevity, we denote
λwi

j as ω, Sgi
j

as s, and (D ◦ τ − Lk− Nk + 1
μY )ij as h. Then,

(12) is as the same as minimizing the problem as follows:

min
s

μ

2
‖s − h‖22 + ω‖s‖∞. (13)

Here, we use the proximal method [32] to solve (13).
To estimate N , we solve the optimization problem as

min
N
γ ‖N‖1 + μ

2

∥∥∥∥
(

D ◦ τ − Lk − Sk + 1

μ
Y − N

)∥∥∥∥2

F
. (14)

As in [28], the solution for (14) is Sγ /μ(D◦τ−Lk−Sk+ 1
μY ),

where S is a soft-thresholding operator that is defined as

Sω(x) = max(x − u, 0)+min(x + u, 0). (15)

The groupwise weight value wi
j is fairly important in

our nonoverlapping GRPCA method, especially for the cloud
removal task. Before discussing the details, we show an
intuitive comparison between the cloud pixels and cloud-free
pixels. Based on the RPCA, cloud pixels are decomposed as
sparse outliers. By applying a plain RPCA decomposition (the
input data are normalized to 0 ∼ 1), the observed matrix
is decomposed into a low-rank component and a sparse one
as shown in Fig. 4. Quantitatively, we can roughly see the
magnitude of different kinds of pixels in the sparse component
as in Fig. 5. It is obvious that clouds and shadows pixels depart
from the low-rank background (zero line shown in Fig. 5)
with nearly the same magnitude and they are significantly
larger than cloud-free pixels. According to the optimization
problem (13), the max absolute value of s is bounded by h.
Thus, the closer h is to the zero vector, such as cloud-free
candidate groups, the higher possibility ‖s‖∞ is to be zero

Fig. 4. Plain RPCA decomposition of cloud image. (a) Original cloud image.
(b) Low-rank component. (c) Spare component. Red circular curves: sampling
region of cloud, cloud-free, and shadow.

Fig. 5. Value distribution of sampled pixels in sparse component S as marked
in Fig. 4.

with fixed ω, which acts as a shrinkage operator to force s
to zeros. In addition, though cloud-free candidate groups are
more likely to be set as zeros, one global balance value for all
groups in the whole sequence is insufficient to segment cloud
groups and cloud-free groups accurately as it always favors the
most prominent features (i.e., the groups in images with large
illumination variations). Therefore, we introduce a groupwise
weight to punish such bias and facilitate the shrinkage to more
accurately detect cloud candidate groups.

As for minimizing (13), a larger ω diminishes ‖s‖∞ with
fixed h, which can also shrink the group s to zeros. λ is
a balance value to a tradeoff between low-rank and sparse
components, so aggressive values are set for wi

j . We design
groupwise weight wi

j as 1/‖Sgi
j
‖∞̂/‖Sj ‖∞, and we define

‖Sgi
j
‖∞̂ as a pseudo ‖ · ‖∞ norm, which is the max value

of a group of variables after clipping the extreme values with
a ratio number. On the one hand, cloud candidate groups are
weighted with lower values because of higher ‖Sgi

j
‖∞̂ and

cloud-free candidate groups are weighted with higher values
because of lower ‖Sgi

j
‖∞̂, which will promote their separation

by shrinkage. On the other hand, we normalize each group
weight according to the image it belongs to by ‖Sj‖∞. This,
within image normalization, is crucial since the illumination of
every image is different, and it will always favor the prominent
groups among the whole sequence without such normalization.
In addition, using a pseudo norm to generate the groupwise
weight makes it more robust to noise entries with fairly large
magnitude.

Now, we investigate how to update τ with respect
to 	τ . The constraint D ◦ τ = L + S + N is nonlinear.
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Following [27] and [33], we approximate this constraint by
linearizing around the current value of τ . At each iteration,
we have D ◦ τ = D ◦ τ̂ + Ĵτ (	τ ), where Jτ is the Jacobian
matrix ∂D/∂τ |τ=τ̂ . Thus, τ can be updated as follows:

τ̂ = τ̂ +min	τ

∥∥∥∥D ◦ τ̂ + Ĵτ (	τ )− L̂ − Ŝ − N̂ + 1

μ
Y

∥∥∥∥2

F
. (16)

The minimization of 	τ in (16) is a weighted least squares
problem that has a closed-form solution. To accelerate the
convergence, we initialize τ by roughly aligning each image
D j to the middle one by the multiresolution method in [34].

Finally, we summarize the whole nonoverlapping GRPCA
in Algorithm 1. We initialize L, S, N to zeros and set
μ0 = 2/‖D‖2, ρ = 1.5 and J (D) = max(‖D‖2, γ−1‖D‖∞).

Algorithm 1: Nonoverlapping Group Sparse RPCA

Input: Matrix D ∈ Rm×n , SLIC superpixel labels, positive
scalar λ, γ ;

Output: low-rank L, sparse S and N , transformation τ
1 Initialize: τ̂ = τ0 (prealigned), L0, S0, N0,Y0 =

D/J (D), μ0 > 0; ρ > 1; k = 0.
while not converged do

2 // Lines 4-5 solve Lk+1 =
arg minL f (L, Sk , Nk , τ̂ ,Yk , μk)ï¼›
(U,�, V ) = svd(D ◦ τ̂ − Sk − Nk + μ−1

k Yk);
Lk+1 = U Sμ−1

k
[�]V T ;

// Line 7 solves Sk+1 = arg minS f (Lk+1, S, Nk , τ̂ ,Yk, μk);
Sk+1 = prox(Sg);
// Line 9 solves Nk+1 =
arg minN f (Lk+1, Sk+1, N, τ̂ ,Yk , μk);
Nk=1 = Sγ /μk (D ◦ τ̂ − Lk+1 − Sk+1 + μ−1

k Yk) // Line 10
and 11 updates τ̂ ;
	τ = min	τ ‖D ◦ τ̂ + Ĵτ (	τ )− L̂ − Ŝ − N̂ + μ−1

k Yk‖2F ;
τ̂ = τ̂ +	τ ;
Yk+1 = Yk + μk(D ◦ τ̂ − Lk+1 − Sk+1 − Nk+1);
μk+1 = ρμk;
k ← k + 1;

3 end
4 Output:L, S, N, τ̂

D. Discriminative RPCA for Cloud Removal

The low-rank component generated in the first GRPCA step
is far from the cloud-free reconstructed result that we expect.
It is either too smooth or ghostly with a single balance value
λ as discussed in [15]. For the purpose of reconstructing
cloud contaminated images, we hope to recover pixels in
cloud and shadow region while maintaining original cloud-
free pixels at the same time. Therefore, as proposed in [15],
we assign different balance values for cloud and shadow pixels
and cloud-free pixels according to the initial region obtained
in the first GRPCA step, which we name it as DRPCA.
Within the cloud-covered region, a lower balance value ensures
that all cloud- and shadow-polluted pixels will be thoroughly
decomposed into sparse outlier matrix without leaving any

ghostly presence in the background, yet not incurring a large
false positive rate. On the other hand, for the cloud-free region,
we set a relatively large value to guarantee original cloud-free
information maintenance.

We present a concise review of DRPCA algorithm here as
a matter of convenience. In the reconstruction step, the new
formulation is defined as

min
L ,S

‖L‖∗ + α‖P(S)‖1 + β‖P−(S)‖1
s.t. D̂ = L + S (17)

where D̂ denotes observed matrix after transformation and
D̂ = {vec(I1 ◦ τ1), vec(I2 ◦ τ2), ..., vec(In ◦ τn)},  is the
cloud and shadow mask obtained in the first step, − denotes
cloud-free region, and α and β are the two discriminative
balance values. Similar to (4), (17) remains a constrained
convex optimization problem, and we apply inexact ALM to
solve it. For more details, readers can refer to our previous
work [15].

IV. EXPERIMENTS AND DISCUSSION

A. Experiment Settings

Our experiments were conducted on simulated and real
cloud images. The simulation experiments were comprised of
two parts, aiming to demonstrate our method in handling mis-
aligned image sequence and compare reconstruction accuracy
with other methods, respectively. The real image experiments
aimed to specify the improvement related to group sparsity in
initial cloud region detection. To demonstrate the performance
of the proposed coarse-to-fine framework, we chose Landsat-
8 Operational Land Imager (OLI) and Sentinel-2 scenes to
form our data sets due to their convenient access. All the
Landsat-8 OLI images used in our experiments are Landsat-
8 natural-look products that are compressed and stretched to
create an optimization for image selection and visual interpre-
tation. The Landsat-8 natural-look color image is composed of
three bands (bands 4, 5, and 6)1 and the reflectance values are
scaled to 1 ∼ 255 range using a gamma stretch with a gamma
of 2. The stretch is designed to emphasize vegetation without
clipping the extreme values. The Sentinel-2 images are top of
atmosphere (TOA) products downloaded from Google Earth
Engine, and we use false color Sentinel-2 images (composed
of bands 3, 4, and 8)2 in our experiments.

In all our simulation experiments, only Landsat-8 images
were used. The Landsat-8 OLI image products in Tier-1 level
are well registered to subpixel level. To simulate a misaligned
image sequence, we randomized six affine transformation
parameters and warped each image to a new projected frame
except for the middle image in the sequence. The images in
each sequence were cropped from original Landsat-8 scenes
with the size of 518 × 518 pixels. In the experiments of
reconstruction comparison, for the reason that real clouds and

1The spatial resolution of Landsat-8 bands 4, 5, and 6 is 30 m and their
wavelengths are 0.636–0.673, 0.851–0.879, and 1.566–1.651μm, respectively.
For more details, refer to the website (https://Landsat.usgs.gov/).

2The spatial resolution of Sentinel-2 bands 3, 4, and 8 is 10 m and their
wavelengths are 560, 665, and 842 nm.
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shadows are fairly hard to simulate, we alternatively drew
clouds in each image with pure white shapes and ignored the
effect of cloud shadows. As for real image tests, we cropped
block from real cloud satellite images to form cloud image
sequence, and the cloud contamination rate of each block
image ranged from 1% to 50%. In addition, in order to
test the robustness of our method, real image experiments
were conducted on three Landsat-8 sites with different land-
cover types and two Sentinel-2 sites with respect to urban
and mountain area. The sequence simulated for misalignment
experiment was composed of 28 frames. The numbers of
images in three simulated sequences in reconstruction accuracy
comparison were 28, 22, and 23, respectively. In real image
experiments, the three Landsat-8 sequences were composed
of 30, 32, and 28 images, and the numbers of two Sentinel-2
sequences were 32 and 17, respectively. The time interval
between images in the same sequence ranges from one cycle3

to several cycles.
As for parameters setting of our method, we first set two

constant parameters of the SLIC method at the preprocessing
step. The desired number of superpixels for an image is set
to the minimum value of its rows and columns, and the
compactness factor is set to 30. At coarse detection step,
the balance values, λ and γ , were set to 0.2 and 1/

√
max(m, n),

respectively. The stop criterion of Algorithm 1 is ‖D ◦ τ −
L− S− N‖F /‖D‖F < 10−5. At the final reconstruction step,
all parameters were set as the same as those in [15]. More
specifically, in order to make the proposed method robust to
noiselike large magnitude outliers, we set a ratio value to 0.1 to
select pseudo max value in each group, i.e., ‖·‖∞̂ was the ratio
indexed largest value in a group when computing groupwise
weights.

B. Test on Simulated Sequences

1) Misaligned Sequence: To verify the ability to handle
the misaligned image sequence of the proposed framework,
we first experimented on a sequence of simulated misaligned
images. As shown in Fig. 6(a), the misalignment between
images is large. We simulated the transformation for images in
the sequence except for the middle frame. Since all other cloud
removal methods are based on the assumption that the target
cloud image and the reference images are well aligned (i.e.,
subpixel-level aligned), we did not compare the reconstruction
accuracy at this stage and left it to the next part. When
estimating transformation parameters, the solution of weighted
least square problems may converge to a local minimum value.
Therefore, we initially prealigned images to the middle frame
of the sequence to facilitate convergence and avoid being
trapped in a local minimum as well. As shown in the last
row of Fig. 6, we applied no transformation on the middle
frame to better visualize the differences between images before
and after alignment. As we can see, the proposed method
transformed all the images very close to the middle frame.
Cloud and shadow regions were properly detected without

3The Landsat-8 collects images of the Earth with a 16-day repeat cycle.
The Sentinel-2 revisits the same place in every 5 days.

Fig. 6. Experiments on simulated misaligned sequence. The last row is
the middle frame with no simulated affine transformation. (a) Simulated
misaligned images with random affine transformation. (b) Well-aligned images
after GRPCA combined with geometrical transformation. (c) Detected initial
cloud and shadow masks.

any postprocessing, which demonstrated the feasibility of our
GRPCA method for processing misaligned sequences.

Moreover, we evaluated the precision of the estimated
transformation parameters. The evaluation was conducted by
calculating the root-mean-square error (RMSE) of the affine
transformation error of pixels in each image. Specifically,
given (x ,, y,) = f (x, y) denoting 2-D affine transformation,
we set d S = (x , − x)2 + (y, − y)2

(1/2)
as affine transforma-

tion error of each pixel. As shown in Fig. 7(a), the RMSE of
affine transformation error of original images in the sequence
ranged from 10 to 23 pixels, and the estimated transformation
error by our method highly coincided with the simulated
ground truth. Fig. 7(b) shows the relative accuracy of the
estimated and the simulated transformation error, which is less
than 0.1 pixel for all images in the sequence, demonstrating
the superior performance of our method. A sequence of well-
aligned images and their cloud masks were generated at this
stage, which would be used in the DRPCA step for the final
cloud removal and reconstruction.
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Fig. 7. Evaluation of the precision of estimated affine transforma-
tion parameters. (a) Comparison of RMSE of affine transformation error.
(b) Relative error between estimated and simulated transformations.

2) Reconstruction Accuracy Comparison: After the coarse
detection of clouds and their shadows in the first step,
we applied DRPCA method to finely reconstruct the missing
information contaminated by clouds and shadows. To evaluate
the accuracy of our reconstruction approach, and compared
to our previous work [15], another representative method,
i.e., similar-pixel-based spatial and temporal weighted regres-
sion (STWR) was included for comparison. For the Poisson
information clone (PIC) and PM-MTGSR methods, due to
their dependence on cloud-free images, we manually chose the
best suitable reference images for them. The same reference
images were also used to generate direct pixel replacement
(PR) results to visualize the radiometric difference. As shown
in Fig. 8, all four approaches achieve visually plausible recon-
struction results and exhibit no obvious discontinuity over
cloud and shadow boundaries. More importantly, compared
to the original cloud-free images, our reconstruction results
show slightly better consistency with the remaining cloud-
free region than the other three methods most of the time.
This indicates that information reconstruction modeled by low-
rank is more powerful to maintain consistency over the entire
image. Furthermore, to quantitatively assess the reconstruction
accuracy of the four methods, RMSE, peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) are used
to evaluate their reconstruction accuracy. As shown in Table I,
compared to the other three methods, the proposed DRPCA
has an overall win except for the Image 3 in reconstructing
cloud-contaminated sequence images. In our reconstruction
experiments, Image 3 is the first image in its sequence,
i.e., the earliest acquired image, it differs the most compared to
other images. Based on the low-rank assumption, our DRPCA
method recovers the contaminated areas through iterative
SVD, which will tend to favor those principal components of
the remaining cloud-free counterparts in the sequence. There-
fore, the reconstruction result of Image 3 by the DRPCA may
be slightly worse than other methods with selected reference
images.

In addition, we presented an efficiency evaluation of the
four methods. Three images with different cloud-cover rate
were selected in each sequence to calculate their reconstruction
time. Since DRPCA recovers a sequence of images one time
so that the time of reconstructing a single image is divided by
the total number of images. The STWR method iteratively

TABLE I

QUANTITATIVE ASSESSMENT OF FOUR DIFFERENT RECONSTRUCTION
METHODS. IMAGES 1–3 ARE RELATED TO SIMULATED CLOUD IMAGES

IN FIG. 8(a). THE BEST EVALUATION VALUES BETWEEN THE

THREE METHODS ARE HIGHLIGHTED

TABLE II

EFFICIENCY COMPARISON BETWEEN PIC, PM-MTGSR, AND THE
PROPOSED DRPCA. THE NUMBER OF IMAGES IN EACH SEQUENCE

IS 28, 22, AND 23, RESPECTIVELY

reconstructs each cloud image until all cloud-contaminated
images are recovered; therefore, its time is calculated by divid-
ing the whole time with the number of cloud target images.
As shown in Table II, our method spent the least amount of
time and is independent of the cloud-cover rate compared
to the three other methods. This is because the DRPCA
iteratively recovers the whole cloud sequence by one SVD
and one soft-thresholding step each time, and it converges
within less than 15 iterations when processing sequences of
about 30 images as we find in our experiments. On the other
hand, other methods essentially reconstruct one target image at
each time. PIC reconstructs each image by solving a group of
Poisson equations with boundary constraints, which is time-
consuming when cloud size and the number of boundaries
increase. STWR iteratively recovers cloud images patch by
patch so that its reconstruction time increases along with
cloud-cover rate and number of cloud patches and images. The
PM-MTGSR method spends too much time for reconstruction
due to dictionary learning and sparse coding. In summary,
DRPCA achieves a tremendous improvement of reconstruction
efficiency in dealing with cloud remote sensing sequence, and
guarantees a high-quality reconstruction accuracy as well.

C. Real Images Test

After demonstrating the outperformance of the DRPCA
method in reconstructing cloud contaminated region, at this
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Fig. 8. Three cloud removal examples of the simulated data. (a) Original cloud-free images prepared for simulation. (b) Simulated cloud images. (c) Result of
direct PR of the reference image, which is presented to show the radiometric difference between images. (d)–(g) Cloud removal results of PIC, PM-MTGSR,
STWR, and our method, respectively.

stage, we focus on specifying the improvement of the proposed
GRPCA comparing to the plain RPCA in initial cloud and
shadow region detection. In our previous work [15], a plain
RPCA was utilized followed by several morphological opera-
tions to generate initial cloud and shadow region. However,
it has two drawbacks. First, an empirical threshold should
be properly set to obtain a binary mask from the sparse
component S of plain RPCA. Second, a combination of several
morphological operators is required to eliminate noise and
to over-cover clouds and shadows, which would absorb in
more cloud-free pixels. As shown in Fig. 9, initial cloud and
shadow masks generated by plain RPCA over-cover more
cloud-free pixels than those of GRPCA because of mor-
phological operations. The proposed GRPCA can obtain the
crisper region of clouds and shadows profiting from superpixel
good approximation to cloud boundaries. Thanks to group
shrinkage, no additional thresholding process is required and
the initial mask is generated directly by binarizing the group-
sparse component. In addition, benefiting from pseudo ‖ · ‖∞̂
norm, some noiselike large magnitude sparse outliers that
cannot be eliminated by morphological operations are cleaned
up by GRPCA as shown in Fig. 9. In short, the proposed
GRPCA method can generate crisper cloud and shadow masks
and is robust to some noiselike noncloud sparse outliers as
well.

To test the robustness of the coarse-to-fine framework for
cloud removal in real remote sensing sequences, we exper-
imented on three Landsat-8 sites that contained homoge-
neous and heterogeneous land-covers, and two Sentinel-2 sites
located at urban and mountain area, respectively. In the first
Landsat-8 site, an urban area containing artifacts and rivers
was tested. This scene has some land-cover changes, such
as variation of water level and new buildings. As shown
in Fig. 10, except for clouds and shadows, two regions of
new buildings are falsely detected as outliers marked by red

Fig. 9. Comparison of initial cloud and shadow masks. (a) Real cloud images.
(b) Mask generated by plain RPCA. (c) Mask generated by GRPCA method.

box. The reason is that these kinds of land-cover changes
could not fit into a low-rank background model so that they
were decomposed into the sparse component. Their magnitude
in sparse component was too large to be distinguished from
clouds and shadows. That is to say, our method may be prone
to reconstructing such land-cover changed regions by mistake
with high possibility.

For the second Landsat-8 site, we investigated a moun-
tain area where land-cover was fair homogeneous over the
scene and existed few land-cover changes. In such area,
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Fig. 10. Experiments on Landsat-8 images site 1 that contains mostly urban
area. (a) Real cloud image. (b) Reconstructed cloud-free image. (c) Initial
cloud and shadow masks of TRPCA. (d) Initial cloud and shadow masks of
GRPCA.

Fig. 11. Experiments on Landsat-8 images site 2 that contains mainly
mountain area. (a) Real cloud image. (b) Reconstructed cloud-free image.
(c) Initial cloud and shadow masks of TRPCA. (d) Initial cloud and shadow
masks of GRPCA.

even though seasonal changes may happen which could turn
a bare land to a green land, these changes are usually
moderate compared to those of clouds and shadows. Unlike
new buildings of which change magnitude is often coinci-
dent with clouds, the related values of land-cover changes
in mountain area are small in sparse component. It is rea-
sonable to filter them off when performing shrinkage in
estimating group-sparse outliers. As we can see in Fig. 11,
all clouds and their shadows are included in the initially
detected mask, and less redundant cloud-free regions are
absorbed in.

The last Landsat-8 site was located in a suburban area
that contained mainly farmland and mountain. The seasonal
changes may occur in a large region in such scene. Except for
unusual sudden changes such as cloud-polluted water or river
flood, most of the land-cover changes are often smooth
enough to be ignored in the sparse component as discussed
in the experiment on the second site. As shown in Fig. 12,
crisp cloud and shadow regions are detected through the
proposed GRPCA method. However, there are groups of pixels
that are falsely detected as clouds, marked in the red box.
The reflection of thick cloud on the water surface makes
them very different from the general water surface in other
images, leading them to be segmented as clouds with high
possibility.

Fig. 12. Experiments on Landsat-8 images site 3 that is located at a suburban
area. (a) Real cloud image. (b) Reconstructed cloud-free image. (c) Initial
cloud and shadow masks of TRPCA. (d) Initial cloud and shadow masks of
GRPCA.

Fig. 13. Experiments on two Sentinel-2 sites located at mountain area and
urban area, respectively. (a) Real cloud image. (b) Reconstructed cloud-free
image. (c) Initial cloud and shadow masks of TRPCA. (d) Initial cloud and
shadow masks of GRPCA.

On the two Sentinel-2 sites, their results are similar to those
of Landsat-8 scenes. As shown in Fig. 13, clouds and shadows
are well detected with less unwanted cloud-free pixels com-
pared to the TRPCA method. In the mountain area site, cloud
regions are properly over-covered. With regards to the urban
area site, two changed regions with large magnitude are falsely
detected as discussed before. Above all, the performance of
our coarse-to-fine cloud removal framework depends greatly
on the first GRPCA step. Given proper cloud and shadow
masks, DRPCA can recover cloud contaminated regions with
high accuracy and efficiency. However, the low-rank-based
method is prone to falsely detect land-cover changes with large
magnitude as clouds in some cases.

Finally, we also present several zoomed-in views of the
reconstructed results. In most cases, the proposed GRPCA
can generate crisp cloud and shadow masks. The shape of
initial masks depends greatly on superpixels segmented by
SLIC method that can always adapt well to natural objects.
As shown in Fig. 14, the initial masks not only cover all cloud
and shadow regions but also adapt to their shapes well with
little cloud-free pixels being absorbed in. As long as the cloud-
contaminated areas are completely included in the detected
masks, our method can reconstruct visually plausible cloud-
free images.
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Fig. 14. Zoomed-in view of the reconstruction results of real images.
(a) Zoomed-in view of real cloud images. (b) Zoomed-in view of initial
mask of clouds and shadows. (c) Zoomed-in view of reconstructed cloud-
free images.

V. CONCLUSION

In this paper, we have developed a novel coarse-to-fine
framework to remove clouds and shadows in a remote sensing
image sequence. The proposed method takes spatial coherence
into consideration and adopts superpixel to cluster object
pixels. Group-sparsity-constrained RPCA is proposed to detect
initial cloud and shadow regions without any further post-
processing. Specifically, we apply nonoverlapping groups and
design groupwise weights to facilitate segmentation between
cloud and cloud-free groups. Significant improvement of the
proposed group-sparse RPCA has been demonstrated in real
image experiments compared to the plain RPCA. Moreover,
we have enabled our method to handle misaligned sequence
images, which has never been discussed by other methods,
and experiments also verify the feasibility of such extension.
Significantly superior to the available methods, neither cloud-
free reference image(s) nor specific operations of cloud and
shadow detection are required in our method. Quantitative
experiments demonstrate that the proposed method recovers
the cloud images with high accuracy compared to several
state-of-the-art representative methods. In addition, essentially
different from other methods, our method processes a batch of
images and exhibits a tremendous efficiency improvement than
all other methods. On the other hand, the proposed method can
generate a crisp cloud and shadow detection results, which can
also be used for other applications. That is to say, we combine
two traditional works (i.e., cloud and shadow detection and
image restoration) into a whole, showing great potential to be
applied in remote sensing image processing.

Meanwhile, there is still some room for improvement.
As discussed in the experiments part, our method is prone
to falsely detect land-cover changes with large magnitude as

clouds. The reason is that most of these changes have large
values in the sparse component, which cannot be filtered off
through our ‖·‖∞ norm even if introducing a ratio index. Thus,
more insightful contextual information or spectral information
should be incorporated for more robust cloud region detection
in future works. In addition, due to the limitation of data
acquirement, we have not tested our method on real misaligned
image sequences. In the future, based on 2-D transformation,
it is worth extending the method to process images from
different optical sensors with similar resolution.
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