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A B S T R A C T

Mismatch detection is a key step in the geometric correction of satellite images. However, most RANSAC-based
mismatch detection methods face two problems in practical application, i.e., how to preset the threshold when
the apriori matching accuracy is not known and how to validate the correctness of the results when the pro-
portions of true matches are very low. In this paper, we propose an a-contrario method named ORSA-SAT to
remove the mismatches for two-view satellite images by finding the most meaningful set of matches. The for-
mula first is defined to compute the geometric rigidity of a set of point matches according to the image match
search area with the matching accuracy measured by the maximum point-to-epipolar-line distance. Then, the
meaningfulness of a set is rated by a probabilistic criterion that estimates the number of false alarms (NFA),
which indicates the expected times that a set can be found by chance from non-rigid and randomly distributed
matched points. The criterion is a function of the quantity of point-matches and the geometric rigidity and is
used in ORSA-SAT for comparing two sets. The true matches are collected by finding the most meaningful set;
thus, no preset thresholds are needed to separate the true matches and the mismatches. Furthermore, the cri-
terion also justifies the correctness of the sets obtained by ORSA-SAT since rigid sets rarely occur from mis-
matches. In this paper, we use both simulated data and real matched points on images captured by IKONOS-2,
ZY-3, and Landsat-8 to demonstrate ORSA-SAT. The results of the simulated experiments show that both the
precisions and the recalls were ensured above 80% in the correct results of ORSA-SAT even though there were
over 90% mismatches originally.

1. Introduction

Since the launch of the Ikonos satellite in 1999, enormous techno-
logical progress has been made in high-resolution remote sensing image
acquisition. However, despite the rapid development of direct posi-
tioning and orientation technology, the mosaicking errors of satellite
images still remain even as the ground resolution continues to improve
with the progress in sensor manufacturing and data storage. Past efforts
to improve geo-referencing accuracy after image acquisition have stu-
died and tested many methods with a rigorous sensor model (RSM)
(Dowman and Michalis, 2003; Fritsch and Stallmann, 2000; Toutin,
2003) or a rational polynomial camera (RPC) model (Fraser et al., 2006;
Grodechi and Dial, 2003; Tao and Hu, 2001; Teo et al., 2010; Toutin,
2004a, 2004b; Xiong and Zhang, 2009; Zhang et al., 2016; Zheng and
Zhang, 2016). Most of these methods need reliable corresponding
points to recover the geometric relationship of the satellite images and
to improve their geo-referencing accuracy. In most cases, the auto-
matically matched point correspondences include mismatches which

will do harm to the geometric correction (Ling et al., 2016). In this
paper, we introduce a new method that filters the mismatches as out-
liers and supplies a criterion to justify the correctness of the results, i.e.,
the sets of inliers.
Automatic image matching methods have been extensively studied

in the past few decades, most of which can be classified as either fea-
ture-based methods or area-based methods. Feature-based methods
have three main steps: feature extraction, feature description, and
feature matching. The features that can be used for image matching
include points, lines, line-segments, and junctions. Scale invariant scale
transform (SIFT), introduced in (Lowe, 2004), is one of the most widely
used feature matching methods. A large number of variants have been
based on or inspired by SIFT, e.g., speeded up robust features (SURF)
(Bay et al., 2008), PCA-SIFT (Ke and Sukthankar, 2004), and ASIFT
(Morel and Yu, 2009). When matching satellite images, the differences
in the optical properties of the sensors and the acquisition dates can
result in significant spectral changes for the same locations. Thus, many
variants have been developed based on SIFT to overcome the non-linear
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spectral transform, e.g., SAR-SIFT (Dellinger et al., 2015), adaptive
binning SIFT (AB-SIFT) (Sedaghat and Ebadi, 2015), support-line based
method (Li et al., 2017), and the uniform competency (UC) local feature
extraction method (Sedaghat and Mohammadi, 2018b). Area-based
methods, on the other hand, use the intensity information to measure
the similarities between two image windows; and by sliding the
matching window, the pair of windows having the highest similarity
scores will be considered as corresponding locations (Kasser and Egels,
2002). There are also area-based methods that use mutual information
(Chen et al., 2003) or frequency domain information (Chen et al., 1994;
Foroosh et al., 2002). The main drawback of the area-based methods is
that they are sensitive to the changes caused by scale variants, rota-
tions, or viewpoint changes. However, when matching satellite images,
these geometric changes can be recovered by ortho-rectification of the
images with their initial geo-referencing models and a digital elevation
model (DEM). Thus, the area-based methods are widely used in satellite
image matching since most of them are more efficient than the feature-
based methods. Some studies, targeted on matching different types of
geographic data like DEMs, SAR images and vector data, combines the
feature matching strategy and the area or the phase information (Fan
et al., 2018; Sedaghat and Naeini, 2018; Ye et al., 2018). In the ex-
periments presented in this paper, the satellite images were matched
with a normalized correlation coefficient (NCC) matcher. When only
the highest NCC score was accepted, we obtained one-on-one point-
matches. When all the NCC scores over a certain threshold were ac-
cepted, we obtained one-on-multiple point-matches. Both the one-on-
one match sets and the sets of one-on-multiple matches were considered
and analyzed by the proposed method.
The results of image matching inevitably will include mismatches.

The matching of two satellite images acquired over some special land-
forms can be rather challenging and the proportion of mismatches may
be very high. Those mismatches should be filtered to avoid disturbing
the geometric correction. The current mismatch filtering strategies
mainly fall in one of two categories: nonparametric methods and
parametric methods. The nonparametric methods, which consider
photometric constraints or geometric constraints or both, can be used in
both rigid image matching and non-rigid image matching (Ma et al.,
2015a, 2014; Torresani et al., 2008; Zhao et al., 2013; Zhou et al.,
2016). Local geometric constraints are often used in nonparametric
methods (Sedaghat and Mohammadi, 2018a). The parametric methods
are based on a hypothesize-and-verify framework. First, it is hypothe-
sized that the point-matches obey a parametric geometric relationship.
Then, solving the parametric model is attempted with the matches.
Finally, the optimal subset is found, which is the highest number of
possible matches that accurately obey the parametric geometric model.
Empirically, if the proportion of mismatches is less than 20% and the
scales of the gross errors are limited, the mismatches can be eliminated
by solving the parametric model with the least-square method (LSM)
and a robust loss function. However, when the proportion of errors
exceeds 20%, more robust methods must be used, such as RANSAC
(Fischler and Bolles, 1981) and its variants (Chum and Matas, 2005; Ma
et al., 2015b; Raguram et al., 2013; Torr and Zisserman, 2000).
In most cases, the correspondences of the satellite image points are

searched within small search regions and thus the geo-location errors of
even mismatches are only pixels or tens of pixels (Xiong et al., 2013). As
a result, the nonparametric methods, which generally do not use strict
geometric constraints, are not suitable for satellite images. An accurate
and simple parametric model is needed for the parametric methods to
accurately filter out such mismatches. The RANSAC-based methods
usually need a simple parametric model; otherwise, the computation
may be rather inefficient. For satellite images, the RSM and RFM
models are too complicated. The most commonly used method is to use
a digital elevation model (DEM) to map the points from one image onto
another image-space in two steps: back-projection and reprojection.
Then, with the corresponding points on the same image-space, a 2D
affine transformation, which has only six parameters, can be used to

model their geometric relationship. This model was originally used for
RFM refinement with GCPs (Grodecki and Dial, 2003). The elevation
errors in the process of back-projection caused by the error in the DEM
and the initial geo-reference is propagated in the process of reprojection
(Zhang et al., 2016). For high-resolution image-pairs that also have a
large convergence angle, such error propagation should not be ignored
since it is almost the same scale as the geo-location errors of the mis-
matches. (Wan and Zhang, 2017) introduced a P2L method that uses an
epipolar-line-segment (ELS) constrained model to resolve this issue.
Their model utilized the epipolar geometry of satellite images while
considering the elevation uncertainty in the back-projection. Thus, the
result of the process of back-projection and reprojection is an ELS rather
than a point. After applying the affine transformation, the distances
between the ELSs and the corresponding points are used as residual
errors. This model has been demonstrated to be effective in the
RANSAC method to filter out mismatches and avoid the influence of
elevation error. However, this method still uses a fixed threshold of
geometric accuracy to judge inliers and outliers. This threshold should
be preset according to the apriori error of the geometric model. The
apriori error is difficult to estimate especially when non-linear distor-
tion exists.
In this paper, we offer a probabilistic definition for the rigidity of a

set of point matches and propose an a-contrario method to remove
mismatches by finding the most meaningful subset. The paradigm of a-
contrario mismatch removal was initially proposed by (Moisan and
Stival, 2004) for detecting rigid point matches between two frame
images. The authors designed a probabilistic criterion to detect the ex-
istence of a rigid motion between two sets of point matches that permits to
decide whether these points are independent or if they are correlated by a
rigid motion. In the case of satellite images, a point-match can be judged
correct if it belongs to a large subset of which all the point matches can
be accurately correlated by an image-space affine transformation be-
cause the existence of such subsets is a large deviation from random-
ness. In the context of a-contrario theory and methods, the mean-
ingfulness of a certain image structure is measured by estimating its
NFAs. In (Moisan and Stival, 2004), the meaningfulness of a set of
point-matches is defined as the expected number of similar sets (that is,
having the same size and at least the same rigidity) in a random uniform
distribution of points. The estimation of meaningfulness combines the
number of points, rigidities, etc., in which the accuracy threshold is not
needed. Such expectation-based (rather than probability-based) for-
mulation for image structure detection was originally developed by
Desolneux et al. (2000, 2007), whereby a structure that cannot happen
by chance under the null-hypothesis will be judged meaningful. This
theory is now widely used in detecting low-level image structures, such
as alignments (Desolneux et al., 2000), line-segments (von Gioi et al.,
2010), vanishing points (Almansa et al., 2003), histogram gaps (Delon
et al., 2004, 2005), contrasted boundaries (Cao et al., 2005; Desolneux
et al., 2001), rigid sets of point matches (Moisan et al., 2012; Moisan
and Stival, 2004), junctions (Xia et al., 2014; Xue et al., 2018), etc.
There are two main contributions to the study presented in this

paper. First, a new parametric method named ORSA-SAT to eliminate
mismatches for satellite images was developed that does not require
presetting the geometric threshold. Second, a criterion was established
to justify the correctness of the results of ORSA-SAT. These two con-
tributions are expected to decrease the amount of work needed and
improve the automation level of the large-area geometric correction
process of satellite images.
The remainder of this paper is organized as follows. Section 2 briefly

introduces the geometric model of the P2L method. Section 3 defines
rigidity and meaningfulness as they pertain to a set of point matches
and introduces the a-contrario method of ORSA-SAT. Section 4 evalu-
ates ORSA-SAT with simulated experiments. Section 5 evaluates the
ORSA-SAT method with real matched points from a few very challen-
ging matching tasks. Section 6 presents the conclusions of this paper.
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2. Epipolar line-segment constraint

2.1. The P2L distance

The fundamental geometric relationship of photogrammetry is the
collinear relationship of the object point, the perspective center, and
the corresponding image location of the object point. The law of col-
linearity yields the epipolar geometry, i.e., the coplanarity of the image
points corresponding to one object point, the two perspective centers,
and the object point. For frame images, the epipolar geometry can be
parametrically modeled in a very simple manner:

=x y x yF( , , 1) ( , , 1) 0T , in which F is the ×3 3 fundamental matrix,
and (x,y,1) and (x′,y′,1) are two corresponding points. Epipolar geo-
metry is useful in the parametric mismatch detection methods for frame
images. However, for pushbroom satellite images, the epipolar geo-
metry cannot be modeled parametrically in such a simple manner be-
cause of the dynamic perspective center. Wan and Zhang (2017) used
the ELS rather than the epipolar line to constrain the relationship of the
corresponding points with the aid of a DEM, which greatly simplified
the parametric geometric model.
Denote l as the region of the left satellite images where the key-

points and r as the region of right satellite images where the key-points
are matched. Denote the matching point set as:

= = …p p i n p p: {( , ) | 1, 2, , , }l r i l l r r (1)

where pl s are the key-points; pr s are the matches of key-points; and n is
the number of matches. The pl s can be back-projected onto the ground
as Pl s through ray-tracing (Sheng, 2005, 2008) with a DEM and the
geo-referencing model of l. When considering the elevation error H
in a ray-tracing procedure, a segment is found on the left ray centered at
Pl, which is denoted as Ll (see Fig. 1). Projecting a left ray onto the right
view, an epipolar-curve is obtained, and by projecting the segment Ll s
onto the right view, the epipolar curve-segments are obtained. Since the
curve-segments are quite short and will cross only tens or hundreds of
scanning-lines, there will not be a salient loss in accuracy when treating
them as straight ELSs, denoted as ll s. Thus, the point correspondences
are transformed as point-to-line-segment correspondences, denoted as:

= = …l p i n l p: {( , ) 1, 2, , , }P L l r i l r r r2 (2)

Note that when matching a digital ortho-map (DOM) with a satellite
image to get GCPs, the DOM should be used as the left image and Ll is
on the vertical direction.
Then, with an affine model that transforms ll s towards pr s, the

geometric error of the i-th point-match are measured by the point-to-
line-segment (P2L) distance, denoted as =d i distance l pA( ) ( ·( ) , ( ) )l i r jA .

lA· l is a line-segment transformed from ll and by the affine model A.
Using the P2L distance to measure the matching accuracy can effec-
tively avoid the influence of the limited uncertainty in elevation. The
drawbacks of this ELS constraint is that some mismatches may occur
that happen to have small P2L distances. The definition of point-to-line-
segment distance is illustrated in Fig. 2.
Then, with a threshold δ, the inliers can be collected by comparing

the P2L distance and δ:

= p p d iA( ) {( , ) ( ) }l r i A (3)

2.2. Estimating the affine transformation

An affine transformation includes six independent parameters,
which is the solution of a ×6 6 linear system or a ×n2 6 linear least-
square minimization problem. At least three point-correspondences are
required to recover the affine transformation. Since the limited un-
certainty of the elevation is considered in the outlier detection of sa-
tellite image matches, only the correspondences between points and
ELSs are considered. Thus, the candidates on the ELSs must be selected
to make up the point correspondences and to solve the affine trans-
formation.
Wan and Zhang (2017) used the equally-divided-points (EDPs) on

the ELSs to make up the point-correspondences, and the number of
EDPs was set according to the length of the ELS (see Table 1). As a
result, in the RANSAC-based robust solvers, one seed set that includes
three point-to-ELS correspondences may construct more than one 3-
point-pair sets and their associated affine transformations. Then, the
consensus set A( ) of each affine transformation is constructed with the
threshold δ. Finally, the optimal affine transformation A is corre-
sponded with the largest consensus set. If there are more than one
largest consensus sets having equal element number, A is corresponded
with the one having the least value of the maximum P2L distance of
inliers.
The RANSAC-based methods still suffer from the guessing element

of setting an appropriate accuracy threshold δ because too many factors

Fig. 1. The epipolar geometry of pushbroom satellite images with a limited
elevation uncertainty (Wan and Zhang, 2017).

Fig. 2. The definition of the P2L distance.

Table 1
The number of EDPs according to the length of ELSs (Wan and Zhang, 2017).

Length of ELS (pixel) 0–5 5–20 20–60 >60

Number of EDPs 1 3 5 7
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are involved. Furthermore, it is not possible to judge whether the re-
sults are correct when the proportions of inliers are quite small, say less
than 20%. Inspired by Moisan and Stival (2004), Section 3 proposes a
criterion that combines the set number and the P2L distance to measure
the meaningfulness of a subset and introduces a random sampling-
based algorithm to detect rigid sub-sets from either one-on-one point
matches or one-on-multiple point matches.

3. Rigid point-set detection

3.1. Measuring rigidity

In this section, the geometric rigidity of a set of two-view point-
matches is measured from the probabilistic point of view. Before that
step, however, it is necessary to know how to compute the probability
of the occurrence of a point-match under the null-hypothesis. The null-
hypothesis, denoted as 0, is that there is no meaningful structure in an
image, e.g., a white noise image. Thus, the points matched on such
images are meaningless. As a result, under 0, the matched locations
on r of the key-points are randomly and uniformly distributed within
their search regions.
The search region is a sub-region of r where pr s are determined for

key-point pl s. When matching natural images, in most cases, the
matching points are searched within the whole image region because
information is lacking about the relative camera pose and the depth of
the field. However, when matching satellite images with the aid of an
initial geo-reference and a DEM, the search region can be limited to a
much smaller range. Although the search region can be in any shape
while matching is conducted, in this paper, a dilation of ELS is used as
the search region since it considers the uncertainty in both the elevation
and the relative orientation error. The search region of the i-th key-
point is defined as:

=dilate l R: (( ) , )i
srch

l i srch r (4)

where Rsrch is the radium of dilation and is determined by the relative
orientation error between the two views of the satellite images.
Obviously, with a smaller search region, the two-view image-matching
is more efficient and the proportions of mismatches are lower.
Define dA( , )i

inl as the inlier region of the i-th point-match with the
affine model A and the P2L distance d. The dA( , )i

inl is on the right
image space r . The points within dA( , )i

inl satisfy:

distance l p dA( ·( ) , )l i (5)

Obviously, the inlier region is a dilation of line-segment lA·( )l i with
a radium d:

=d dilate l dA A( , ): ( ·( ) , )i
inl

l i (6)

The definition of the search region and the inlier region is illustrated
in Fig. 3.
Define an atom event ei(d) as the occurrence of point-matches

p p( , )l r i of which the P2L distance d i( )A is less than d. As is seen in
Fig. 3, when ei(d) occurs, (pr)i must be within both the search region

i
srch and the inlier region dA( , )i

inl . Under the null-hypothesis, since
the pr s are randomly and uniformly distributed, the probability of ei(d)
satisfies:

=Prob d i d area d area
area d area

A
A

( ( ) ) ( ( , ) ) ( )
( ( , )) ( )

i
inl

i
srch

i
srch

i
inl

i
srch

A 0

(7)

Define:

=
= +

AreaRatio i d area d area
d length l d area

A A
A

( , , ): ( ( , )) ( )
(2 · ( ·( ) ) ) ( )
i
inl

i
srch

l i i
srch2 (8)

AreaRatio(i,d,A) is an increasing function of variable d, when area ( )i
srch

and length lA( ·( ) )l i are the constants. In this paper, we chose to compute
the value AreaRatio (i,d,A) rather than the rigorous probability to
measure the accuracy of point-matches to avoid computing the area of
an intersected region. If the point-matches of which the search regions
cross the image border are ignored, the area of the search region can be
computed by:

= +area R length l RA( ) 2 · ( ·( ) )i
srch

srch l i srch
2 (9)

3.1.1. One-on-one point matches
For a set of one-on-one point matches, define the A-rigidity of its

i-th point-match (pl, pr)i as:

=i AreaRatio i d i A( , ): ( , ( ), )A A (10)

Then the A-rigidity of set is defined as:

= i( ): max ( , )
p p

A A
( , )l r i (11)

Using the maximum of αA(i) makes ( )A very selective to outliers.
( )A gives a probabilistic rigidity measurement to under A.
The global rigidity of a set of point matches should be defined with

an affine model A that minimizes the ( )A s. However, finding such an
A is difficult since an infinite number of 2D affine transformations exist.
Here, a more computational process is adopted in which only the affine
transformations determined by one of the possible 3-subsets of are
considered. Thus, the definition of the global rigidity of a set of point-
matches is given as:

Definition 1. A set of two-view satellite image matchings is α-rigid if
an affine transformation A associated to one 3-subset of exists and the
following condition is satisfied:

( )A (12)

In other words, with any affine transformation As which can be
resolved with a 3-subset of , the set is ( )A -rigid. A conclusion,
therefore, can be made that under null-hypothesis 0, the occurrence
of an α-rigid satisfies:

Prob ( ( ) ) n
A 0

3 (13)

Proof of (13): Since is α-rigid, there exists an affine transforma-
tion A associated with a 3-subset of , under which i( , )A is
satisfied with any p p( , )l r i . For the (pl, pr)i associated with A,

=i( , ) 0A and =Prob i( ( , ) ) 1A 0 . For the other (n-3) point-
matches, define d(i,α,A) as the solution of the following equation where
i, A, and α are constants:

=AreaRatio i d A( , , ) (14)

Fig. 3. The definition of the search region and the inlier region.
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According to (8), the function AreaRatio(i,d,A) is an increasing
function with the variable d. Combining (7), (8), (10), and (14):

=
=

=

Prob i Prob AreaRatio i d i
Prob d i d i
AreaRatio i d i

A
A

A A

( ( , ) ) ( ( , ( ), ) )
( ( ) ( , , ) )

( , ( , , ), )

A A

A

0 0

0

(15)

Under the null-hypothesis, all the point-matches are independent
and randomly distributed so:

=Prob Prob i( ( ) ) ( ( , ) )
p p

k

A A0
( , )

0

3
l r i

(16)

3.1.2. One-on-multiple point matches
In some cases, the true match of a key-point may be at the second or

the third most similar location on the right image r . If only the most
similar locations to the key-points are considered, many true matches
may be lost. With some special kinds of image features that are not easy
to match, all the possible matches may be retrieved within the i

srch and
then the correct matches can be selected by geometric constraints.
Denote such a set of one-on-several one-on-multiple point-matches as:

= = … = …p p j m i n: {( , {( ) | 1, 2, , }) | 1, 2, , ,}l r j i i (17)

where n is the number of key-points; mi is the number of point-matches
of the i-th key-point. By the way, with the left key-points transformed
onto the right image-space with H as follows:

= l p l p: {( , { } ) ( ) , ( ) }P L l r j i l i r r i j r2 , (18)

Denote the P2L distance of the j-th point-match of the i-th key-point
under the affine transformation A as:

=d i j distance l pA( , ) : ( ·( ) , ( ) )l i r i jA , (19)

and according to (7), we can easily prove that

Prob d i j d AreaRatio i d A( ( , ) ) ( , , )A 0 (20)

Then we should define i( , )A , the A-rigidity of the i-th one-on-
multiple point-match in , and ( )A , the A-rigidity of . The two
definitions should ensure that we can draw a similar conclusion as is in
(13). Thus, i( , )A is defined as mi times of the minimum area-ratio

=i m AreaRatio i d i j A( , ): · ( , min ( , ), )i
j

A A (21)

because the following inequality is still satisfied as is in (15)

Prob i( ( , ) )A 0 (22)

Proof of (22): According to the definition of i( , )A in (21), and
denoting d(i, α/mi, A) as the solution of equation

=AreaRatio i d mA( , , ) i, the possibility in (22) is equal to:

=

=

Prob i

Prob AreaRatio i d i j m

Prob d i j d i m

A

A

( ( , ) )

( ( , min ( , ), ) )

(min ( , ) ( , , ) )

j
i

j
i

A

A

A

0

0

0

(23)

The possibility that at least one of the d i j( , )A s is no-larger-than d(i,
α/mi, A) is equivalent to one subtracting the possibility that all the
d i j( , )A s are larger than d(i, α/mi, A). Combing (20), we have

= >
=

=

Prob d i j d i m

Prob d i j d i m
Prob d i j d i m
AreaRatio i d i m

m

A

A
A

A A

(min ( , ) ( , , ) )

1 ( ( ( , ) ( , , ) ))
1 (1 ( ( , ) ( , , ) ))
1 (1 ( , ( , , ), ))
1 (1 )

j
i

i
m

i
m

i
m

i
m

A

A

A

0

0

0

i

i

i

i

(24)

According to the inequality m(1 ) 1 ·m that is satisfied with
<0 1 and m

=m m m1 (1 ) 1 (1 · )i
m

i ii (25)

Combining (23), (24), and (25), the inequality of (22) is proved.
Similar to definition 1, the definition of the global rigidity of is

determined. Before that process, it should be noted that the affine
model A associated with a 3-subset of is actually associated with a
triplet of point-pairs selected from the 3-subset of . Within a 3-subset
of , there are m m m· ·i i i(1) (2) (3) numbers of triplets of point-pairs that
can be selected.

Definition 2. A set of two-view satellite image matchings is α-rigid
if an affine transformation A associated to a 3-subset of exists and
the following condition is satisfied:

( )A (26)

According to (22), we can easily prove the following inequality with
a similar manner in the proof of (13):

Prob ( ( ) ) n
A 0

3 (27)

Obviously, when fixing all the mis at 1, the set of one-on-one
point-matches is a special case of set , the Definition 2 degenerates to
the Definition 1, and the inequality (27) degenerates to (13). Thus, the
following analysis targeted to set also considers the cases of .

3.2. Measuring meaningfulness

In the a-contrario methods, whether a structure can be detectable by
human sight in an image is determined by the NFA of similar structures.
The NFA can be estimated as:

=NFA E N Prob E( ) · ( )occur occur 0 (28)

When the condition NFA E( ) is satisfied, event E is ε-meaningful.
If an event is 1-meaningful, the associated image structure is detectable
by human sight. In (28), E is the event when an image structure occurs;
Noccur is the total number of potentially occurring similar events; and
Prob E( )occur 0 is the probability of the occurrence of E under null-
hypothesis 0. Accurate computation of the NFA is can be very com-
plicated. A more frequently used method is designing a simpler for-
mula, denoted as ε(E). When condition NFA E E( ) ( ) is always sa-
tisfied, event E is ε-meaningful when E( ) .
In this section, a formula is defined to estimate the NFA of the

subsets of . Inspired by the theory in (Moisan and Stival, 2004), a
proposition about a subset of satellite image matching set is as follows:

Proposition 1. Denote as a set of n point matches of two-view
satellite images. An α-rigid subset of k point-matches is
judged ε-meaningful if the following condition is satisfied:

= ( )n k n n
k

k N N( , , ): ( 3)· · 3 · · ·set slt
k 3

(29)

The definition of ε(α,n,k) supplies a criterion to compare the
meaningfulness of a subset which has a lot of point-matches but is less
rigid with a subset which has fewer point-matches but is more rigid.

Proof of Proposition 1: In (29), (n-3) is the number of choices of k;

( )n
k is the number of possible subsets with k point-matches from n; k

3
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is the number of possible 3-subsets of used for recovering the affine
transformations; Nset is the maximum number of sets of three point-
pairs selected form the 3-subset of ; Nslt is the maximum number of
affine transformations resolved by the sets of three point pairs. Thus:

( )N n n
k

k N N( 3)· · 3 · ·occur set slt (30)

Combining (27) and (30), proposition 1 is proved by:

=

=
( )

NFA N Prob

n n
k

k N N

n k

( ( ) ) · ( ( ) )

( 3)· · 3 · · ·

( , , )

occur

set slt
k

A A0 0

3

(31)

In (29), Nset is computed by multiplying the three largest mis, and
Nslt is computed by multiplying the pixel lengths of the three longest
ELSs, which is as follows:

=

=
=

=

N t m

N t length l

max( ){ }

max( ){ ( )}
set t i

slt t i

1
3

1
3

(32)

where t mmax( ){ }i is the t-th largest number in the set m{ }i ; and
t length lmax( ){ ( )}i is the length of the t-th longest ELSs among the set

P L2 .
Fig. 4 illustrates the lg(ε1) ∼ (1− k/n) curves of set of one-on-

one point-matches. The maximum (1− k/n) of 1-meaningful sub-sets
becomes lower with smaller n, larger d/Rsrch, or longer lA·( )l , which
means that with a larger uncertainty of elevation or a larger con-
vergence angle, the tolerance of the proportion of outliers becomes
weaker.

3.3. Algorithms

3.3.1. Detect the most meaningful sub-sets
With the definition of ε(α,n,k), which measures the meaningfulness

of the subsets of , the mismatches can be detected by finding the
optimal sub-set that has the smallest ε(α,n,k) because the rigidity of true
matches is far from the randomness under 0. First, the optimal subset
of under the affine transformation A, denoted as A( ), must be
found. There are (2n-1-n-n(n-1)/2) numbers of sub-sets from which
have more than three elements, but not all of them need to be con-
sidered since the combination of very rigid point-matches and poorly
rigid ones are meaningless. Sorting the point-matches according to their
A-rigidities and constructing the subsets from the first k point-matches,
denoted as kA( , ) first must be accomplished. Denote the A-rigidity
of kA( , ) as kA( ( , ))A . The optimal number of k and the

corresponding optimal subset A( ) are defined by:

=

=
=

k k n k

k

A A

A A A

( ) arg min ( ( ( , )), , )

( ) ( , ( ))
k n

A
4,...,

(33)

The workflow of determining the optimal subset A( ) under the
affine model A is described in Algorithm 1 below:

Algorithm 1: get the optimal subset A( )

Input data: ; P L2 ; A
Output: A( ); Alg ( ).

Steps:
1. compute the i( , )A s according to (21);
2. sort the matches according to i( , )A s in ascending order;
3. Alg ( )
4. for k←4 to n do
5. construct kA( , ) with the first k point-matches;
6. compute n klg ( , , ) according to ;
7. if <n klg ( , , ) lg do
8. kA A( ) ( , ); n kAlg ( ) lg ( , , );
9. end_if
10. end_for
11. output A( ) and Alg ( )

Fig. 5 illustrates the k n k kAlg ( ( ( , )), , )A curve, which is drawn
with affine model A resolved by three true matches from set , which
includes 50 artificial point-matches and 250 simulated mismatches. The
procedure for constructing set and the detailed information for the

Fig. 4. The lg(ε1) ∼ (1− k/n) curves of the one-on-one point-matches set, where d=5 pixels; Nset=1; the length lA( ·( ))l is set to 0, 20, 50, or 100 pixels; (a)
n=100, Rsrch=50 pixels, (b) n=100, Rsrch=100 pixels, (c) n=1000, Rsrch=50 pixels;

Fig. 5. (a) The lgε∼ k curve and the lgα∼ k curve. The lowest lgε occurs at
k=52, meanwhile, lgα is −1.94. (b) the precision∼ k curve and the recall∼ k
curve. At the optimal k A( ), 49 true matches out of 50 are involved in the subset
of inliers.
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tested satellite images is provided in Section 4. As shown in Fig. 5, the
A-rigidity of all the true matches are limited and obviously smaller than
the outliers. As a result, the ε declines and the α increases slowly when
more true matches are included with an increasing k when k is under
52. However, when the k exceeds 52, the mismatches begin to be in-
cluded. As a result, the increasing α becomes significant and ε(α,n,k)
ceases the trend of declining and begin to rise.
After obtaining the optimal subset A( ), the set of inliers are ex-

tracted as:

= =p p j i d i jA A( ) {( , ( ) ) ( , ) arg min ( , )}l r j i i
j

A A( , )
(34)

The total number of 3-subsets of is n(n-1)(n-2)/6, which means
that considering all the possible 3-subsets is too time-consuming when
there are hundreds or thousands of point-matches in . Thus, the
random sampling method is used to test as many 3-subsets as possible to
ensure that at least one is made up with true matches. The 3-subset will
be used for solving affine transformations by the method described in
Section 2.2. The workflow of the random sampling process is described
in Algorithm 2 below:

Algorithm 2: random sampling process
Input data: P L2 ; Nset; Nslt

Input coefficients: maximum iteration number Nmax .
Output: ¯ ; lg ; A; .

Steps:

1.
¯ ; ¯ ; A I; ; lg ; N 0iter ;

2. while Niter < Nmax do
3. sampling 3-subsets from P L2 ;
4. resolve = A{ } with the 3-subsets;
5. for_each A
6. process Algorithm 1 to get A( ) and Alg ( );
7. if <Alg ( ) lg do
8. A¯ ( ); Alg lg ( ); A A; ;
9. end_if
10. end_for_each
11. +N N 1iter iter
12. end while
13. generate ¯ from ¯ according to (34);
14. output ¯ , lg , A, and ;

Moisan and Stival (2004) recommended the following optimizing
strategy when the proportion of inliers is very low: add another set of
iterations in which the seeds are sampled only from ¯ which is the
most meaningful subset previously obtained since subsets ¯ usually
had larger proportions of true-matches than the original set of point-
matches. The additional set of iterations affords the opportunity to
obtain 3-subsets comprised of all true-matches and thus more mean-
ingful subsets. The optimizing workflow in Algorithm 3 is as follows.

Algorithm 3: additional random sampling process

Input data: P L2 ; Nset; Nslt; the results of Algorithm 2: ¯ , lg , A, and ;
Input coefficients: maximum iteration number Nmax .

Output: ¯ ; lg ; A; .
Steps:

1.
¯ ; N 0iter ;

2. while Niter < Nmax/10 do
3. sampling 3-subsets from ¯ ;
4. resolve = A{ } with the 3-subsets;
5. for_each A
6. process Algorithm-1 to get A( ) and Alg ( );
7. if <Alg ( ) lg do
8. A¯ ( ); Alg lg ( ); A A; ;
9. end_if
10. end_for_each

11. +N N 1iter iter
12. end while
13. generate ¯ add from ¯ add and A according to (34);
14. output ¯ , lg , A, and ;

3.3.2. Adjust the uncertainty of the elevation
The variable H , measuring the elevation uncertainty in the back-

projection of image points, is determined by two factors: (1) the ele-
vation error of the DEM, (2) the horizontal geo-reference error if the
land is uneven. Zhang et al. (2016) introduced a method to estimate σH,
the a priori elevation error of back-projection. To ensure the true
matches within the search region i

srch, H is usually exaggerated
during the image matching. We suggest using 3σH or even larger value
as H .
Since H is exaggerated, the lengths of ELSs are exaggerated. As a

result, the area of the inlier region, the geometric rigidity measurement,
and the meaningfulness measurement ε(α,n,k) are all larger than what
they should be when computed with an appropriate H , and more
undetected mismatches are present, for which the errors are located
along the direction of the ELSs. The following steps were added to this
process to deal with this problem. First, H is gradually reduced from
its initial value; then, all the ELSs are recalculated according to the
adjusted H . Finally, with each adjusted H , an optimal affine model
and its associated most meaningful subsets is obtained, and by com-
paring the meaningfulness, the optimal H is obtained.
The workflow of the whole algorithm, named as ORSA-SAT, is as

follows:

Algorithm 4: Optimized Random Sampling Algorithm for Satellite Image

Input data: the set ; the initial geo-reference models of the two images; a DEM.
Input coefficients: the uncertainty of elevation H ; maximum iteration number

Nmax .
Output: the optimal set of point-pairs ¯ .

Steps:
1. generate P L2 according to ;
2. compute Nset and Nslt according to ;
3. process Algorithm 2 to get ¯ , lg , A, and .
4. if <size size( ¯ ) ( ) 2
5. process Algorithm 3 to optimize ¯ , lg , A, and .
6. end_if
7. for_each η in …{0. 9, 0. 8, 0. 7, , 0. 1, 0.0}
8. H H·adj

9. generate P L2 according to using Hadj;
10. for_each A
11. process Algorithm-1 to get A( ) and Alg ( );
12. if <Alg ( ) lg do
13. A¯ ( ); Alg lg ( ); A A;
14. end_if
15. end_for_each
16. end_for_each
17. if < 1
18. generate ¯ from ¯ with A according to (34);
19. else
20. ¯
21. end_if
22. output ¯ , lg and A;

4. Simulated experiments

4.1. Experimental data

In this section, two overlapped Ikonos-2 images with 1m ground
resolution and a 38-deg convergence angle are used to examine the
ability of the ORSA-SAT to remove mismatches from a mixture of true
matches and simulated mismatches without knowing the apriori
matching accuracy of the true matches. The effect of adjusting the

Y. Wan, et al. ISPRS Journal of Photogrammetry and Remote Sensing 153 (2019) 123–136

129



elevation uncertainty also was analyzed.
The two images were acquired in Shanxi province in China (see

Table 2). The landscape is mainly flat plateaus and valleys. The ele-
vation varies from about 900m to about 1100m. Fifty point-matches
were artificially collected for which the geo-location accuracy was
better than one pixel. The mismatches were randomly simulated, the
key-points of which were randomly distributed within the overlapped
area on the left image while the matches were randomly distributed
within the search region i

srch of the key-points. The search region i
srch

was the dilation of the i-th ELS and the dilation radius Rsrch (see Fig. 3)
was 30 pixels. The distribution of the artificial matching points is shown
in Fig. 6. Some screenshots of the artificial true matches are shown in
Fig. 7. The 90m-resolution SRTM-DEM was used in the ORSA-SAT and
the uncertainty of the back-projected elevation was set at 30m.

4.2. Influence of the positional error of true matches

In this experiment, different types of positional errors were added to
the geo-location of the matching points to simulate some typical errors

in the optical pushbroom satellite imagery which are caused by lens
distortion, oscillation, CCD installation errors, or other factors. The si-
mulated errors included random error, periodic error, and piecewise
polynomial error. There were six types of positional errors simulated on
the matching points on the right image r :

(1) Error type-1: no additional error was added.
(2) Error type-2: random error under three pixels in both the x- and y-
directions.

(3) Error type-3: periodic error simulated by a trigonometric function
with about 2 Hz frequency and 3-pixel amplitude in both the x- and
y- directions.

(4) Error type-4: a mixture of type-2 (random) error and type-3 (peri-
odic) error.

(5) Error type-5: a piecewise linear error under three pixels in both the
x- and y- direction.

(6) Error type-6: a mixture of type-2 (random) error and type-5 (pie-
cewise linear) error.

The number of simulated mismatches was increased from 0 to 950
so that the initial proportion of true matches, denoted as p, decreased
from 100% to 5%. With a certain type of error and a certain number of
mismatches, the process of data simulation and mismatch detection was
conducted 100 times. Finally, the following values were computed for
evaluating the ORSA-SAT method:

(1) The mean value of lgε(α,n,k)s from 100 times of positional error
simulation and mismatch detection.

(2) The empirical probability of successfully detecting a rigid set of
inliers that has less-than-one ε(α,n,k).

(3) The average recalls. The mean recall rates were calculated with
only valid results, i.e., the optimal subsets satisfying n k( , , ) 1.

(4) The average precisions. The average precision was also calculated
with only valid results.

Fig. 8 illustrates the P2L distances of a set of point-matches, which
included 30% simulated mismatches. The P2L distances were computed
with the optimal affine model A associated with the most meaningful
subset. The trend of the P2L distances of the true matches reveals the
properties of the simulated geo-location error. With error type-1 (see
Fig. 8(a)), the maximum P2L distance of the inliers occurred at about
two pixels, which is close to the apriori geo-location error of the arti-
ficially matched points. With error type-2, -3, and -5 (see Fig. 8(b), (c),
and (e)), the maximum P2L distances of the inliers occurred at about
five to six pixels, which are close to the mixture of the artificial
matching error and either the random error or the periodic error or the
piece-wise linear error. With error type-4 and -6 (see Fig. 8(d) and (f)),
the maximum P2L distances of the inliers occurred at about eight to
nine pixels, which are close to the mixture of the artificial matching
error, the random error, and either the periodic error or the piece-wise
linear error. The results demonstrate that the strategy of finding the
most meaningful subset in ORSA-SAT can effectively filter out the
mismatches from the true matches, regardless of what types or scales of
apriori errors are in the geo-location.
Fig. 9 illustrates the statistic results of the simulation experiment.

The solid lines correspond to using a fixed elevation uncertainty H ,
which means that step 7 through 16 of algorithm-4 are not executed.
The dotted lines correspond to using adjusted H , which means that

Fig. 6. The overlapping area of the two satellite images and the distribution of
artificial matching points.

Fig. 7. Screenshots of some of the artificial matching points.

Table 2
The information of the satellite images used in the simulated experiments.

Image Conv. Ang. (deg) Location Size in pixel (width, height) Acquisition date/time (GMT time)

Left 38 112.7E, 38.0N 11916, 27,640 02/23/02 03:27
Right 112.7E, 38.2N 14096, 33,588 10/05/05 03:44
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the whole algorithm-4 is executed. Obviously, when the H was ad-
justed, the sets of inliers tended to have a lower ε(α,n,k)s with any given
proportion of mismatches; the rigid sets of inliers (that satisfy
ε(α,n,k) < 1) had a higher proportion of mismatches; and the preci-
sions of the most meaningful subsets tended to be higher.
The statistic results demonstrate that the criterion of ε(α,n,k) < 1

can be used to justify the correctness of the most meaningful subsets in
the ORSA-SAT method because, as shown in the third and fourth col-
umns, both the recall rates and the precisions of the results with the H
adjusted were higher than 80% when ε(α,n,k) < 1 was satisfied, re-
gardless of the error types simulated on the geo-location of matching
points and how many mismatches were simulated in the original sets of
point-matches.
The results also show that both the type and the scale of the si-

mulated error on the matching points can influence the ability of ORSA-
SAT to find the rigid sets of inliers. Although error type-2, 3, and 5 had
similar scales, the ε(α,n,k)s of the most meaningful subsets with error
type-3 was obviously larger than those with error type-2 or 5. In con-
clusion, the systematic error, which varies continuously with the x- or
y- coordinates, will do more harm to the mismatch detection than the
discontinuously varying error.

4.3. Influence of the relative orientation error

The relative orientation accuracy of the two-view satellite images is
determined by the geo-referencing model supplied by the vendors.

When the relative orientation error is large, users will need large search
regions to ensure that the correspondences of the key-points are within
their search regions. However, more mismatches will be obtained and
the running time will be long with large search regions.
In this experiment, we added horizontal movements to the left

image introduced in Section 4.1 by modifying its RFM coefficients to
test the ORSA-SAT algorithm under different relative orientation errors.
The 50 artificial matches were still used as true matches, and when
simulating mismatches, we still used the dilation of the ELS as the
search region (see Fig. 3). Since the original RFM of the Ikonos image
has about 5–10m empirical geo-referencing error, the dilation radius
Rsrch, determined by the relative orientation accuracy, increased from
30 pixels to 60 pixels while we added other 0–30m horizontal move-
ments to the left image.
During the expansion of the search region, the ratio between the

number of mismatches and the average area of the search regions was
kept unchanged, which was closer to the reality than that keeping the
number of mismatches unchanged. The reason is that with larger search
region, a key-point that should have no correspondence is more prob-
able to find a false match. Fig. 10(a) illustrates the variations of the
number of mismatches and p (the initial proportion of true matches)
according to the variation of Rsrch. With each value of Rsrch, the simu-
lation and detection of mismatches were done for 100 times and the
average lgε(α,n,k)s, precisions and recalls were then calculated.
Fig. 10(b) and (c) show that there was no increasing or decreasing

trend on the precisions and the recalls although the number of mis-
matches increased from 100 to 310 with the expansion of the relative
orientation error and the search region. Even the lgε(α,n,k)s were very
stable. These results, so different with those in Section 4.2, demon-
strated that the variation of the relative orientation error within a
certain range has very little influence on the results of the ORSA-SAT
algorithm. However, when the radius is too large, say exceeding 50
pixels, the matching process will need more running time and the
proportion of mismatches will increase, which causes the ORSA-SAT
algorithm to need more iterations of random samplings to get an ac-
curate affine model. When the relative orientation is inaccurate, we
suggest to down-sample the images and use a pyramid-matching
strategy.

5. Experiments with real matched points

5.1. Data and procedure

In this section, five image-pairs were chosen and matched by the
NCC matcher to obtain the automatic point-matches. The ORSA-SAT
method and the P2L method were compared to determine their ability
to detect the true matches from the automatic point-matches. Detailed
information about the satellite images is provided in Table 3.
All the matching tasks were challenging. The images of group-1 and

-2 were acquired over unstable landforms, which means the objects on
the land may move slightly during the time intervals between the ac-
quisition dates. The images of group-1 were acquired by the Ikonos-2
satellite over the Taklimakan Desert, which is the second largest flow
desert in the world; and there was a four-year-interval between the
acquisition times of the two images. The images of group-2 were ac-
quired by the Ikonos-2 satellite over the Himalayas, where the snow-
lines move with the variation of temperature in different seasons. The
images of group-3 were acquired over northeastern China. One of the
images was acquired in winter when the land was covered by heavy
snows; the other image was acquired in summer when the land was
covered by thick vegetation. Furthermore, the shadows of the buildings
and trees were much longer in winter than in summer. In group-4, an
Ikonos-2 image (1m GSD) was matched on a reference image (2.5m
GSD), which was ortho-rectified with a ZY-3 panchromatic image and
the SRTM-DEM (90m GSD). The overlapped area was mostly farm land
and villages in central China. Group-4 was the most challenging

(a) error type-1 (b) error type-2

(c) error type-3 (d) error type-4

(e) error type-5 (f) error type-6

Fig. 8. The distribution of P2L distances of a set of point-matches containing
30% mismatches. The P2L distances were computed with the optimal affine
model A from the ORSA-SAT algorithm. Figure (a) through (f) correspond to
the simulated positional error type-1 through type-6. The grey dash-dot lines
indicate the maximum P2L distance of the inliers. Each marker corresponds to a
point-match. TP means true positive; FN means false negative; FP means false
positive; TN means true negative.
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because there was a ten-year-interval between the acquisition dates and
the difference in the acquisition seasons. In group-5, an Ikonos-2 image
was matched on a Landsat-8 panchromatic image. The Landsat-8 image
was downloaded from the website of the U.S. Geological Survey
(landsat.usgs.gov). Since there was a huge gap in the ground resolution,
the Ikonos-2 image was down-sampled to 15m GSD before matching.
The key-points were detected by the Harris corner feature detector

and matched by the NCC-based matching method with an 11*11
matching window. With each image pair, the Harris key-points were
detected from the first image and matched on the second image. The
search region was computed with the initial RFMs and a 90m-resolu-
tion SRTM-DEM while the elevation uncertainty H was set at 30m.
The NCC-threshold δNCC was set at 0.8 and all the matching points
having larger-than-δNCC NCC values remained in set of the one-on-
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Fig. 9. The simulated experimental results. In each figure, the solid line indicates the result of ORSA-SAT with fixed elevation uncertainty H , and the dotted line
indicates the result with H adjusted. In all the figures, the x-axis is (1-p), i.e., the rate of mismatches in the matching points. The figures in the first column show the
curve of mean lgε(α,n,k) and (1-p). The figures in the second column show the curve of success rate and (1-p). The figures in the third column show the curve of mean
recall and (1-p). The figures in the fourth column show the curve of mean precision and (1-p). The figures in each row correspond to one type of simulated error.
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multiple point-matches.
After obtaining the automatic point-matches, they were validated

artificially to obtain true matches. The point-matches, which were hard
to recognize by the human eye or had a larger-than-2-pixel error were
judged as invalid matches. In addition, all the point-matches lying on
the sand dunes in group-1 or lying on the snowlines of the mountains in
group-2 were judged invalid since it was not possible to judge how far
the sand dunes or the snowlines moved during the time intervals be-
tween the acquisition dates. All the point-matches that were close to the
shadows of trees or buildings in group-2 and -3 were judged false
matches since the images were acquired in different season and the
solar attitudes were so different. The numbers and proportions of true
matches are listed in Table 4.
Attempts then were made to detect true matches using both the P2L

algorithm and the ORSA-SAT. When using the P2L algorithm, the
geometric accuracy threshold δ was fixed at three pixels. When using
ORSA-SAT, two strategies were taken: the first strategy was to pick up
the most similar matches from set to populate set of one-on-one
matches, thus the geometric rigidity was computed with (11); the
second strategy was to detect the rigid set of point-matches directly
with set , thus the geometric rigidity of the set of point-matches was
computed with (21). The experiments were conducted in a laptop
having an Intel Core-i7-7700HQ CPU and 8 GB internal memory. No
parallel computing strategy was used when implementing both the al-
gorithms.
Finally, the sets of inliers obtained by the three automatic strategies

were compared with the artificially obtained true matches so that the
precision and the recall rate could be calculated to evaluate the three
strategies.

5.2. Results of the image-pairs on unstable landforms

Table 5 lists the mismatch detection results of the image-pairs in

group-1 and -2, which covered unstable landforms. In group-1, the re-
sults of all the three strategies had poor precisions, i.e., from 39.9% to
42.2%. In group-2, the precisions were also not good, i.e., from 61.1%
to 69.2%. In both groups, the recalls of the results of the ORSA-SAT
algorithm were better than those of the P2L method.
The reason for the low precisions is that the matching results of

group-1 and -2 included three types of point-matches, the corre-
sponding points on permanent objects (see Figs. 11(a) and 12(a)) which
were artificially judged true matches, the corresponding points on
movable objects (see Figs. 11(b) and 12(b)) which were artificially
judged false matches, and mismatches. The second type of matches,
although artificially judged false matches, did not have a random and
uniform distribution. Therefore, the existence of both the first and the
second types of matches can prove a contrario against the null-hy-
pothesis 0 and the a-contrario based method cannot filter the second
type of matches.

5.3. Results of the image-pairs on stable landforms

Table 6 lists the mismatch detection results of the image-pairs in
group-3, -4, and -5, which covered stable landforms. To evaluate the
running time and stability of both the algorithms, we processed with
each strategy and each group for 100 times and calculated the max-
imum, the minimum, and the mean values of the precision, recall,
number of iterations, and time cost.

Fig. 10. The results of the ORSA-SAT with different search regions. (a) the (number of mismatch)∼ Rsrch curve and the p∼ Rsrch curve; (b) the (average
lgε(α,n,k))∼ Rsrch curve; (c) the (average precision)∼ Rsrch curve and the (average recall)∼ Rsrch curve.

Table 3
The information of the satellite images used in the experiments.

#Group Satellite GSD (m) Topography and landcovers Acquisition date location

1 Ikonos-2 1.0 desert 2007-11-07 83.9E 38.1N
Ikonos-2 1.0 desert 2011-04-01 83.9E 38.1N

2 Ikonos-2 1.0 mountain, rocks, glaciers 2009-11-09 83.9E 29.3N
Ikonos-2 1.0 mountain, rocks, glaciers 2007-06-20 83.8E 29.3N

3 Ikonos-2 1.0 plain, farmland, forest, village 2004-09-20 127.5E 50.2N
Ikonos-2 1.0 plain, forest, ice, snow, village 2003-12-09 127.4E 50.4N

4 Ziyuan-3 (ref) 2.5 plain, farmland, village 2013-06-13 110.6E 35.0N
Ikonos-2 1.0 plain, farmland, village 2003-01-04 110.4E 34.7N

5 Landsat-8 (ref) 15.0 mountains, glaciers 2014-05-23 98.3E 30.3N
Ikonos-2 1.0 mountains, glaciers 2009-04-07 98.5E 30.5N

Table 4
The results of the automatic image match.

Group # 1 2 3 4 5

# all matches 488 570 347 792 114
# true matches 93 137 60 103 107
% true matches 19.1% 24.3% 17.3% 13.0% 93.9%
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In group-3, the precisions of the ORSA-SAT algorithm were ob-
viously higher than those of the P2L algorithm, while the recalls were
lower. With both set and set , the precisions of the ORSA-SAT
algorithm were about 80–87% and the recalls were about 80–88%.
Meanwhile, for the P2L algorithm, the precisions were much lower at
about 54–64% and the recalls were higher at about 86–98%. The P2L
algorithm needed less running time than the ORSA-SAT algorithm. The
running time of the P2L algorithm ranged from 2.39 s to 3.51 s, while
that of the ORSA-SAT algorithm ranged from about 2.48 s to about
26.34 s.
In group-4, the precisions of the ORSA-SAT algorithm were still

higher than those of the P2L algorithm, while the recalls were still
lower. The ORSA-SAT algorithm with set had slightly higher pre-
cisions than with set , i.e., they had an about 0.5% difference in the
mean of precisions. Meanwhile, for the P2L algorithm, the precisions
were about 78–87% and the recalls were about 86–98%. The P2L al-
gorithm had no significant advantage in running time, but its numbers
of iterations were much less than the ORSA-SAT algorithm. The fastest
case of the ORSA-SAT algorithm cost only 26.43 s running time while
the slowest cost 421.88 s.
In group-5, the precisions of the three strategies were all very high

at about 96–100%. However, the recalls of the P2L algorithm (about
38–43%) were very poor comparing those of the ORSA-SAT algorithm
(about 84–97%). Therefore, the numbers of iterations of the P2L algo-
rithm were 57–80, much larger than those of the ORSA-SAT algorithm.
The maximum P2L distances of the inliers obtained by the ORSA-

SAT algorithm can be treated as its adaptively set threshold, the means
of which were 1.07 pixels and 0.97 pixel in group-3, 2.23 pixels and
2.30 pixels in group-4, and 18.52 pixels and 19.17 pixels in group-5.
According to the GSD ratios between the image-pairs in Table 3, we can
find that in all the three groups, the average maximum P2L distances of
the inliers obtained by the ORSA-SAT algorithm were very close to one

left-image-pixel. These results demonstrate that the a-contrario based
method can accurately find out the scale of the a priori positional error
of true matches and effectively pick them out.

5.4. Analysis

The results of group-1 and -2 in Section 5.2 show that the ORSA-SAT
algorithm cannot well deal with the images covering unstable land-
forms. The corresponding points on movable objects, having 1–5 pixels
positional errors, cannot be filtered by the a-contrario method. Thus,
when dealing with these images, the P2L algorithm with a strict
threshold may get more precise results.
The results of group-3, -4, and -5 in Section 5.3 demonstrate that

when dealing with images covering stable landforms, the ORSA-SAT
algorithm, having no preset thresholds, can effectively filter mis-
matches without knowing the apriori positional accuracy of true mat-
ches. In each group, the ORSA-SAT algorithm with both set and set
had above 80% precisions in the 100 times of executions, which

demonstrate the good stability of the algorithm. The results also show
that there is no obvious difference between using one-on-one matches
or one-on-multiple matches with the ORSA-SAT algorithm.

6. Summary

In this paper, we proposed an a-contrario method named ORSA-SAT
to remove mismatches by finding the most meaningful subset from the
set of point-matches of two-view satellite images. On the basis of the
ELS constraining model introduced by Wan and Zhang (2017), the new
method evaluates the meaningfulness of a set of point-matches by es-
timating the NFA under a certain null-hypothesis with the formula
ε(α,n,k). When ε(α,n,k) < 1 is satisfied with the most meaningful
subset, the ORSA-SAT will judge the result to be reliable, otherwise, the

Table 5
Mismatch detection results of Group-1 and −2.

Group # 1 2

Algorithm P2L ORSA ( ) ORSA ( ) P2L ORSA ( ) ORSA ( )

Precision 39.9% 42.2% 40.4% 64.1% 69.2% 61.1%
Recall 65.6% 87.1% 90.3% 61.3% 73.7% 82.5%
NFA (lg ) – −95.7 −75.9 – −81.7 −80.0
Max P2L dist.1 2.96 6.09 7.26 2.95 3.40 5.20

Note: 1. The unit of maximum P2L distance is the pixel of the right image.

Fig. 11. Screenshots of inliers judged by ORSA-SAT( ) in group-1. The point matches in (a) were judged true artificially because they were on the stable landmarks,
while the point matches in (b) were judged false artificially because they were on the sand dunes which are movable.
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ORSA-SAT will judge the set unreliable and will output an empty set to
avoid the unreliable matches being involved in the geometric correc-
tions or block adjustments.
The experimental results in Sections 4.2 and 5.3 have demonstrated

the effect and the stability of the criterion ε(α,n,k) < 1 in justifying the
correctness of the mismatch detection results because the precision kept
above 80% with both simulated and real data. Also, the recalls kept
above 80% with simulated data and the maximum P2L distances of
inliers were close to one-pixel of the lower-resolution image with the
real data. In Section 4.3, the ORSA-SAT algorithm was also tested with
varying relative orientation error. It was shown that the precision, the
recall, and even the meaningfulness measurement was almost not in-
fluenced by the relative orientation accuracy when the ratio between
the number of mismatches and the area of search region is unchanged.
The experimental results in Section 5.2 showed that the ORSA-SAT
algorithm cannot filter the less accurate true matches on movable ob-
jects.
Combining the experimental results and analysis in this paper and in

Wan and Zhang (2017), we have the following suggestion for choosing
an appropriate mismatch detection algorithm:

(1) When mismatches do not obey the null-hypothesis 0, the a-con-
trario judgment with criterion ε(α,n,k) < 1 is not reliable and the
ORSA-SAT algorithm should not be used. This condition happens

when the images cover unstable landforms like deserts and glaciers
or when some special constraints which can change the distribution
of mismatches are used in image matching.

(2) The ORSA-SAT algorithm is a better choice when matching with
DOMs for GCPs or when the geometric distortion is not clear or
when there are too many images and the users want to ensure the
correctness of the point-matches without checking them artificially.

(3) The P2L algorithm is a better choice when users believe that there is
no local deformation or nonlinear distortion and want to ensure the
residuals of inliers under a certain threshold.

The two major advantages of the ORSA-SAT algorithm, i.e., the
automatic result validation and the self-adaptive threshold, make the
mismatch detection software easier to use for less-professional users
and save a lot of time spent on checking the results. However, the
ORSA-SAT algorithm still uses the ELS-constraint model, which means
it cannot filter the mismatches of which the error directions are close to
the epipolar lines. This kind of mismatches can only be removed in the
block adjustment using the multi-view geometric constraint.
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Fig. 12. Screenshots of inliers judged by ORSA-SAT( ) in group-2. The point matches in (a) were judged true artificially because they were on the stable landmarks
such as rocks, while the point matches in (b) were judged false artificially because they were on the snowlines or glaciers which are movable.
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