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Two-Pass Robust Component Analysis for Cloud
Removal in Satellite Image Sequence

Fei Wen , Yongjun Zhang , Zhi Gao , and Xiao Ling

Abstract— Due to the inevitable existence of clouds and their
shadows in optical remote sensing images, certain ground-cover
information is degraded or even appears to be missing, which
limits analysis and utilization. Thus, cloud removal is of great
importance to facilitate downstream applications. Motivated by
the sparse representation techniques which have obtained a
stunning performance in a variety of applications, including
target detection, anomaly detection, and so on; we propose a two-
pass robust principal component analysis (RPCA) framework for
cloud removal in the satellite image sequence. First, a plain RPCA
is applied for initial cloud region detection, followed by a straight-
forward morphological operation to ensure that the cloud region
is completely detected. Subsequently, a discriminative RPCA
algorithm is proposed to assign aggressive penalizing weights
to the detected cloud pixels to facilitate cloud removal and scene
restoration. Significantly superior to currently available methods,
neither a cloud-free reference image nor a specific algorithm
of cloud detection is required in our method. Experiments on
both simulated and real images yield visually plausible and
numerically verified results, demonstrating the effectiveness of
our method.

Index Terms— Clouds and shadows detection, image recon-
struction, low rank, robust principal component analysis (RPCA).

I. INTRODUCTION

DUE to the mechanism of optical sensors, satellite images
are inevitably affected by cloud and accompanying

shadow. As an example reported in [1], the Enhanced Thematic
Mapper Plus land scenes are, on average, about 35% cloud
covered globally. Cloud degrades or even completely occludes
ground information in such remote sensing images, which
remarkably limits the following analysis and utilization. There-
fore, numerous studies have been concentrated on cloud
removal so as to facilitate downstream applications of such
remote sensing images.

According to the auxiliary information being leveraged on,
the available cloud removal methods can be roughly grouped
into three categories [2]: inpainting-based, multispectral-
based, and multitemporal-based. Inpainting-based methods
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synthesize the cloud-contaminated region through propagating
from neighboring noncloud pixels without any auxiliary
data [3], [4]. However, such methods are fairly sensitive to
the size of cloud, as the uncertainty and the error accumulate
along with propagation. In the second category, leveraging on
the properties of multispectral image, those cloud-free bands
of the same multispectral image are exploited to estimate
a linear or nonlinear relationship between cloudy band and
cloud-free band(s). Subsequently, the estimated relationship is
applied to recover the cloud-occupied region [5], [6]. However,
such multispectral-based approaches usually can only deal
with thin cloud, because thick cloud can exist in all bands
of the multispectral image with a high possibility.

More relevant to this letter, the third category based on the
aid of multitemporal images is more popularly investigated and
applied. More specifically, the multitemporal information can
be utilized either explicitly or implicitly, depending on whether
the relationship between multitemporal images is explicitly
exploited or implicitly formulated. In the former manner, [7]
replaced the pixels occupied by clouds and accompanying
shadows with the data of the same location from other
cloud-free images. To eliminate seam effect, the replacement
was implemented via color matching and multiscale wavelet-
based fusion. In [2], the cloud-free patches were cloned
to their corresponding cloud-contaminated patches under the
assumption that land covers change slightly over a short
time period. By solving a group of constrained Poisson
equations, information clone yields visually consistent results.
To further exploit the correlations between cloudy regions
in the target image and cloud-free regions in both target and
reference images, [8] improved a neighborhood similar pixel
interpolator approach [9] to predict the cloud-contaminated
pixels by combining spectral–spatial and spectral–temporal
information. Reference [10] formulated a linear least-square
regression model to search similar pixels and applied a
spatially weighted regression for the reconstruction of cloud-
contaminated pixels. In [11], the Markov random field model
was applied to guide the replacement between similar pixels.
Along the implicit manner, learning-based methods perform
more elegantly to realize cloud removal. Reference [12]
assumed that pixels in the cloudy area can be expressed as
a linear combination of pixels in the cloud-free area, which
was formulated and solved using sparse representation tech-
niques. Reference [13] performed dictionary learning on target
data and reference data separately in the spectral domain.
Then, cloud removal was conducted by combining coefficients
from the reference image and the dictionary learned from
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Fig. 1. Overview of the proposed two-pass RPCA method.

the target image. However, the reconstruction quality was
sensitive to land-cover type and cloud size. Utilizing the
local temporal correlations and the nonlocal spatial correla-
tions, [14] introduced a patch-matching-based multitemporal
group sparse representation (PM-MTGSR) method to recover
cloud regions. In short, the available multitemporal-based
methods have twofold disadvantages. First, extensive cloud-
free reference images should be carefully chosen in advance.
Second, a specific cloud detection method is required to locate
the cloudy regions in the target images.

To overcome aforementioned disadvantages, we propose a
two-pass robust principal component analysis (RPCA) frame-
work for cloud removal in the satellite image sequence. First,
the contiguous region of cloud is roughly and overly detected
via a plain RPCA, followed by a straightforward morpholog-
ical operation. Subsequently, a discriminative RPCA (DRPCA)
which assigns aggressive penalizing weights to the detected
cloud pixels is designed to facilitate cloud removal and
scene restoration as well. Experiments on both simulated and
real images yield visually plausible and numerically verified
results, demonstrating the effectiveness of our method.

II. METHODOLOGY

Fig. 1 shows an overview of the major steps of our method.

A. Plain RPCA for Cloud and Shadow Detection

The RPCA [15] has obtained a stunning performance in a
variety of applications, including target detection, anomaly
detection, and so on. Suppose that the given data are arranged
as the columns of a large matrix M ∈ Rm×n , the RPCA
can decompose M into a low-rank matrix L and a sparse
matrix S, which is mathematically estimated by minimizing
the following constrained convex optimization problem:

min
L ,S
‖L‖∗ + λ‖S‖1 s.t. M = L + S (1)

where ‖L‖∗ denotes the nuclear norm of matrix L, the sum
of its singular value, and ‖S‖1 denotes the sum of the
absolute value of matrix S, and λ is a positive balance value.
Equation (1) can be treated as a general constrained convex
optimization problem and solved by the inexact augmented
Lagrange multiplier (ALM) method [16].

Benefiting from the revisit of remote sensing sensors, it is
easy to obtain remote sensing image sequence of the same

Fig. 2. Cloud and shadow mask. (Left) Original image block. (Middle)
Binary segmentation. (Right) Morphological filtered mask.

area. Given a sequence of aligned cloud-contaminated images
(i.e., each image in the sequence is possibly contaminated by
cloud), denoted as I {I1, I2, . . . , In}, our purpose is to segment
background land-cover and foreground cloud and its shadow
from I . Regardless of slight land-cover changes, the cloud-free
remote sensing images are linear correlated with each other for
only considering illumination change, which can be perfectly
modeled via a low-rank representation. Clouds and shadows,
on the other hand, are sparse due to the transient nature of
clouds, which are modeled as sparse outliers.

Let matrix D ∈ Rm×n denote the column-stacked image
sequence, m = rows× cols is the number of pixels in a single
image, and n is the total number of images. By performing the
RPCA on matrix D and unstacking the column format results,
we obtain a sequence of cloud-free images and a sequence
of outliers images from the low-rank component and the
sparse component, respectively. Though a cloud-free sequence
is generated at this step, it is not an ideal reconstruction result
which we will discuss in Section II-B.

At last, we set a recommended threshold value to obtain the
mask of clouds and their shadows in each image. However,
the initial mask usually exhibits numerous noises, as shown
in Fig. 2. Herein, the time interval between consecutive images
ranges from a half month to several months, so that slight land-
cover changes are screened out by thresholding. Fortunately,
the size of most of land-cover changes is much smaller than
clouds, according to which we can filter off most of noise and
land-cover changes. The morphological filter is fairly simple
yet good enough to refine binary masks to properly overcover
the clouds and their shadows. We apply one morphological
erode operator followed by three morphological dilate opera-
tors with the size of 3 in all our experiments.

B. DRPCA for Cloud Removal

All experiments in the first step apply the recommended
value of λ = 1/ (max(m, n))1/2 (where m × n are the
dimensions of matrix D) in [16], and it works properly to
screen out all the clouds and shadows. However, the low-
rank component obtained in the original RPCA is too smooth
(or blurred) for the reason that it is computed by iterative
singular value decomposition (SVD) to reduce dimension, and
a lot of unique information of each column is decomposed into
sparse components. If we increase λ to generate a low-rank
component with a higher rank to maintain an original cloud-
free region, then more ghosts of cloud and its shadow will
be left in the backgrounds indicating ineffective cloud and
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shadow removal. As we find in our experiments, no single λ
can simultaneously screen out all the clouds and their shadows
and reconstruct a cloud-free sequence of which original cloud-
free regions are maintained.

Inspired by the block sparse RPCA for salient motion detec-
tion in videos [17], pixels should be treated discriminatively
according to their likelihood to be cloud pixels or cloud-free
pixels. We set different balance values for cloud and shadow
pixels and cloud-free pixels guided by the mask obtained
in the first step, which we call it the DRPCA. Within an
overcovered cloud mask, a lower balance value would ensure
that all the cloud and its shadow will be entirely decomposed
into an outlier matrix and not leave any ghostly presence in the
background, yet without incurring a large false positive rate.
For a cloud-free region, the balance value is set to a relatively
large value to guarantee background maintenance. The new
formulation is defined as

min
L ,S
‖L‖∗ + α‖P�(S)‖1 + β‖P�−(S)‖1 s.t. D = L + S

(2)

where � is a clouds and shadows mask obtained in the first
step, and �− denotes a cloud-free region.

Equation (2) remains a constrained convex optimization
problem, and an inexact ALM can still be applied to solve
it. The augmented Lagrangian function is defined as

f (L, S, Y, μ) = ‖L|‖∗ + α‖P�(S)‖1 + β‖P�−(S)‖1
+〈Y, D − L − S〉 + μ

2
‖D − L − S‖2F (3)

where ‖ · ‖F denotes the Frobenius norm, Y is the Lagrange
multiplier, and μ is a positive scalar. Here, we present the
algorithm based on an inexact ALM in Algorithm 1. For more
details, readers can refer to [16].

Algorithm 1 Discriminated RPCA via Inexact ALM

Input: Matrix D ∈ Rm×n , α, β and cloud mask �;
Output: low-rank L, sparse S;

1 Y0 = D/ J (D); S0 = 0;μ0 > 0; ρ > 1; k = 0.
2 while not converged do
3 // Lines 4-5 solve Lk+1 = arg minL f (L, Sk , Yk , μk)

4 (U,�, V ) = svd(D − Sk + μ−1
k Yk);

5 Lk+1 = U Sμ−1
k
[�]V T ;

6 // Line 7 solves Sk+1 = arg minS f (Lk+1, S, Yk , μk);
7 Sk+1 = (S�αμ−1

k
+ S�−βμ−1

k
)[D − L + μ−1

k Yk];
8 Yk+1 = Yk + μk(D − Lk+1 − Sk+1);
9 μk+1 = ρμk;

10 k ← k + 1;
11 end
12 Output L,S.

For the discriminated RPCA, the soft-thresholding opera-
tors S�[·] and S�−[·] denote the shrinkage in � and �−.
The balance values α and β are set to 0.1/(max(m, n))1/2

and 1, respectively. Except that, we use the recommended
values and conditions in [16]. Specifically, we set μ0 =
1.25/‖D‖2, ρ = 1.6, and J (D) = max(‖D‖2, α−1‖D‖∞).

III. EXPERIMENTS AND DISCUSSION

A. Test on Simulated Sequence

In order to quantitatively evaluate the performance of
our method, we simulated three time series sequence of
cloudy images based on cloud-free blocks cropped from
Landsat-8 Operational Land Imager (OLI) scenes. All the
Landsat-8 OLI scenes used in our experiments are Landsat-8
natural-look products which are compressed and stretched
to create an optimization to images selection and visual
interpretation. The LandsatLook Nature Color Image is
composed of three bands (bands 4–6) and the reflectance
values are scaled to 1–255 range using a gamma stretch
and with a gamma value of 2. The stretch is designed to
emphasize vegetation without clipping the extreme values.
Images in the simulated sequence were well registered and
listed according to their imaging time. For the reason that
clouds and shadows are too complicate to simulate, we simply
manually drew clouds in each image with pure white shapes
and ignored the effect of cloud shadows. To evaluate
the information reconstruction accuracy and efficiency of
our method, two representative approaches, the Poisson
information clone (PIC) in [2] and the PM-MTGSR in [14],
were selected for comparison. The assessment of cloud and
shadow detection performance would be discussed in a real
images test. As shown in Fig. 3, most simulated images in the
sequence are contaminated by cloud.

To simplify the reference image selection of the PIC and
the PM-MTGSR, we manually chose the best suitable images
for their reconstruction. All three methods were conducted
in a single channel, and the reconstruction result is shown
in Fig. 3. The three cloud removal approaches all yield visu-
ally plausible reconstruction and exhibit no obvious disconti-
nuity around cloud mask boundaries. Compared with original
cloud-free images, our reconstruction results show a slightly
better consistency with original images than the PIC and
PM-MTGSR methods as can be seen in the region marked by
red rectangles in Fig. 3. This indicates that low rank is more
powerful to maintain consistency in a whole image than the
other two reconstruction methods. To quantitatively evaluate
the three reconstruction methods, the root-mean-square error,
the peak signal-to-noise ratio, and the structural similarity
index are used to assess their reconstruction accuracy. Table I
shows that the proposed DRPCA reconstructs the cloudy
images better than the other two methods.

Finally, an efficiency comparison about processing images
with a different cloud cover-rate is also presented. We simu-
lated a larger size of cloud on the same image in Fig. 3(a).
The DRPCA processes a sequence of images one time so that
the time of reconstructing a single image is divided by the
total number of images. As shown in Table II, the recon-
struction time of the PIC method increases dramatically
with cloud coverage-rate getting larger. The kernel step of
solving the Poisson equation with the boundary condition is
to solve a large system of linear equations, which is time-
consuming when cloud size is getting larger. The PM-MTGSR
method spends too much time for reconstruction due to
dictionary learning and sparse coding. On the other hand,



WEN et al.: TWO-PASS ROBUST COMPONENT ANALYSIS FOR CLOUD REMOVAL IN SATELLITE IMAGE SEQUENCE 1093

Fig. 3. Three cloud removal examples of simulated data. (a) Original cloud-free images prepared for simulation. (b) Simulated cloudy images. (c) Selected
cloud-free image with significant atmospheric difference, which is displayed for comparison. (d)–(f) Cloud removal results by PIC, PM-MTGSR, and our
method, respectively.

TABLE I

QUANTITATIVE ASSESSMENT OF DIFFERENT METHODS. IMAGES 1–3 ARE
THREE EXAMPLES IN FIG. 3(b). SIMULATION AND CLOUD-FREE

DENOTE SIMULATED CLOUD IMAGE AND CLOUD-FREE IMAGE FOR

COMPARISON, RESPECTIVELY. THE BEST EVALUATION VALUES
BETWEEN THE THREE METHODS ARE HIGHLIGHTED

TABLE II

EFFICIENCY COMPARISON BETWEEN PIC, PM-MTGSR,
AND THE PROPOSED DRPCA

the DRPCA iteratively decomposes the input matrix into a
low-rank component and a sparse component through one
SVD in each iteration. We find in our experiments that the
DRPCA converges less than 15 iterations when dealing with
a sequence of about 30 images. More importantly, the time
of the PIC for processing a single image is larger than that
of the DRPCA for processing a whole sequence of images.
In summary, the DRPCA can reconstruct a cloudy remote
sensing image sequence with a high accuracy and efficiency.

B. Test on Real Images

We used three real sequence data sets containing a hetero-
geneous land-cover type to test the robustness and effective-
ness of the proposed approach. Each real sequence consisted
of about 30 cloudy images with different cloud contamina-
tion levels. Differed from traditional studies that assumed
completely cloud-free reference images, our cloud-cover rate
ranged from 1% to 52%, which was more practical in real
world. We set threshold value for detecting clouds and
shadows as the standard value of sparse component S, and
a clouds and shadows mask was generated by thresholding on
the absolute value of S. Fig. 4 shows the cloud removal results
of the proposed method. Our approach can recover visually
plausible cloud-free images even though images are severely
covered by clouds and shadows. At the meantime, the clouds
and shadows detection results are of high quality as shown
in Fig. 5. Our final binary mask was generated by combining
three masks which were obtained in three single channels.
As studied in [18] and [19], clouds and shadows detection
is another area of research dedicated in detecting all kinds
of cloud. Though we did not compare our detection results
with those well-studied methods quantitatively, which can be
one of our future works, the generated clouds and shadows
mask shows a high accuracy visually. However, obvious false
detections occurred on a large area of sudden changes as
shown in red regions of Fig. 5. This is because such changes
belong to a single image in the sequence and no similar
features exist in the remaining images, so it is screened out as
outlier just like clouds and shadows. Such cases may happen
when the image sequence corresponds to a very long temporal
interval. That is to say, our method may prone to sudden large
area land-cover changes.

IV. CONCLUSION AND FUTURE WORK

In this letter, we propose a two-pass RPCA framework for
cloud removal in the satellite image sequence. Significantly
superior to the available methods, neither cloud-free reference
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Fig. 4. Experiments on real data. (a) Real cloudy images. (b) Cloud-
free image with significant atmospheric difference, which is selected for
comparison. (c) Reconstructed results of our method. (d) Cloud and shadow
detection results.

Fig. 5. Clouds and shadows detection results in zoomed-in view of the block
in Fig. 4. The second row is zoomed cloud and shadow masks. The third row
is zoomed recovered results.

images nor a specific algorithm of cloud detection is required
in our method. Experiments demonstrate that the proposed
method could recover the cloudy images more precisely
than state-of-the-art methods. More importantly, our method
exhibits a tremendous efficiency improvement compared with
those methods. On the other hand, our method generated high
quality clouds and shadows detection results as a by-product,
which combined the two traditional works (i.e., clouds and
shadows detection and image reconstruction) into a whole,
showing a great potential to be applied for possessing a remote
sensing image sequence. In addition, there is still room for

improvement. In particular, the shadow on the lower cloud
casted by those higher cloud may have similar appearance to
the real land-covers, which makes the problem more subtle to
formulate and solve. Furthermore, we are working on distin-
guishing outliers of land-cover changes from that of cloud and
shadow to improve robustness. Thus, more insightful context
information, either spatial or temporal, or both, should be
incorporated for more robust cloud removal solution.
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