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Abstract: Object-level saliency detection is an attractive research field which is useful for many
content-based computer vision and remote-sensing tasks. This paper introduces an efficient
unsupervised approach to salient object detection from the perspective of recursive sparse
representation. The reconstruction error determined by foreground and background dictionaries other
than common local and global contrasts is used as the saliency indication, by which the shortcomings
of the object integrity can be effectively improved. The proposed method consists of the following
four steps: (1) regional feature extraction; (2) background and foreground dictionaries extraction
according to the initial saliency map and image boundary constraints; (3) sparse representation and
saliency measurement; and (4) recursive processing with a current saliency map updating the initial
saliency map in step 2 and repeating step 3. This paper also presents the experimental results of
the proposed method compared with seven state-of-the-art saliency detection methods using three
benchmark datasets, as well as some satellite and unmanned aerial vehicle remote-sensing images,
which confirmed that the proposed method was more effective than current methods and could
achieve more favorable performance in the detection of multiple objects as well as maintaining the
integrity of the object area.
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1. Introduction

Visual saliency, which is an important and fundamental research problem in remote-sensing image
interpretation, computer vision, psychology and neuroscience, is concerned with the distinct perceptual
quality of a biological system that makes certain regions of a scene stand out from their neighbors and
thereby helps humans to quickly and accurately focus on the most visually noticeable foreground in a
scene [1–4]. Since the computational model of visual saliency was first introduced [5] and the ensuing
expansion of its application [6,7], numerous saliency models have been developed which can be
categorized as either bottom-up data-driven methods [8–14] or task-leading top-down methods [15–17].
Bottom-up methods are usually unsupervised, while top-down methods are supervised. The related
methods are also categorized as either eye-fixation prediction methods or salient object detection
methods [18], depending on the specific needs and objectives. The aim of the eye-fixation prediction
methods is to generate a pixel-wise saliency prediction map that is based on a biological model for
human eye-fixation activity; the salient object detection methods aim to create a region-level saliency
map for the purpose of object appearance preservation [19].

Although the supervised learning-based object detection methods attract great attention and can
obtain outstanding results with the booming development of deep-learning technology [20–22], there is
still enough research value for the unsupervised methods because of their autonomy and adaptability.
This work focuses on the unsupervised bottom-up data-driven salient object detection problems.
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Due to the absence of high-level knowledge, all bottom-up methods rely on assumptions about
properties, such as the contrast and compactness of the salient objects and the background. In particular,
contrast-based methods [11,23–27] have achieved outstanding performance. However, these methods
were designed with heavy contrast feature dependence, which led to some limitations in maintaining
the integrity in some cases, including the extraction of entire objects and detection of multiple objects.
In addition, the salient object detection tasks can be substantially divided into two processes: (1) object
area extraction; and (2) saliency evaluation, to which various image-segmentation, clustering, and
graph-optimization methods are applied to improve recognition accuracy. The boundary prior (i.e.,
image boundary regions are mainly background) is widely used in saliency score computation [28].
Although improved methods have been proposed to enhance the robustness of the boundary
constraint [29], its inner shortcomings, which are not completely overcome, may cause detection
failure when the salient objects aimed at touch the image boundaries [30].

In general, the limitations of previous salient object detection methods can be summarized as
follows, and some examples are presented in Figure 1:

(1) Local contrast methods are designed to solve the local extremum operation problem, in which
only the most distinct part of the object tends to be highlighted, while they are unable to uniformly
evaluate the saliency of the entire object region.

(2) Global contrast methods aim to capture the holistic rarity of an image so as to improve the
deficiency described above for the local contrast methods to a certain extent. However, they
continue to be ineffective in comparing different contrast values for the detection of multiple
objects, especially those with large dissimilarity.

(3) Boundary prior-based saliency computation may fail when the objects touch the
image boundaries.
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Figure 1. Examples of the limitations of previous contrast and boundary prior-based methods.
The images in the first row are the examples of boundary prior testing: (a) input; (b) ground truth;
(c) saliency map of saliency optimization from robust background detection (RBD) [29] using boundary
prior; (d) saliency map of dense and spares reconstruction based method (DSR) [31] related to boundary
prior; (e) initial saliency map of the proposed recursive sparse representation (RSR) generated by Itti’s
visual attention model (IT) [5]; (f) final saliency map of the proposed RSR. The images in the second
row are the examples of contrast prior testing: (a) input; (b) ground truth; (c) saliency map of low
level-features of luminance and color based method (AC) [32] related to local contrast; (d) saliency map
of histogram-based contrast method (HC) [33] related to global contrast; (e) initial saliency map of the
proposed RSR generated by IT [5]; (f) final saliency map of the proposed RSR.

To solve the above limitations, this paper proposes a new recursive sparse representation
(RSR) method, which combines the background reconstructions and foreground ones; treats
the reconstruction errors as the saliency indicator, avoiding the integrity shortcomings of
contrast-based methods and the weak robustness of boundary prior-based methods with the following
major contributions.

(1) Both background and foreground dictionaries are generated and the currently separated
reconstructions are combined to enhance the stability of sparse representation.



Remote Sens. 2018, 10, 652 3 of 16

(2) The traditional eye-fixation results [5] are introduced to extract the initial background and
foreground dictionaries. Compared with the previous related methods such as [31] which only
use the boundary prior, the proposed RSR method is expected to be more robust, especially for
the images with salient objects that touch the boundaries.

(3) A recursive processing step is utilized to optimize the final detection results and weaken the
dependence on the initial saliency map obtained from eye-fixation results.

After presenting a literature review of the related bottom-up methods in Section 1.1,
the algorithmic outline is described in Section 1.2. Section 2 is dedicated to the details of the proposed
method, and in Section 3 the proposed method is evaluated against the seven current state-of-the-art
methods on three benchmark datasets and remote-sensing images. In Section 4, the conclusions of this
study and recommendations for future work are introduced.

1.1. Related Works

This paper specifically focuses on unsupervised bottom-up data-driven salient object detection;
therefore, only the most influential related works are reviewed in this section and compared in
the experiments.

1.1.1. The Previous Saliency Detection Methods

As mentioned previously, the bottom-up methods always rely on some assumptions about the
properties of the target objects and the useless background regions, for which the contrast prior
is widely used in various existing methods. Since Koch et al. [34] set up the foundation of visual
saliency and Itti et al. [4] proposed a local color contrast method based on the “center-surround
difference” school of thought, many related methods that consider multiple-feature integration or
optimization with extra constraints have been introduced such as the graph-based visual saliency
method (GBVS) [35], or the Markov chain-absorbed method (MC) [36] as well as some newer
methods [14,37–40]. Of late, the global contrast-based methods have attracted a great interest in
light of the commonly known drawbacks of the local contrast-based methods that may limit them to
only be able to detect high-contrast edges while missing the inside of a salient object.

Achanta et al. [10] detected the salient region with frequency domain contrast. Perazzi et al. [12]
utilized high-dimensional Gaussian filters and the variance of spatial distribution for each color to
evaluate saliency. Cheng et al. [11,33] proposed a simple and efficient saliency extraction algorithm
based on regional contrast, which simultaneously evaluated the global appearance contrast and spatial
coherence. However, the results of global contrast-based methods in terms of contrast comparison
show that the drawbacks of their multiple object-detection methods continue to be recognized.
Saliency detection, after all, is conducted for the purpose of computing the saliency scores of all the
image pixels and generating a saliency map. Whether for local or global contrast-based methods, an
appropriate salient measure is always a crucial factor. Center prior and boundary prior are the two most
widely used measures for saliency score computation [18,41,42]. The former assumes that the regions
close to the image center are more likely to receive a higher saliency score, while the latter assumes that
the regions which touch the image boundaries will get a lower score. However, the ever-accumulating
research and experimental results, contradictory to the above assumptions, continue to confirm that
the detection may easily fail when the salient objects touch the image boundaries.

In order to improve the situation, more robust boundary prior strategies have been proposed
and used to enhance the reliability of saliency computation [29,30]. Following the idea that salient
object detection is a combination of region segmentation and saliency evaluation, [19] proposed a
novel recursive clustering-based method and reported competitive results for multiple object detection.
Moreover, there are several proposed methods based on sparse-low rank decomposition [43–45],
which regard the salient regions as the sparse items, and methods based on sparse representation
which made full use of the difference between the background and foreground [31,44,45].
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1.1.2. Saliency Detection and Remote Sensing

Saliency detection is essentially similar to the target recognition and extraction in remote sensing.
According to the eye fixation or some specific task requirements, the interested objects in the image
are extracted. However, traditional saliency detection is commonly applied to nature images, while
little related research in remote sensing exists. With the common development of image-processing
and remote-sensing technology, saliency detection methods have spread and extended in the field
of remote sensing. Much research has combined the physiological characteristics of human vision
and image interpretation to complete specific object detection, such as ship detection [7], building
detection [46–48], and cloud extraction [49], etc. Besides, remote-sensing image classification is also a
direction of the application of saliency detection theory [21,50].

In addition, with the development of extensive remote-sensing data, problems about data
accumulation and redundancy are unavoidable. Saliency detection, the way to recognize the areas that
attract attention and are effective, can be further developed as a means of data compression and data
screening in remote sensing.

1.2. The Proposed Approach

As described in previous studies [36,51], it is a reasonable assumption that there must be a large
difference between the reconstruction errors of the foreground and background regions using the same
dictionary in sparse representation. Thus, the opposite two regions can be effectively divided by their
errors. Once the background and foreground regions are used as the dictionaries, the reconstruction
errors can directly indicate the salient level of the regions.

The framework of the proposed RSR method is shown in Figure 2. To better capture structural
information, the superpixels are generated, using the simple linear iterative clustering (SLIC)
algorithm [52] to segment an input image into multiple uniform and compact regions, which are treated
as the base units of processing. Note that only one scale with 400 superpixels is presented in Figure 2
to simplify the expression. For the regions at each scale, a traditional eye-fixation result is introduced
as the initial saliency map, which is combined with the boundary prior to extract the background and
foreground regions (i.e., reconstruction dictionaries). Following regional feature extraction, all the
image regions are reconstructed and their saliency scores (saliency map) are calculated by the two
groups’ reconstruction errors. Then, the initial saliency map is updated by the latest saliency map and
the proposed sparse representation stages are repeated until a significant change between the current
and last saliency maps cannot be detected.

Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 16 

 

1.1.2. Saliency Detection and Remote Sensing 

Saliency detection is essentially similar to the target recognition and extraction in remote 

sensing. According to the eye fixation or some specific task requirements, the interested objects in 

the image are extracted. However, traditional saliency detection is commonly applied to nature 

images, while little related research in remote sensing exists. With the common development of 

image-processing and remote-sensing technology, saliency detection methods have spread and 

extended in the field of remote sensing. Much research has combined the physiological 

characteristics of human vision and image interpretation to complete specific object detection, such 

as ship detection [7], building detection [46–48], and cloud extraction [49], etc. Besides, 

remote-sensing image classification is also a direction of the application of saliency detection theory 

[21,50]. 

In addition, with the development of extensive remote-sensing data, problems about data 

accumulation and redundancy are unavoidable. Saliency detection, the way to recognize the areas 

that attract attention and are effective, can be further developed as a means of data compression 

and data screening in remote sensing. 

1.2. The Proposed Approach 

As described in previous studies [36,51], it is a reasonable assumption that there must be a large 

difference between the reconstruction errors of the foreground and background regions using the 

same dictionary in sparse representation. Thus, the opposite two regions can be effectively divided 

by their errors. Once the background and foreground regions are used as the dictionaries, the 

reconstruction errors can directly indicate the salient level of the regions. 

The framework of the proposed RSR method is shown in Figure 2. To better capture structural 

information, the superpixels are generated, using the simple linear iterative clustering (SLIC) 

algorithm [52] to segment an input image into multiple uniform and compact regions, which are 

treated as the base units of processing. Note that only one scale with 400 superpixels is presented in 

Figure 2 to simplify the expression. For the regions at each scale, a traditional eye-fixation result is 

introduced as the initial saliency map, which is combined with the boundary prior to extract the 

background and foreground regions (i.e., reconstruction dictionaries). Following regional feature 

extraction, all the image regions are reconstructed and their saliency scores (saliency map) are 

calculated by the two groups’ reconstruction errors. Then, the initial saliency map is updated by the 

latest saliency map and the proposed sparse representation stages are repeated until a significant 

change between the current and last saliency maps cannot be detected. 

Black:  background
While: foreground

Dictionary

Input image

Over segementation

Regional Feature Extraction

mRGB
    +
mLab
    +
mxy
    +
mfx

    +
mfy

    +
mfxx

    +
mfyy

    +
mfxy

1 1 2 1 1

1, 2 2 2 2

1 2

( , ) ( , ) ... ( , )

( ) ( , ) ... ( , )

... ... ... ...
( , ) ( , ) ... ( , )

p

p

q q p q

x y x y x y

x y x y x y

x y x y x y

 
 
 
 
 

Eye fixation 
result

Boundary prior

Dictionary 
candidate map

Sparse Reconstruction

...

Foreground

Background
Code

Code

Errors

Errors

...

Saliency map

Is there no 

change?
YesUpdate the initial saliency map

No

Final saliency map 
for current scale

Saliency map at 
multiple scales

Intergrated 
saliency map

Intergration

Recursive Processing

Fi

 

Figure 2. The framework of the proposed approach. Only one scale of SLIC segmentation is 

illustrated in detail. 
Figure 2. The framework of the proposed approach. Only one scale of SLIC segmentation is illustrated
in detail.
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2. Methodology

2.1. Regional Feature Extraction

Given an input image, it is first over-segmented by the SLIC algorithm, which can reduce
the number of regions for computation with minimal information loss and better capture of the
structural information. For each region, the proposed features consist of the color, spatial and
geometric information. Each color space has its own specific advantages. RGB is an additive color
system based on trichromatic theory and is non-linear with visual perception. CIE Lab is designed
to approximate human vision and has been widely used for salient region detection [24,26,27,53].
RGB and Lab color are combined in the proposed RSR method. In addition, the location information
is added to restrict the spatial range of the region interactions, and the first order and second order
gradients are used to describe the detailed information. Eventually, each pixel of the image is
represented with a 13-dimensional feature vector as

{
R, G, B, L, a, b, x, y, fx, fy, fxx, fyy, fxy

}
, where

R, G, B and L, a, b are the three components of the RGB and Lab colors respectively; x, y are the
image coordinates of the pixel; and fx, fy, fxx, fyy, fxy are the first and second gradients of the
pixel. Then, the mean feature of the pixels in each superpixel is used to describe the region as
F =

{
mR, mG, mB, mL, ma, mb, mx, my, m fx, m fy, m fxx, m fyy, m fxy

}
, and the entire segmented image

is represented as I = {F1, F1, . . . FN} ∈ RD×N , where N is the number of regions, D is the feature
dimension, and all the feature values are normalized.

2.2. Background and Foreground-Based Sparse Representation

Many previous studies have shown the image boundaries’ high performance and the sparse
representation’s feasibility in saliency detection [18]. However, the previous DSR study revealed
that the solutions (i.e., coefficients) obtained by sparse representation are less stable, especially if it
is based on the boundary background constraint, which has inherent shortcomings. The proposed
method combines the background and foreground dictionaries to complete the detection task by sparse
representation in order to alleviate these disadvantages.

2.3. Dictionary Building

There are two separate sparse representation processing steps in this study: background-based
and foreground-based. Both dictionaries are mainly concerned with regions (superpixels) generation
and representations, namely, the elements in the former are regions related to background and the
latter contains foreground regions. The process is described in detail for regional feature extraction in
Section 2.1. The background and foreground dictionaries are respectively set as Db =

{
b1, b2, . . . bM1

}
and D f =

{
f1, f2, . . . fM2

}
, where M1 is the number of background regions and M2 is the foreground

regions. Unlike DSR, the eye-fixation result is introduced to determine the elements in Db and D f
in the proposed RSR method. It is known that regions attracting higher attention are more likely to
be the foreground, whereas the opposite is true for the background. The eye-fixation result is used
to restrict the extraction of background regions for adaption to cases with salient objects touching
the boundaries, and it is the basis for foreground dictionary building. Db and D f are determined by
Equation (1) and a detection example with different dictionaries is shown in Figure 3. The whole
process of dictionary-building is as follows:

(1) Extracting regions which touch the image boundaries as Db1;
(2) Calculating the regional fixation level by averaging the value of the region pixels and setting the

result as EFL = {val1, val2, . . . valN}, where N is the number of regions and vali is the eye-fixation
level value of region i(i = 1, 2, ..N);
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(3) Setting a coefficient of proportionality p(p = 1 in the experiments), and taking the first p× N
smaller elements as Db2, the first p× N larger elements as D f 1.{

Db = (Db1∪Db2)/D f 1
D f = D f 1

. (1)
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Figure 3. Saliency results based on different dictionaries: (a) input image; (b) ground truth;
(c) IT fixation result; (d) saliency result by RSR with background-based sparse representation only;
(e) saliency result by RSR with foreground-based sparse representation and background-based sparse
representation without saliency map restricting the dictionary extraction; (f) saliency result by complete
RSR. Judging from the two groups of the experiments shown in (e,f), the foreground-based combined
methods can get an obviously better result when compared to the single representation by background
dictionary as shown in (d).

2.4. Salient Object Detection by Sparse Representation

Sparse coding generally means that a given regional feature vector can be expressed as a sparse
linear combination of dictionary elements, and it is reasonable to assume that the background
and foreground regions will yield a large number of different reconstruction errors based on the
same dictionary.

Given background dictionary Db and foreground dictionary D f , image region i is encoded by
Equations (2) and (3), and the reconstruction errors which can directly and reverse directly indicate the
salient level of the regions are calculated by Equations (4) and (5).

αbi = argmin‖Fi − Dbαbi‖2
2 + λb‖αbi‖1 (2)

α f i = argmin‖Fi − D f α f i‖2
2 + λ f ‖α f i‖1 (3)

εbi = ‖Fi − Dbαbi‖2
2 (4)

ε f i = ‖Fi − D f α f i‖2
2 (5)

where αbi, α f i is the sparse code vector obtained by dictionaries Db and D f ; λb, λ f are the regularization
parameters that are empirically set to 0.01 in the experiment referred to DSR; εbi, ε f i are the
reconstruction errors as a result of the background and foreground sparse representation.

As shown in Figure 2, whether the region is salient or not is expressed in opposite ways in the two
error maps. As described in DSR, the errors caused by background-based sparse representation can
directly measure the saliency so the foreground-based reconstruction errors can work in the opposite
way. In this paper, the region saliency map is simply calculated according to Equation (6), upon which
the pixel saliency map then is easily computed following the criteria that the pixels in the same region
hold the same saliency. The question of whether other methods could achieve better results by using
Equation (6) is not discussed in this paper.

Sali = εbi/(ε f i + σ2) (6)

where sali is the saliency value of region i, σ2 is a regulatory factor that is set to 0.1.
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2.5. Recursive Processing and Integrated Saliency Map Generation

It was found that the performance of the sparse representation can be significantly controlled by
its dictionary quality and, therefore, can directly determine the saliency detection results (Figure 3)
in the proposed RSR method. Since the dictionary is extracted with the initial saliency map,
namely, the eye-fixation result only, the detection accuracy is highly dependent on the fixation
results. Aiming to weaken the shortcomings of the above dependency, a simple recursive process
was constructed around the initial saliency map to optimize the results. The effectiveness of the
optimization is apparent in the visualization results of Figure 4. The pseudocode of the recursive
processing is described as Algorithm 1.

Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 16 

 

where isal  is the saliency value of region i , 2  is a regulatory factor that is set to 0.1. 

2.5. Recursive Processing and Integrated Saliency Map Generation 

It was found that the performance of the sparse representation can be significantly controlled 

by its dictionary quality and, therefore, can directly determine the saliency detection results (Figure 

3) in the proposed RSR method. Since the dictionary is extracted with the initial saliency map, 

namely, the eye-fixation result only, the detection accuracy is highly dependent on the fixation 

results. Aiming to weaken the shortcomings of the above dependency, a simple recursive process 

was constructed around the initial saliency map to optimize the results. The effectiveness of the 

optimization is apparent in the visualization results of Figure 4. The pseudocode of the recursive 

processing is described as Algorithm 1. 

    

… 

 

     

     
Input Iteration: 1 Iteration: 2 Iteration: 3 Final result 

Figure 4. Examples of recursive processing. 

Algorithm 1 

1. Input: three bands color image I  

2. Output: final saliency map FSM 

3. S = super-pixel-segmentation (I)  //over segmentation 

4. Regional feature FS = {F1, F2,…, FN} //Fi = [R, G, B, L, a, b, x, y, fx, fy, fxx, fyy, fxy] regional mean 

5. Initial saliency map ISM = IT eye fixation result  //regional mean, initialization 

6. Repeat{ 

7. 1) Boundary prior + ISM => Db, Df  // dictionary extraction, 

8. // Db is the background dictionary and Df is the foreground dictionary 

9. 2) Db + Fs → Errb & Errf  // Sparse representation 
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Figure 4. Examples of recursive processing.

Algorithm 1

1. Input: three bands color image I
2. Output: final saliency map FSM
3. S = super-pixel-segmentation (I) //over segmentation
4. Regional feature FS = {F1, F2, . . . , FN} //Fi = [R, G, B, L, a, b, x, y, fx, fy, fxx, fyy, fxy] regional mean
5. Initial saliency map ISM = IT eye fixation result //regional mean, initialization
6. Repeat{
7. 1) Boundary prior + ISM => Db, Df // dictionary extraction,
8. // Db is the background dictionary and Df is the foreground dictionary
9. 2) Db + Fs→ Errb & Errf // Sparse representation
10. // Errb and Errf are reconstruction errors based on Db and Df
11. 3) Errb/(Errf + a)→ current saliency map CSM // a is a small positive decimal
12. 4) If CSM ∼= ISM (The similarity is compared to RPcorr) then repeat break
13 else repeat continue end
14 5) If Number of repeats < Threshold
15. thenISM = CSM and continue
16 else repeat break end}
17. FSM = Last (CSM)
18. Return FSM

To handle the scale problem, the superpixels at different scales were generated by setting the
multiple number parameters of the SLIC algorithm empirically as 100, 200, 300, and 400 in the proposed
RSR method, which were commonly used in many previous studies. After the multiple scale recursive
processing, FSMi(i = 1, 2, 3, 4) was obtained and the final saliency map of the proposed RSR method
was integrated by averaging the multiscale results. The integration is illustrated in Figure 5.
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3. Experimental Results and Analysis

In this section, the performance of the proposed RSR method is evaluated by comparing it to
the following seven state-of-the-art saliency detection algorithms: IT [5], the contrast-aware saliency
detection (CA) [8], HC [33], MC [36], RBD [29], recursive regional feature clustering model (RRFC) [19],
and DSR [31]. The evaluation measures were analyzed in the benchmark [18], which contained the
Precision− Recall(PR) curve, the F−Measure curve, and the mean absolute error (MAE), and were
used for quantitative comparisons. All the measures are detailed in Section 3.2. The up-arrow ↑ after a
measure indicates that the larger the value achieved, the better the performance; while the down-arrow
↓ indicates the smaller, the better. It is noted that, for a binary mask, |·| was used to represent the
number of non-zero entries in the mask.

3.1. Datasets

Three benchmark datasets about the close range images which are widely used in saliency
detection research were chosen as the experiment’s data, including MSRA-ASD [33], SED2 [23],
and ECSSD [27]. MRSA-ASD contains 1000 single object images with a pixel-wise ground truth.
SED2 consists of 100 images that contain exactly two objects, and the pixel-wise ground truth is also
provided. In particular, there are enormous challenges in this dataset due to the dissimilarity between
the objects and the fact that objects are touching the image border. In addition, ECSSD contains a large
number of semantically meaningful but structurally complex natural images.

As little saliency research in remote-sensing images has been undertaken, there are no classical
testing datasets with existing ground truth. Two categories of Chinese high-spatial resolution satellite
(GF-1) and unmanned aerial vehicle (UAV) images are introduced to evaluate the effectiveness and
novelty of the proposed method in remote sensing, and the manual-detection results are used as the
reference. The detailed parameters of these images are provided in Table 1.

Table 1. Overview of Chinese GF-1 and UAV multispectral datasets.

Image Parameters GF-1 UAV

Product level 1A Original image
Number of bands 4 3

Spatial resolution (m) 8 0.6
Original image size 4548 × 500 6000 × 4000

Experimental image cutting size 1000 × 800 1000 × 666
Land-cover type Buildings + mountains + water Buildings
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3.2. Evaluation Measures

(1) PR ↑ : Precision is defined as the percentage of salient pixels correctly assigned, while Recall
is the ratio of correctly detected salient pixels to all true salient pixels. The PR curve is created by
varying the saliency threshold, which determines whether a pixel belongs to the salient object. For a
saliency map S, it can be converted to a binary mask M, so that its Precision and Recall Equation (7)
can be computed by comparing M with ground truth G. When a binarization map is completed with a
fixed threshold that changes from 0 to 1, a group pair of precision-recall values is computed and a PR
curve can be formed.

Precision =
|M ∩ G|
|M| , Recall =

|M ∩ G|
|G| (7)

(2) F−Measure
(

Fβ
)
↑ is a weighted harmonic mean of Precision and Recall to comprehensively

evaluate the quality of a saliency map, Equation (8).

Fβ =

(
1 + β2)× Precision× Recall

β2 × Precision + Recall
(8)

where β is the non-negative weight and β2 is commonly set to 0.3.
(3) MAE ↓ is a similarity score between S and G that is defined as following equation:

MAE =
1

W ∗ H

W

∑
x=1

H

∑
y=1

∣∣Sxy − Gxy
∣∣ (9)

where W is the image width while H is the height, and the mask S and G are normalized from 0 to 1.

3.3. Experimental Parameter Settings

All the parameters of the state-of-the-art methods were set by default in the original published
literatures for all the experiments, and some of the key factors of the proposed RSR method are
summarized in Table 2.

Table 2. Parameters of the proposed RSR method.

Parameter Value Remark

MultiScales 100, 200, 300, 400 Superpixel number of the SLIC segmentation
P 0.2 Coefficient of proportionality in dictionary extraction

λb, λ f 0.01 Regularization parameters in sparse representation
σ2 0.1 Regulatory factor in saliency map computation
β2 0.3 Weight value in PR computation

RPcorr 0.9999 Similarity coefficient threshold in recursive processing
RPthresU 10 Iteration times, upper threshold in recursive processing
RPthresL 3 Iteration times, lower threshold in recursive processing

3.4. Visual Comparison on the Benchmark Datasets

Figure 6 displays the visual comparisons between the proposed RSR method and the seven
state-of-the-art existing methods on the three benchmark datasets. It is apparent in Figure 6 that the
proposed RSR method, for the specific datasets in the experiments, successfully extracted accurate
entire salient objects, regardless of whether they were single objects, multiple objects, or even images
with complex structures. For the single object, the eye-fixation (IT) and the traditional contrast-based
methods (CA, HC) only produced fuzzy contours, while the improved methods clearly obtained
better results (MC, RBD, RRFC and DSR), and the proposed RSR performed best. In terms of the
multiple objects, the proposed RSR method obtained good results, and in these cases only a few of the
state-of-the-art methods could deal with such objects with large dissimilarities and saliency differences.
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In Figure 6, for the images with complex structure or similarity between the background and the
foreground, such as the second image of MSRA-ASD, the second of SED2 and all the images in ECSSD,
the results show that the proposed RSR method exhibited greater detection capability. Therefore,
the proposed RSR method not only provides good results for single object detection, but also obviously
works better for extracting multiple objects and maintaining the saliency consistency of the entire
objects than the other state-of-the-art methods.
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3.5. Quantitative Comparison on the Benchmark Datasets

The quantitative comparison between the proposed RSR method and the seven state-of-the-art
methods was completed with PR curve, Fβ and MAE measure. Figure 7 shows the evaluations on the
MSRA-ASD, SED2 and ECSSD datasets.

In terms of the PR curve and Fβ, the proposed RSR method performed quite competitively
with the latest improved methods, such as RBD, RRFC, and DSR, which are considered to be the
outstanding performers in the seven state-of-the-art methods utilized in the experiments. At the
same time, the three measures of the proposed RSR method were more balanced and stable, while
the compared state-of-the-art methods always had at least one measure value with a relatively low
index. With respect to MAE, the proposed RSR method’s performance was obviously better in the
comparisons, no matter for the situations of the single object, the multiple objects, or the images that
were structurally complex.

For the MSRA-ASD dataset, the proposed RSR method uniformly highlighted the salient
regions and adequately suppressed the backgrounds from the lowest MAE and higher recall value.
Although the Precision of the proposed RSR method was slightly lower than the best state-of-the-art
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method, its results fully demonstrated the superiority of the proposed RSR method in maintaining the
accuracy of the saliency and the integrity of the object.

For the SED2 dataset that contained images with multiple objects, and the ECSSD dataset,
which contained structurally-complex images, the advantages of the proposed RSR method also
were more apparent; in particular, the new RRFC technique, which uses recursive clustering to
improve the accuracy of multi-object detection in order to obtain a relatively higher recall value and to
ensure that enough salient objects can be detected. However, the proposed RSR method can achieve a
higher precision and recall, and its effectiveness at solving a grim detection challenge is also proved.
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Figure 7. Quantitative comparison results on MSRA-ASD, SED2 and ECSSD datasets. The first row is
PR curve; the second row is F−Measure curve; the third row is the Precision, Recall and Fβ values
with adaptive threshold; and the last row is the MAE measure value with adaptive threshold.

3.6. Comparison of Results on the Remote-Sensing Datasets

Figure 8 displays the comparisons between the proposed RSR method and the seven
state-of-the-art existing methods on the GF-1 and UAV remote-sensing images, where the visual results
are similar to those in Figure 6. It is apparent that for the traditional eye-fixation and contrast-based
methods it was difficult to ensure the integrity of the objects. For a clear salient object, whether it is a
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building or a water area, the improved methods could successfully obtain accurate entire results just
like the RSR did. However, when the aimed object was the area composed of small subblocks (such as
the second image in Figure 8), the RSR performed relatively better in the experiments. From the point
of view of the quantitative analysis, the RSR also worked well in weighting the relationship between
the Precision and Recall, and could obtain a lower MAE result, which is the quantification of its ability
to maintain the saliency consistency and keep the object integrity.
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3.7. Limitations and Shortcomings

The proposed method exploits the sparse representations based on background and foreground
dictionaries which are mainly initially determined by a combination of the boundary prior and
eye-fixation results. To a greater or lesser extent, the input information has a certain impact on the
detection results. Although the recursive processing is introduced for optimization, there shortcomings
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with regard to highlighting some salient areas with weak eye fixation or when they touch the image
edges (see the first row of Figure 1, where this issue is described as an edge limitation). In addition,
the saliency results of the proposed RSR method are simply evaluated using Equation (6) to reduce
computation expense, which may lead to over-detection (i.e., highlighting the background to a certain
extent). The results with shortcomings of the benchmark datasets are shown in Figure 9.
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2 are over-detections and columns 3–5 are edge limitations.

As for remote-sensing images, it is easy to find that all the experimental methods faced an ability
reduction. Although the ground truth generated by hand lacks validation and might weaken the
reliability of the evaluation, it can also help in the completion of the comparison analysis. In terms of
Figure 8, there is an over-detection shortcoming of the proposed RSR, whereby some small areas in the
complex environment background were given a high salient level and detected.

4. Conclusions

This paper presented an efficient salient object detection method that uses recursive sparse
representation and combines the background and foreground dictionaries. The reconstruction errors,
which can reflect the similarity between the target units and the dictionaries, are used as the salient
indicator; and a recursive processing operation acts as an optimization step.

The experimental results on three benchmark datasets about close-range images show that the
proposed RSR method performed better than the seven state-of-the-art methods that it was compared
with. RSR also was shown to be capable of working more effectively and efficiently on the multiple
objects and the images with complex structures, which was represented by its ability to maintain a
uniform and integrated salient object area. As for the results on GF-1 and UAV images, these help
to confirm that the proposed RSR could work relatively better in remote sensing than state-of-art
methods, and its potential was also proved.

In terms of the limitations of the proposed RSR method, the salient results obtained by sparse
representation were reliant on the dictionaries that were initially built based on the boundary prior
and initial saliency map; and while the final calculations are simple and require the input of only a few
factors, future work should focus on further generalizing the proposed RSR method by the integration
of more background and foreground constraints. In addition, the effectiveness of the proposed RSR
in remote sensing is not fully confirmed in these limited experiments, and so it ought to be further
developed and widely tested on more remote-sensing data as well to improve and adapt it to different
fields of remote sensing.
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