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ABSTRACT 

This paper introduces a novel method for salient object 
detection from the perspective of sparse representation 
under visual attention guidance. After pretreatment and 
regional analysis with eye fixation detection and multi scale 
segmentation, regions that are used to make up the 
foreground and background dictionaries are respectively 
selected by sorting the visual attraction level of all image 
regions. For saliency measurement, the reconstruction 
errors instead of common local and global contrasts are 
used as the saliency indicator, which is expected to improve 
the object integrity. In addition, the multi scale workflow is 
conductive to enhance the robustness for objects of 
different sizes. The proposed method was compared to six 
state-of-the-art saliency detection methods using three 
benchmark datasets, and it was confirmed to have more 
favorable performance in the detection of multiple objects 
as well as maintaining the integrity of the object area. 

Index Terms—Salient object detection, visual attention 
guidance, sparse representation, reconstruction error 

1. INTRODUCTION 

Visual saliency is an important and fundamental research in 
computer vision and image interpretation that is concerned 
with the most visually noticeable foreground in a scene [1]. 
Since its first computational model in 1998 [2], a great 
number of saliency methods which can be generally 
categorized as either bottom-up methods [3, 4] or top-down 
methods [5, 6] have been developed.  

Since Koch et al. [7] set up the foundation of visual 
saliency and Itti et al. [2] proposed a local color contrast 
method based on the contrast constraints, many related 
methods have been introduced, such as the graph-based 
visual saliency method (GBVS) [8], the Markov chain 
absorbed method (MC) [9], and some newer methods [10, 
11]. Of late, global contrast-based methods have attracted 
much interest because of the common insufficient integrity 
of the local contrast-based methods [4]. However, as the 
still need for contrast comparison, the drawbacks of global 
contrast-based multiple objects detection methods continue 
to be recognized. In addition, whether for local or global 

contrast-based methods, an appropriate salient measure is 
always a crucial factor. The increasing research and 
experimental results gradually confirmed that the detection 
easily fails when salient objects touch the image boundaries 
if the saliency is evaluated according to the center prior or 
boundary prior [12]. In general, the limitations of previous 
salient object detection methods can be summarized as 
follows [13]: 1) local contrast methods tend to highlight the 
most distinct part of the object, while they are unable to 
uniformly evaluate the saliency level of the entire object 
area; 2) global contrast methods continue to be not effective 
enough in comparing different contrast values for detection 
of multiple objects, especially for those with large 
dissimilarity; and 3) boundary prior-based saliency 
computation may fail if the salient object touches the image 
boundaries, and it is unclear how to integrate the boundary 
prior well with other saliency measures. 

In order to improve the issues, more robust boundary 
prior strategies have been proposed to enhance the 
reliability of saliency computation [14, 15]. Moreover, there 
are several methods based on sparse representation which 
make full use of the difference between the background and 
foreground [13, 16]. 

This paper proposes a new method via double sparse 
representation under visual attention guidance (RSRVAG), 
which combines the background and foreground based 
reconstructions and treats the reconstruction errors as the 
saliency indicator, aiming to avoid the integrity 
shortcomings of contrast-based methods and the weak 
robustness of boundary prior-based methods. The proposed 
RSRVAG method improves the DSR [13] method with the 
following major differences and contributions. 

1) Both background and foreground based sparse 
representations are combined to enhance the stability of 
sparse representation. 

2) The traditional eye fixation results [2] are introduced 
to extract the background and foreground dictionaries, by 
which, the RSRVAG method is designed to be more robust 
than the DSR which is based on boundary prior, especially 
for images with salient objects touching the boundaries. 

2. METHODOLOGY 

It is known that the reconstruction errors of sparse 
representation can effectively indicate the similarity 
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between samples and dictionary [14]. Thus, the salient 
value of the regions can be determined by the representation 
processing based on background dictionary or foreground 
dictionary. 

 The framework of the proposed RSRVAG method is 
shown in Fig. 1, where simple linear iterative clustering 
(SLIC) algorithm [17] is used to generate superpixel 
regions for better capturing structural information and 
decreasing the whole processing units. Note that only one 

scale with 300 superpixels is represented in the framework. 
For regions at each scale, initial saliency map generated by 
a traditional visual attention method is used as guidance for 
dictionary extraction. Following the double sparse 
representations that are respectively based on background 
dictionary and foreground dictionary, all image regions’ 
saliency value (saliency map) are calculated by combining 
the two groups of reconstruction errors. Then, the multi 
scale results are integrated to generate a final saliency map.  

Fig. 1. Framework of the proposed method. 

2.1. Dictionary Selection 

As illustrated in Fig. 2, the saliency of image pixels can be 
roughly obtained by traditional visual attention methods like 
IT [2] and GBVS [8]. Although only soft edges exist in the 
results, the area of salient objects still can be highlighted to 
some extent. Under the guidance of visual attention, regions 
with low visual attraction are selected to fulfill the 
background dictionary, while the opposites build the 
foreground dictionary.  

 
Fig. 2. Illustration of dictionary selection. 

The dictionary selection process is described as follows. 
1) Calculating the initial regional saliency map 𝐼𝑆𝑀  by 

averaging the saliency of pixels within the regions. Giving 
the number of regions as 𝑁. 

2) Setting a proportionality 𝑝𝑓𝑓, and taking the first  𝑝 × 𝑁 
larger elements as foreground dictionary 𝐷𝑓𝑓. 

3) Setting a proportionality 𝑝𝑏𝑏 , and taking the first  𝑝 × 𝑁 
smaller elements as background dictionary 𝐷𝑏𝑏 . 

2.2. Sparse Representation and Saliency Measurement 

Each region is represented by a feature vector as  𝐹 =
{𝑚𝑅,𝑚𝐺,𝑚𝐵,𝑚𝐿,𝑚𝑎,𝑚𝑏,𝑚𝑥,𝑚𝑦,𝑚𝑓𝑥 ,𝑚𝑓𝑦 ,  𝑚𝑓𝑥𝑥 ,𝑚𝑓𝑦𝑦 ,𝑚𝑓𝑥𝑦}  

consisting of color, spatial, and geometry information that 
are widely used in saliency detection, where 𝑚𝑋 is the mean 
𝑋 feature value of pixels in the region, including RGB and 
Lab colors 𝑅,𝐺,𝐵, 𝐿, 𝑎, 𝑏, pixel coordinates 𝑥,𝑦, and the first 
and second gradients 𝑓𝑥, 𝑓𝑦,  𝑓𝑥𝑥 , 𝑓𝑦𝑦, 𝑓𝑥𝑦. 

The entire segmented image is represented as 𝐼 =
{𝐹1,𝐹2, … ,𝐹𝑁} ∈  𝑅𝐷×𝑁, where 𝑁 is the number of regions, 𝐷 
is the feature dimension, and all the feature values are 
normalized to (0, 1). Given foreground dictionary 𝐷𝑓𝑓  and 
background dictionary 𝐷𝑏𝑏 , region 𝑖 is encoded by Eq. 1 and 2, 
and the reconstruction errors are calculated by Eq. 3 and 4. 

 
 

(1) 

   (2) 

   (3) 

  (4) 

where 𝛼𝑏𝑏𝑖 ,𝛼𝑓𝑓𝑖  is the sparse code vector obtained by 
dictionaries 𝐷𝑏𝑏  and 𝐷𝑓𝑓 ; 𝜆𝜆𝑏𝑏 , 𝜆𝜆𝑓𝑓  are the regularization 
parameters that are empirically set to 0.01 in the experiment; 
𝜀𝑏𝑏𝑖, 𝜀𝑓𝑓𝑖  are the reconstruction errors as a result of the 
background and foreground sparse representation. 

As described in DSR, the errors caused by background-
based sparse representation can directly measure the saliency, 
so the foreground-based reconstruction errors can work in 
the opposite way, based on which, the region saliency value 
is simply measured according to Eq. 5 in this paper. 

  (5) 
where 𝑆𝑎𝑙𝑖  is the saliency value of region 𝑖 , 𝜎𝜎2  is a 
regulatory factor that is set to 0.1 in the experiment. 

2.3. Saliency Map Integration 
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To enhance the robustness to objects of different sizes, 
superpixels at different scales were generated by setting 
multiple number parameters of the SLIC algorithm 
empirically as 100, 200, 300, and 400 in the proposed 
RSRVAG method, which were commonly used in many 
previous studies. After the multiple scale saliency 
measurements, 𝐹𝑆𝑀𝑖  (𝑖 = 1, 2, 3, 4)  was obtained and the 
final saliency map was integrated by averaging by averaging 
the multiscale results. The integration is illustrated in Fig. 3. 

Input Image

Integrated 
Saliency Map

Visual Attention 
Guidance

Ground Truth

 
Fig. 3. Integration of multiscale results. 

3. EXPERIMENTS AND ANALYSIS 

With the parameters in Table 1, the performance of the 
proposed RSRVAG method was evaluated on three 
benchmark datasets (described in Table 2) with comparison 
to six state-of-the-art saliency detection algorithms: IT [2], 
HC [4], MC [9], RBD [14], RRFC [15], and DSR [13]. The 
evaluation measures were selected as 
𝑃𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛-𝑅𝑒𝑐𝑎𝑙𝑙 (𝑃𝑃𝑅) ↑  curve, 𝐹-𝑀𝑒𝑎𝑠𝑢𝑟𝑒 ↑  curve, and 
the mean absolute error (𝑀𝐴𝐸 ↓) which were fully analyzed 
in benchmark [12]. The up-arrow ↑after a measure indicates 
that the larger the value achieved, the better the performance; 
while the down-arrow ↓ means the smaller, the better.  

Table 1. Key parameters of the proposed RSRVAG method 
Parameter Value 
MultiScales 100,200,300, 400 
𝑃𝑃𝑏𝑏 ,𝑃𝑃𝑓𝑓 0.2 
𝜆𝜆𝑏𝑏 , 𝜆𝜆𝑓𝑓 0.01 
𝜎𝜎2 0.1 
𝛽𝛽2 0.3 

Table 2. Datasets list 
Dataset Description 
MRSA-ASD [4] Single object images 
SED2 [3] Images contain two objects 
ECSSD [6] Structurally complex images 

As visually displayed in Fig. 4, it is apparent that for the 
specific datasets in the experiments, the proposed RSRVAG 
successfully extracted accurate entire salient objects, 
regardless of whether they were single objects, multiple 
objects, or images with complex structures.  

For single objects, the eye fixation (IT) and the traditional 
contrast-based method (HC) only produced fuzzy contours, 
but the improved methods (MC, RBD, RRFC, and DSR) 
clearly obtained better results. However, the RSRVAG 
realized some obviously further improvements. As far as 
multiple objects, the RSRVAG worked well while only a 
few of the state-of-the-art methods could deal with objects 
with large dissimilarities and saliency differences. In 
addition, for images with complex structure or similarity 
between the background and the foreground, the results show 
that the RSRVAG exhibited greater detection capability.  

From the quantitative point of view, as shown in Fig.5, the 
proposed RSRVAG method performed quite competitively 
in terms of the 𝑃𝑃𝑅  curve and 𝐹𝛽with the latest improved 
methods, such as RBD, RRFC, and DSR, which are 
considered to be the outstanding performers in the six state-
of-the-art methods utilized in the experiments. At the same 
time, the three measures of the proposed RSRVAG method 
were more balanced and stable, while the state-of-the-art 
methods always had at least one measure value that was 
relatively low. In the case of 𝑀𝐴𝐸, the proposed RSRVAG 
method performed obviously better in the comparisons 
regardless of whether it was a single object, multiple objects, 
or images that were structurally complex.  
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Fig. 4. Visual comparison on MRSA-ASD, SED2, and 
ECSSD datasets. 
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Fig. 5. Quantitative comparison results on MSRA-ASD, 
SED2, and ECSSD datasets.  

4. CONCLUSION 

This paper proposes a novel visual attention guided salient 
object detection method via double sparse representations 
based on background and foreground dictionaries. The 
reconstruction errors, which can effectively reflect the 
similarity between the target samples and the dictionaries, 
are used as the salient indicator; and a multi scale operation 
acts as an improvement for object details in different sizes.  

The experimental results show that the proposed 
RSRVAG method performed better in the comparison with 
some state-of-the-art methods. RSRVAG also was confirmed 
to be capable of working more effectively and efficiently on 
images with complex structures and detections of multiple 
objects, which was reflected by its ability to extract an 
integrated and uniform salient object area. In terms of the 
limitations, the salient results obtained by sparse 
representation strictly rely on the dictionaries that were built 
simply based on the sorting of eye fixation results, which is 
to say that the detection may fail when the visual attention 
guidance is poor; and while the integration of double sparse 
representation and multiscales is slightly simple and rough 
that may cause some under-detections or over-detections, 
thus future work should consider developing it by trying to 
weaken the dependence on initial visual attention guidance 
and enhance the integration strategies. 
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