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Fine Registration for VHR Images Based on
Superpixel Registration-Noise Estimation

Xianzhang Zhu , Hui Cao, Yongjun Zhang , Kai Tan, and Xiao Ling

Abstract— Local nonlinear geometric distortion is problematic
in the registration of very high-resolution (VHR) images. In the
standard registration approach, the precision of control points
generated from salient feature matching cannot be guaranteed.
This letter introduces a novel superpixel registration-noise (RN)
estimation method based on a two-step fine registration technique
that can be estimate and mitigate the local residual misalign-
ments in VHR images. The first step employs superpixel sparse
representation and multiple displacement analysis to estimate RN
information of the preregistered image. The second step optimizes
the control points obtained in preregistration by combining the
RN information and gross error information, and finally fine
registers the input image by employing local rectification. The
experiments using two data sets generated from Chinese GF2,
GF1, and ZY3 satellites are discussed in this letter, and the
promising results verify the effectiveness of the proposed new
method.

Index Terms— Image registration, local rectification, registra-
tion noise (RN), sparse representation, superpixel segmentation.

I. INTRODUCTION

IMAGE registration is the process of overlaying two or more
images of the same geographical area taken at different

times, viewpoints, and modalities or by different sensors [1].
Accurate registration of images is a prerequisite of many
remote sensing applications, such as nonsupervision change
detection, image mosaicking, and image fusion. During the
past few decades, numerous registration methods have been
proposed. These methods can be categorized into two cat-
egories, area based and feature based in terms of image
matching. In the case of area-based methods, the control
points are obtained by calculating the maximum correlation
between the image subsets. The key technique of this kind
of methods is the selection of a suitable similarity mea-
sure, such as the widely used normalized correlation coeffi-
cient (NCC) [2] and mutual information [3]. In the feature-
based category, the salient features are first extracted from the
images and then feature matching is performed using feature
correlations. Scale-invariant feature transform (SIFT) [4] and
Harris points [5] are among the most popular approaches
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for salient feature extraction. A variety of registration algo-
rithms [6]–[8] have been proposed to improve the standard
SIFT and Harris approach. Paul and Pati [6] represented the
modified uniform robust SIFT (M UR-SIFT) to register the
remote sensing optical images. Based on the combination
of the two categories, Ma et al. [9] proposed a two-step
nonrigid automatic registration scheme by using SIFT and
NCC. In general, feature-based method is more effective
than the area-based method for the registration of very high-
resolution (VHR) images because of its lower computational
complexity and strong robustness. In addition, methods based
on image segmentation (IS) technique have been developed
in recent years, such as combination of IS and SIFT [10],
histogram-based IS [11], and integration of global SRTM and
segmentation (ISS) [12]. These methods utilize IS as a spatial
constraint to remove regions that are not appropriate for image
matching and to generate more reliable matching results.

However, the registration results of the above methods are
all subject to the accuracy of control points. The terrains
covered of VHR images are usually complicated, which makes
nonlinear geometric distortion a ubiquitous problem. Thus,
it is difficult to eliminate control point errors completely, even
with the support of gross error elimination technique. This
mismatch phenomenon significantly affects the creation of
converting model between the input image and the reference
image, which leads to local distortion of the registration
results as well as unexpected effects in subsequent remote
sensing applications. In the literature, some attempts have
been made to analysis registration noise (RN). Bruzzone and
Cossu [13] proposed a change vector analysis-based approach
to reduce the effects of RN in unsupervised change detection.
In [14] and [15], two algorithms (multiscale analysis based
and edge based) were presented to estimate the distribution
of RN. Han et al. [16] studied the reduction of local residual
misalignment, and then proposed a segmentation-based fine
registration (SBFR) approach. In their method, multitempo-
ral images were assumed to be standardly registered and
a piecewise linear function was used to achieve accurate
and precise geometric alignment [16]. While extracting the
control point pairs, object representative points were defined
as the centroids of segments computed on the reference image.
Corresponding points in the input image were located by the
residual local misalignment information. However, there are
few apparent and smooth geometric features in the image.
This problem will adversely affect the performance of local
residual misalignment estimation, and thus the accuracy of
object representative point pairs.

To address the aforementioned problems, an improved
fine registration method based on superpixel RN estima-
tion (SRNE) is proposed for standardly registered (also called
preregistered in this letter) VHR multitemporal and/or mul-
tisensor images. Superpixel sparse representation (SSR) is
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Fig. 1. Flowchart of the proposed fine registration approach.

utilized for SRNE in the input image, and then the con-
trol points are optimized to apply the local transforma-
tion [17], [18]. The main contributions of the proposed
approach are twofold: 1) sparse superpixels are generated by
frequency filtering so that more reliable RN estimation results
can be obtained and 2) accurate control points are obtained by
optimization of the preregistration matching results, where the
gross error information and correlation coefficients between
the input image and the reference image are fully considered.

Section II describes the methodology of the SRNE-based
fine registration process; Section III discusses the experimental
results; and finally, conclusions are given in Section IV.

II. PROPOSED APPROACH

The purpose of fine registration is to mitigate local residual
misalignment between the standardly registered input image
and the reference image. Spatial correlation-based local dis-
placement detection between two images is very similar to
interactive visual interpretation, which mainly include two
aspects: the detection range and the existence of saliency
features. Inspired by the above concepts, superpixel segmen-
tation is integrated into RN estimation. As presented in Fig. 1,
the proposed approach consists of two steps: 1) estimation of
local RN distribution and 2) rerectification of the registered
image. For the first step, the superpixels are segmented from
the input preregistered VHR image and sparse superpixels
are generated by filtering all the superpixels in the frequency
domain. Spatial correlation contrast is employed for the
sparsely represented superpixels to estimate the RN distribu-
tion. For the second step, superpixel RN information is utilized
to optimize the control points obtained in the preregistration
process, and then the local transformation model is built by the
previously optimized control points. The final fine-registered
VHR image is generated by local rectification.

A. Generation of Sparse Superpixels

1) Superpixel Segmentation: Due to the influence of image
distortion and complex ground objects, the matched control
point error is randomly distributed in the range of the VHR
image. Thus, the deviation between the registered image and
the reference image shows different quantities. Superpixel
algorithms group pixels into perceptually meaningful atomic
regions by the degree of similarity among the neighboring
pixels, which provides an effective basic object to calculate
the local misalignments between two images. In the proposed
method, simple linear iterative clustering [19] is used for

superpixel segmentation, because it is computationally effi-
cient and can generate superpixels compactly with uniform
size and well adhered region boundaries.

The superpixel size is determined by the initial width S,
which is assigned in advance during the segmentation process.
Since the superpixels are used as the basic objects for RN
estimation, while the local residual misalignments are ran-
domly distributed in the registered image, the value of S
has a very important impact on the accuracy and efficiency
of the estimation process. When the S value is too small,
the superpixel may contain only one kind of ground object,
which can lead to a lack of saliency and can affect the rough
location recognition. On the other hand, it is difficult to obtain
precise position due to the large number of pixels and the
complex changes of ground objects when the S value is too
big. Further detailed analysis of the S value is presented
in Section III.

2) Superpixel Sparse Representation: Like artificial recog-
nition, it is easier to detect RN in high-frequency regions,
which usually represent the edge regions and exhibit large
differences in the spectral signature. Unfortunately, the low-
frequency regions are not conducive to the calculation of
global spatial correlation because of their similar spectral val-
ues. In the proposed method, the difference between original
and prediction (DBOP) filter, which is a step of the Laplacian
pyramid [20], is adopted to generate a bandpass frequency
map of the preregistered image, while avoiding scrambling
frequencies. The bandpass frequency map generated by DBOP
filter is defined as

X F = |X − M ↑ (M ↓ (X ⊗ g5×5)) ⊗ g5×5| (1)

where X represents the input registered image, g5×5 represents
the 5 × 5 window of Gaussian filter kernel, and M is the
sampling matrix, which is used to obtain the prediction image
by downsampling and upsampling steps.

In order to obtain effective RN estimation objects, sparse
representation of superpixels is carried out by frequency filter-
ing according to the following two requirements: 1) redundant
low-frequency pixels are removed and 2) each superpixel
retains a sufficient number of pixels. Each superpixel specifies
at least 50% of the pixels by calculating an adaptive frequency
threshold, which is defined as follows:

T n
F = min

{
t

∣∣∣∣∣
t∑

i=1

Pn
X F

(i) > 0.5, t ∈ [0, X Fmax]
}

(2)

where i is the value in X F , n is the label of the superpixel,
t is the current cumulative X F value, and Pn

X F
(i) denotes the

frequency ratio of i calculated by the histogram statistic. Then,
the threshold segmentation is employed to eliminate pixels that
have a value of less than T n

F in each superpixel. Letting (x, y)
be the spatial position of the sample, the sparse superpixel is
defined as follows:

SSn(x, y) =
{

X (x, y) if X F (x, y) ≥ T n
F

∅ else
(3)

B. Estimation of RN Distribution Based on Sparse Superpixel

The estimation of RN distribution is actually the quantitative
detection of local residual misalignments, which includes both
intensity and direction misalignments. Since RN represents the
drift of homonymous pixels between multitemporal images,
a spatial correlation measure can be employed to estimate it.



ZHU et al.: FINE REGISTRATION FOR VHR IMAGES 1617

We use a sparse superpixel here as the basic object and set a
w×h search window for supporting the multiple displacement
analysis in the reference image, where w and h are the width
and height of the displacement range, respectively. In addition,
the corresponding projected position on the reference image
is obtained by bilinear interpolation resampling.

Supposing that the number of sparse superpixels in the
registered image is N , for each sparse superpixel SSn

(n = 1, . . . , N), the maximum correlation location of the
reference image is searched. This can be regarded as the actual
homonymous location and has two components {un, vn} within
the search window coordinate system. However, it can be
further improved to the subpixel level by coefficient balancing.
The fine displacement coordinate is defined as follows:

un′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un +
(

Cn

Cn
l + Cn

− 1

)
× �d if Cn

l > Cn
r

un + Cn

Cn
r + Cn

× �d if Cn
l < Cn

r

(4)

vn′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vn +
(

Cn

Cn
t + Cn

− 1

)
× �d if Cn

t > Cn
b

vn + Cn

Cn
b + Cn

× �d if Cn
t < Cn

b

(5)

where �d is the moving step distance of each displacement,
Cn is the maximum correlation coefficient, and Cn

l , Cn
r , Cn

t ,
and Cn

b denote the correlation coefficients of the left, right,
top, and bottom sides of the location of Cn , respectively.
Accordingly, the intensity ρn and direction θn of the local
RN can be computed as

ρn =
√

(un′
)2 + (vn′

)
2 (6)

θn = tan−1
(

un′

vn′

)
. (7)

By applying the above operations to all the sparse super-
pixels, we can obtain an RN map of the preregistered image,
which is useful for the subsequent fine registration.

C. Optimization of Initial Control Points

As mentioned in the previous registration process, the con-
trol points are obtained by the image matching algorithm
introduced in [12], and their gross errors are calculated by
RANSAC-based mismatch detection. For each RN estimated
superpixel, the vector of misalignment is calculated. This
information can be used to adjust the coordinates of the
control points that are within this superpixel range. For
each control point pair, refinement is applied to the trans-
formed control point coordinates on the preregistered image,
while the control point coordinates on the reference image are
maintained. By combining the initial control points and the
superpixel RNs, the detailed optimization procedure is shown
as follows.

1) Selection of Estimated Noise Superpixels: Since the
optimization is aimed at the poorly registered area and the
RN vector is difficult to be accurately estimated in the regions
with low correlation, not all the superpixels are available
for optimization. RN intensity threshold Tρ and maximum
correlation coefficient threshold Tc are set to classify the
superpixels into the nonselected and selected groups with the

following formula:

SSn
U =

{
0 if ρn < Tρ && Cn < Tc

1 else
(8)

2) Selection of Effective Control Points: For the control
points that fall within the selected superpixels, some are
matched correctly, and those whose gross errors are greater
than the index threshold are selected as the effective control
points for further optimization.

3) Adjustment of Control Points: For the selected control
points on the preregistered image, their new coordinates are
obtained according to the estimated RN information of the
superpixel in which they are located. These coordinates are
considered as new control points that still correspond to the
maintained control points on the reference image.

This approach obtains precisely corresponded control point
pairs, and thus the local displacement relationship between the
registered image and reference image is established.

D. Local Rectification

Since nonlinear local distortions exist in VHR images,
it is unreasonable to apply transformation model (e.g., affine
transformation) directly on the whole image for rectifica-
tion. In order to mitigate the local residual misalignments
in the preregistered image, local affine transformation based
on triangulated irregular network is employed. For each of
the triangles, the triangulated corresponding control points
in the two images are used to calculate a warping function.
Then, affine transformation is applied to the local rectification
from the registered image to the reference image. Finally,
the fine-registered image is generated after all the triangles
are rectified.

III. EXPERIMENTS AND ANALYSIS

A. Data Sets Description and Experimental Settings

To assess the effectiveness of the proposed approach, two
multitemporal VHR remote sensing image data sets were
used for experiments. The first data set (DS1), acquired over
the region of Wenlin Town, China, contained two temporally
different panchromatic images taken from GF-2 with a spatial
resolution of 0.8 m. The reference image of DS1 was taken in
April 2015, whereas the input image was taken in March 2016.
A subset of 6000 ×6000 pixels that contains buildings, roads,
farmland, and water area [Fig. 2(a) and (b)] was considered
in the experiment. The second data set (DS2) is a set of
multisource panchromatic images that are located at Shenzhen,
China. The reference image of DS2 was taken from ZY-3 with
a spatial resolution of 2.1 m in August 2015, whereas the input
image was taken from GF-1 with a spatial resolution of 2 m
in January 2017. Similarly, the above used subsets were both
6000 × 6000 pixels and contain mountains, vegetation, urban
areas, and water areas [Fig. 2(c) and (d)].

Before applying the proposed approach, the input images
were standardly registered by the ISS method [12] as pre-
viously mentioned. In addition, the influence of the S value
setting was analyzed to select an appropriate segmentation
size for SRNE. To this end, 30 pairs of randomly distributed
points were manually selected in each of the data sets. Then,
the deviations between the registered image and the reference
image are distinguished by visual interpretation. The behavior
of the RN estimation error by varying the S parameters is
shown in Fig. 3. As can be seen, these two different resolution
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Fig. 2. Overview of two data sets. (a) and (b) GF-2 reference image and
the GF-2 input image of DS1, respectively. (c) and (d) ZY-3 reference image
and the GF-1 input image of DS2, respectively.

Fig. 3. Effects of the superpixel width S in (a) DS1 and (b) DS2. Xerr,
Yerr, and XYerr represent the RN estimation error of X-direction component,
Y-direction, and the total amount, respectively.

data sets both exhibit a smaller estimation error when the
value of S was between 300 and 700, which is in line with
the content we proposed in Section II-A. In our experiment,
the superpixel width was set to be 400, which is applicable to
different VHR images because this number of pixels is more
likely to have enough significant features to support the spatial
correlation analysis.

To quantitatively evaluate the registration performance,
three indexes were used: 1) the root-mean-square error, which
was calculated over 30 checkpoints that are manually extracted
by experienced image interpreters from each data set and
considered 0.5 pixels of artificial error; 2) the mean square
of noise intensity (MSNI), which was calculated over the
estimated superpixel RN by the formula (

∑N
n=1 ρn)/N ; and

3) the unqualified alarm (UA) rate, which indicates the num-
ber of superpixels that are not conforming to the precision
requirement over the total number of superpixels. By using
these indexes, our proposed method was compared with three
state-of-the-art methods: M UR-SIFT (feature-based standard
registration) [6], ISS (preregistration process) [12], and SBFR
(ISS preregistration) [16]. All the parameter settings of each
method follow the authors’ suggestions. In addition, an analy-
sis was conducted on the impact of performing or non-
performing the SSR step when the proposed approach is
employed. The parameters recommended for our approach
were set as follows. The setting of moving step distance �d
and RN intensity threshold Tρ influences the accuracy of RN
estimation. As the VHR image registration required a precision
of 1 m in most applications, �d and Tρ were determined by
the resolution R of the input image, where �d = Tρ = 1/R.

Fig. 4. Example of checkpoint on the (a) reference image and its projection
point on the (b) SRNE fine registered image.

Fig. 5. RN distribution superposition diagram of two data sets. (a) and (b) RN
distributions of the GF-2 image (a) before and (b) after applying the proposed
approach. (c) and (d) RN distributions of the GF-1 image (c) before and
(d) afterapplying the proposed approach.

The maximum correlation coefficient threshold Tc was set to
be 0.3, which can effectively remove invalid estimation areas.

B. Results and Analysis
By using ISS matching results and the proposed control

points optimization approach, 1521 and 1715 corresponding
control point pairs were obtained in DS1 and DS2, respec-
tively. After completing the proposed fine registration process,
SRNE was performed on the fine-registered image once again.
Fig. 4 shows an example of checkpoint on the reference
image and its projection point on the SRNE fine-registered
image. The RN distribution superposition diagram generated
before and after applying the proposed fine registration on
the two data sets is shown in Fig. 5. The estimated noise
superpixels correspond to the light regions, whereas the non-
noise superpixels correspond to the dark regions. It can be
seen that the sizes of the noise regions after applying the
proposed approach [Fig. 5(b) and (d)] were significantly less
than the preregistration results [Fig. 5(a) and (c)]. As expected,
the overall registration accuracy in the two data sets was
effectively improved. For further visual comparison, Fig. 6
displays four groups of detailed checkerboard images gen-
erated from the two experimental data sets. The red circles
in Fig. 6 highlight some of the edge objects that make it
easy to evaluate the registration results. The misalignments
generated from the preregistration process [Fig. 6(a)–(d)] were
effectively eliminated in the fine-registered images generated
by the proposed method [Fig. 6(e)–(h)], where the edge objects
were precisely aligned with each other.

Table I shows the quantitative assessments of different
registration methods for the two data sets. As one can see,
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Fig. 6. Detailed checkerboard images generated from two data sets.
(a) and (b) From DS1 and (c) and (d) from DS2 are the preregistered local
subscene, whereas (e)–(h) corresponding subscene after applying the proposed
fine registration approach.

TABLE I

SUMMARY OF THE QUANTITATIVE ASSESSMENTS FOR

DIFFERENT METHODS ON DS1 AND DS2

both fine registration approaches of SBFR and SRNE achieved
excellent performance for the improvements compared with
standard registration approaches of M UR-SIFT and ISS.
In DS1, the ISS preregistration resulted in an MSNI value
of 3.46 pixels and an UA value of 48.44%. After applying
SBFR and the proposed approach, the MSNI values were
improved to 1.78 and 0.85 pixels and the UA values were
improved to 11.47% and 4.89%, respectively. In DS2, the over-
all registration accuracy was better than that of DS1 because it
has lower ground resolution. The ISS preregistration solved the
problem of control point generation from multisource imagery
by achieving a MSNI value of 1.81 pixels and an UA value
of 13.76%. SBFR and the proposed approach improved the
MSNI to 0.59 and 0.21 pixels and improve UA to 5.96%
and 2.75%, respectively. In addition, we can see that the
registration becomes less accurate without performing the SSR
step in both the two data sets. In general, the proposed fine reg-
istration approach effectively mitigates the misalignments in
the preregistration results and achieves superior performance
to the other methods for both data sets.

IV. CONCLUSION

This letter proposed a novel fine registration approach
for VHR images capable of estimating and mitigating local
residual misalignments. The proposed method employs SSR
to robustly preserve the edge pixels and improve the RN
estimation, which is employed to optimize the initial con-
trol points. The fine-registered VHR image is generated by
local rectification transformation, which is calculated from
the newly optimized control points. As a fine registration
approach, the proposed method can effectively improve the

accuracy of the standard registration result. Compared with
SBFR, the proposed approach uses the combination of ISS
matching results and RN information to obtain sufficient and
accurate control points, which can be applied to most areas of
the images. Both the qualitative comparison and quantitative
assessment verify the effectiveness and practicability of the
proposed approach. As far as its limitations, it is difficult
to completely avoid RN estimation error, and different mis-
alignments remain for some of the superpixels. Thus, how to
generate more robust estimation objects is worthy of further
study.
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