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A B S T R A C T

Due to its many applications, multi-class geospatial object detection has attracted increasing research interest in
recent years. In the literature, existing methods highly depend on costly bounding box annotations. Based on the
observation that scene-level tags provide important cues for the presence of objects, this paper proposes a weakly
supervised deep learning (WSDL) method for multi-class geospatial object detection using scene-level tags only.
Compared to existing WSDL methods which take scenes as isolated ones and ignore the mutual cues between
scene pairs when optimizing deep networks, this paper exploits both the separate scene category information
and mutual cues between scene pairs to sufficiently train deep networks for pursuing the superior object de-
tection performance. In the first stage of our training method, we leverage pair-wise scene-level similarity to
learn discriminative convolutional weights by exploiting the mutual information between scene pairs. The
second stage utilizes point-wise scene-level tags to learn class-specific activation weights. While considering that
the testing remote sensing image generally covers a large region and may contain a large number of objects from
multiple categories with large size variations, a multi-scale scene-sliding-voting strategy is developed to cal-
culate the class-specific activation maps (CAM) based on the aforementioned weights. Finally, objects can be
detected by segmenting the CAM. The deep networks are trained on a seemingly unrelated remote sensing image
scene classification dataset. Additionally, the testing phase is conducted on a publicly open multi-class geospatial
object detection dataset. The experimental results demonstrate that the proposed deep networks dramatically
outperform the state-of-the-art methods.

1. Introduction

Multi-class geospatial object detection from remote sensing images
(Cheng et al., 2014) consists of localizing objects of interest (e.g., air-
planes, bridges) on the earth's surface and predicting their categories.
Compared with object detection from natural images (Everingham
et al., 2010; Russakovsky et al., 2015), geospatial object detection
suffers from additional challenges, including large size variations, dense
distributions, and arbitrary orientations (Marcos et al., 2018) of the
object instances on the earth's surface. Hence, multi-class geospatial
object detection requires more specific exploration.

Motivated by the great success of deep learning (Krizhevsky et al.,
2012; LeCun et al., 2015), many researchers in the remote sensing com-
munity (Cheng et al., 2016; Deng et al., 2018; Ding et al., 2018; Long et al.,
2017; Zhong et al., 2018; Zou and Shi, 2018) have transferred deep net-
works pre-trained on large-scale natural image datasets such as ImageNet
(Russakovsky et al., 2015) and MSCOCO (Lin et al., 2014), to geospatial

object detection. However, these geospatial object detection methods
(Cheng et al., 2016; Deng et al., 2018; Ding et al., 2018; Long et al., 2017;
Zhong et al., 2018; Zou and Shi, 2018) highly depend on bounding box
annotations to train or fine-tune deep networks. It is well known that
bounding box annotations are time-consuming and become almost im-
possible when the object volume is very large. As scene-level tags are
much easier to collect than bounding box annotations, the past decade has
witnessed major advances in constructing remote sensing image scene
datasets (Cheng et al., 2017; Li et al., 2018b; Xia et al., 2017; Yang and
Newsam, 2010; Zhou et al., 2018b), but the progress has been relatively
slow in building geospatial object detection datasets with accurate
bounding box annotations. To alleviate the labor of bounding box anno-
tations, this paper tries to leverage the already existing remote sensing
scene datasets to provide weak supervision to train deep networks for
multi-class geospatial object detection.

In the existing remote sensing scene datasets (Cheng et al., 2017; Li
et al., 2018b; Xia et al., 2017; Yang and Newsam, 2010; Zhou et al.,
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2018b), each scene contains one kind of dominant object and has varied
backgrounds. Scene tags only record the category type of the dominant
object in each scene, and do not contain any knowledge about the
number, location, size, or orientation of the objects or backgrounds. In
addition, scenes with the same tag often contain different numbers of
objects with varied locations, sizes and orientations. There is no doubt
that learning geospatial object detectors using the already existing re-
mote sensing scene datasets is very cost-effective, but the learning
process is very challenging because the majority of the object in-
formation is not provided.

With the aid of global pooling operations, such as global maximum
pooling (GMP) and global average pooling (GAP), researchers (Zhou
et al., 2014, 2016, 2018a; Oquab et al., 2015) in the computer vision
community have shown that deep networks trained with only image-
level/scene-level tags are informative of object locations. Un-
fortunately, these methods ignore the mutual information in image/
scene pairs when optimizing the deep networks. In the literature, the
mutual information has been widely regarded as a vital cue in the co-
saliency task (Zhang et al., 2016), which also aims at collaboratively
detecting common objects in multiple images. Intuitively, exploiting
the mutual information in the optimization of deep networks is highly
likely to improve the performance.

In this paper, we exploit the mutual information between scene
pairs to train deep networks to overcome the aforementioned drawback
in the existing methods (Zhou et al., 2014, 2016, 2018a; Oquab et al.,
2015). With the consideration that the remote sensing image generally
covers a large region and may contain many objects from multiple
categories with a large size variation, we propose a multi-scale scene-
sliding-voting strategy to calculate the class-specific activation maps
(CAM). Furthermore, we study a set of CAM-oriented segmentation
methods including a straightforward segmentation method, a diffusion-
based segmentation method, and a modification-based segmentation
method. As the activation maps are class-specific, it is possible to assign
a suitable segmentation method for each activation map by object ca-
tegory, which can further improve the overall performance.

Overall, this paper trains deep networks on one large-scale remote
sensing image scene classification dataset, but the learned deep net-
works are tested on a different multi-class geospatial object detection
dataset. As can be seen, the learning supervision is extremely weak as
only scene-level tags are taken as supervision and the training and
testing data comes from different tasks and datasets. Even under this
extreme setting, our proposed method still yields promising results, and
outperforms the baselines (Oquab et al., 2015; Zhou et al., 2016). The
main contributions of this paper can be summarized as follows:

• This paper proposes a new framework to train deep networks under
scene-level supervision for multi-class geospatial object detection.
To the best of our knowledge, this is the first method that considers
the mutual information between scene pairs to train deep networks
for the weak supervision scenario.

• Taking the characteristics of remote sensing images into account, we
present a multi-scale scene-sliding-voting strategy to calculate the
CAM of remote sensing images.

• This paper gives a set of CAM-oriented segmentation methods and
analyzes their application cases, which makes selecting the best
segmentation method for each activation map by object category
possible.

• Last but not least, this paper reveals the use of knowledge transfer
between different tasks and datasets using deep networks.

The rest of this paper is organized as follows. Section 2 reviews the
related work. Section 3 specifically introduces how to train deep net-
works under scene-level supervision. Section 4 shows the multi-class
geospatial object detection method using the learned deep networks
under scene-level supervision. Section 5 reports the experimental re-
sults. Finally, Section 6 gives the conclusion of this paper.

2. Related work

In this section, we briefly review the most relevant works in the
literature that include weakly supervised deep networks and multi-class
geospatial object detection.

To alleviate the labor of bounding box annotations, pioneers in
computer vision exploit scene-level or image-level tags as weak super-
vision for localizing objects in images or scenes. More specifically,
Pinheiro and Collobert (2015) and Cinbis et al. (2017) combined multi-
instance learning with deep convolutional features to localize objects.
Oquab et al. (2014) proposed a method to localize objects by evaluating
the output of deep networks on multiple overlapping patches. Although
promising results have been reported, these methods still cannot be
trained in an end-to-end way. In the most recent years, region propo-
sals-based methods using weak supervision (Bilen and Vedaldi, 2016;
Tang et al., 2017) have been proposed to address object detection. With
the aid of global pooling operations, Oquab et al. (2015) and Zhou et al.
(2016) trained deep networks in an end-to-end manner under weak
supervision for class-specific object detection. In the most recent years,
this idea has been widely explored in semantic segmentation (Chen
et al., 2018; Kolesnikow and Lampert, 2016) and saliency detection
(Wang et al., 2017). As these methods were originally designed for
natural images, they cannot be directly used for remote sensing image
analysis as they have insufficient capability to handle the challenges in
remote sensing images, which contain complex backgrounds and den-
sely distributed objects with arbitrary orientations.

In the early days, many variants of hand-crafted features have been
explored to detect multi-class geospatial objects (Cheng et al., 2013,
2014; Xiao et al., 2015) under the supervision of bounding box anno-
tations. Afterwards, many researchers (Cheng et al., 2016; Long et al.,
2017; Zou and Shi, 2018) transferred deep networks pre-trained on
large-scale natural image datasets to the geospatial object detection
task. Although these methods achieved improved performance, they
(Cheng et al., 2016; Long et al., 2017; Zou and Shi, 2018) still require
bounding box annotations of geospatial objects to fine-tune the trans-
ferred deep networks. To alleviate the dependence on bounding box
annotations, Han et al. (2015) proposed a probabilistic framework to
jointly integrate saliency, interclass compactness, and interclass separ-
ability to initialize training instances from remote sensing images with
binary labels indicating whether one image contains the objects of in-
terest or not. In addition, the training instances were further utilized to
iteratively learn object detectors. As a first effort, this approach
achieved promising results on single-class geospatial object detection
but could not be readily extended to the multi-class case. As reviewed in
Cheng and Han (2016), how to leverage weak supervision to address
multi-class geospatial object detection needs further exploration.

3. Learning deep networks under scene-level supervision

In this section, we first analyze the vulnerability of the existing
weak supervision based deep networks (Oquab et al., 2015; Zhou et al.,
2014, 2016, 2018a) from an architectural perspective. With the aid of a
global pooling operation (e.g., GMP or GAP), existing weak supervision
based deep networks adopt the architecture depicted in the second
stage in Fig. 1 to learn convolutional weights and class-specific acti-
vation weights in an end-to-end manner. Due to the usage of the global
pooling operation, there is only a very weak connectivity between the
scene tag and convolutional layers. To facilitate understanding, we give
a toy example to explain why the global pooling operation yields the
weak connectivity and show the drawback of this weak connectivity in
Fig. 2. In the case of the forward propagation shown in Fig. 2(a), the
spatial units of each channel in the last convolutional layer are ag-
gregated into one single unit in the aggregation feature vector. Ac-
cordingly, in the case of the backward gradient propagation shown in
Fig. 2(b), the gradient value of each unit in the aggregation feature
vector is equally divided into the spatial units of each corresponding
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Fig. 1. The workflow for training deep networks under scene-level supervision. The workflow includes two stages: the first stage learns discriminative convolutional
weights by mining the mutual information between scene pairs; the second stage learns class-specific activation weights based on the point-wise scene tags by
optimizing a simple convex objective function.

Fig. 2. A toy example to show the weakness of the end-to-end architecture with the global pooling operation. In this example, the global average pooling is adopted.
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channel in the last convolutional layer, which impairs perceiving the
spatial variance of each channel. As a consequence, this architecture
would partly decay the update of the convolutional layers and would
fail to learn powerful convolutional weights, which further hurts the
overall performance.

To overcome the aforementioned limitation in the existing methods
(Oquab et al., 2015; Zhou et al., 2014, 2016, 2018a), this paper pro-
poses an optimization method based on two stages, as illustrated in
Fig. 1, to successively train convolutional weights and class-specific
activation weights. As depicted in Fig. 1, the two stages have different
architectures, but both take the scene tags as the supervision. The first
stage aims at learning discriminative convolutional weights through
exploiting the mutual information between scene pairs. After fixing the
discriminative convolutional weights, the second stage learns the class-
specific activation weights to gain category information of the objects.
In the following, we will describe the two stages in detail.

3.1. Learning discriminative convolutional weights

As depicted in the upper part of Fig. 1, the first stage of the proposed
framework adopts Siamese-like networks, which consist of twin net-
works accepting distinct inputs, and computes the similarity between
the highest-level feature representations. Different from the weak
connectivity of the global pooling operation, the highest-level feature
representation is fully connected with the last convolutional layer by
dense weights in this stage. Siamese networks were first proposed to
solve the signature verification problem (Bromley et al., 1993). After-
wards, they were utilized in the one-shot object recognition task (Koch
et al., 2015). In contrast to the existing methods (Bromley et al., 1993;
Koch et al., 2015), which mainly focused on object-level analysis, this
paper extends this concept to scene understanding and aims to learn
discriminative convolutional weights by mining the mutual information
between scene pairs. As illustrated in the upper part of Fig. 1, the left
and right scenes come from the same scene category (i.e., the airplane
category). The left scene contains multiple small airplanes, but the right
scene contains only one large airplane. If the Siamese networks can
successfully perceive that the left and right scenes come from the same
category, this means that the networks possess the discriminative
ability to perceive common objects even with different sizes and or-
ientations in the two scenes. Intuitively, the pair-wise scene-level si-
milarity pursuit benefits by outputting discriminative networks, which
possess the scale-invariant and rotation-invariant abilities for per-
ceiving objects. We introduce the implementation details as follows.

Given a remote sensing image scene dataset = ⋯S y i N{( , )| 1, 2, , }i i
where Si denotes the scene and yi stands for its scene tag, the similarity
matrix ∈ ×RΘ N N1 of the scene dataset is specifically defined by

= =if y yΘ 1,i j i j,
1 and = ≠if y yΘ 0,i j i j,

1 . Let =Ψ C Γ{ , } denote all of
the weights of the Siamese networks, where C stands for the weights of
the hierarchical convolutional layers, and Γ denotes the weights of the
fully connected layer. We note that, here, the fully connected layer has
dense connectivity with the preceding convolutional layer by dense
weights. Different from the weak connectivity of the global pooling
operation, the dense connectivity benefits perceiving the spatial var-
iance of each channel in the preceding convolutional layer by backward
gradient propagation and further achieving the sufficient update of all
the convolutional layers. Based on the similarity matrix of the training
dataset, the Siamese networks =Ψ C Γ{ , } can be learned by optimizing
the objective function as follows:
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1 . λ denotes the regularization coefficient.
As in (Li et al., 2018a; Liu et al., 2016), the regularization term mainly
works for feature normalization, which benefits by improving the sta-
bility of the pair-wise likelihood calculation.

With respect to the feature vector fi, the first part of the objective
function in Eq. (1) is differentiable, but the second part is non-differ-
entiable due to the presence of the absolute operator. As suggested in
(Liu et al., 2016), we calculate the derivatives ∂ ∂J f/ i on two intervals
using Eq. (2). By utilizing the widely adopted back-propagation algo-
rithm, the derivatives ∂ ∂J f/ i are further utilized to update the whole
weights Ψ.
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where m is the element index of the feature vector f .
Removing the fully connected layer Γ in Ψ, the discriminative

convolutional weights C in Ψ are used to train the class-specific acti-
vation weights, as follows.

3.2. Learning class-specific activation weights

By transferring the discriminative convolutional weights C learned
in the first stage and fixing them, the second stage then learns the class-
specific activation weights; a visual illustration of the second stage is
shown in the bottom part in Fig. 1. For a given image scene Si,

=x y φ ST C( , ) ( ; )i
k

i denotes the feature of the last convolutional layer,
where k stands for the depth channel, and x y( , ) denotes the spatial
location.

Despite its apparent simplicity, the global pooling operation (Oquab
et al., 2015; Zhou et al., 2016) has been successfully utilized to learn
class-specific activation weights and is also adopted in this paper. By
global pooling x yT ( , )i

k per channel, Ti
k denotes the scalar activation

value of x yT ( , )i
k at the k-th channel where GMP (Oquab et al., 2015)

and GAP (Zhou et al., 2016) are two candidates for conducting the
global pooling function. In this experimental setup, each training image
scene only contains one kind of object and thus has one unique object
category label. Hence, the softmax-based cross-entropy loss function is
taken to model the connectivity between the global pooling result and
the scene tag, and is specified by Eq. (3).
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where c denotes the scene category. As also noted in (Oquab et al.,
2015; Zhou et al., 2016), wk

c indicates the contribution of Tk (i.e., the k-
th channel) for category c.

Using the discriminative convolutional weights C that were learned
in the first stage, the second stage learns the class-specific activation
weights = wW { }k

c by optimizing the simple convex function in Eq. (3).
As an alternative baseline, the derivatives of the convex function

in Eq. (3) can be utilized to update the class-specific activation
weights W and the convolutional weights C in an end-to-end manner.
However, this approach, which has been adopted in (Oquab et al.,
2015; Zhou et al., 2014, 2016, 2018a), may fail to learn powerful
convolutional weights C as discussed in first paragraph of Section 3.
This is why we learn the convolutional weights C and the class-
specific activation weights W in two separate stages instead of using
the popular end-to-end way to learn all of the weights of the deep
networks in one effort.

Next, we will introduce how to conduct multi-class geospatial object
detection using the learned deep networks, whose parameters are
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composed of the discriminative convolutional weights C and the class-
specific activation weights W.

4. Multi-class geospatial object detection with the learned deep
networks under scene-level supervision

Section 4.1 introduces how to automatically generate the CAM of
large remote sensing images using the learned deep networks in Section
3. In Section 4.2, we study a set of CAM-oriented segmentation methods
to localize objects from the CAM. In addition, we give a brief summary
of our proposed multi-class geospatial object detection approach in
Section 4.3.

4.1. Computing the class-specific activation maps via multi-scale scene-
sliding-voting

Given one scene S, let =x y φ ST C( , ) ( ; )k denotes the feature of the
last convolutional layer based on the discriminative convolutional
weights C learned in Section 3.1. We define the probability =p y c S( | )
that the scene S contains objects of category c by Eq. (4) and the ac-
tivation map x yM ( , )c

S of the scene S for object category c by Eq. (5).
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+

∑ +
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w w
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where w c
0 is the bias coefficient of object category c.

Generally speaking, remote sensing images cover a large region, and
their spatial resolution also changes significantly, which makes the size
of objects in the image vary greatly. To tackle these challenges, we
present a multi-scale scene-sliding-voting method to generate the CAM
of large remote sensing images.

We first introduce the single-scale scene-sliding-voting strategy, as
illustrated in Fig. 3. Given a large remote sensing image I , we obtain a
set of overlapped scenes ⋯S S S{ , , , }n1 2 by sliding windows from left to
right and top to bottom. We calculate the probability and the CAM of

each scene from ⋯S S S{ , , , }n1 2 using Eqs. (4) and (5). The probability
=p y c I( | ) that the image I contains objects of category c can be cal-

culated by Eq. (6). Through mosaicking the scene-level CAMs where the
overlapped regions are fused by the maximum voting, the activation
map x yM ( , )c

I of the image I for object category c can be calculated by
Eq. (7).

= = = = ⋯ =p y c I p y c S p y c S p y c S( | ) max( ( | ), ( | ), , ( | ))n1 2 (6)

= ⋯x y x y x y x yM M M M( , ) Mosaic( ( , ), ( , ), , ( , ))c
I

c
S

c
S

c
Sn1 2 (7)

where the visual mosaicking process can refer to Fig. 3.
To address the multi-scale nature of objects, we construct an image

pyramid and fuse the results on the image pyramid. Given a testing
image I , we construct the pyramid ⋯I I I{ , , , }m1 2 by downsampling and
upsampling I . Based on Eqs. (6) and (7), we get the pyramid prob-
abilities {p(y= c|I1), p(y= c|I2), …, p(y= c|Im)} and the pyramid
CAMs { ⋯x y x y x yM M M( , ), ( , ), , ( , )c

I
c
I

c
Im1 2

}. Furthermore, we get the multi-
scale probability =p y c I( | )ms by a maximum fusion (i.e., take the
maximum probability across all scales) of the pyramid probabilities. By
resizing the activation map at each scale to the size of the original
image I , we calculate the multi-scale CAM x yM ( , )c

Ims
by a maximum

fusion (i.e., take the maximum value at each spatial location across all
scales) of the activation maps at different scales. We note that max-
imum fusion is adopted here to avoid missing any true positives.

4.2. Detecting objects by segmenting the class-specific activation maps

As mentioned earlier, the CAM are sufficient for indicating the lo-
cation of objects; thus, we can detect objects by segmenting the CAM.
Given one testing image I , if = >p y c I( | ) Oms , where O is an empirical
probability constant, we segment the activation map x yM ( , )c

Ims
to de-

tect objects of category c; otherwise, we skip the segmentation module
because I probably does not contain objects of category c.

Based on the dramatically varied characteristics of geospatial ob-
jects, we consider a set of CAM-oriented segmentation methods. In the
experimental section, we give quantitative evaluations of these
methods, which may benefit developing practical geospatial object

Fig. 3. A visual example of calculating the CAM of one large remote sensing image by the single-scale scene-sliding-voting strategy. Each synthesized activation map
is the combination of the original image and the activation map for a particular object category. Throughout this paper, the activation maps are visually shown as
heat maps. In the synthesized activation maps, the deeper the red color, the larger the probability of object presence.
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detection applications by configuring the segmentation strategy by
object category.

4.2.1. The straightforward segmentation method
Some types of geospatial objects (e.g., the baseball diamond, the

bridge) are generally far away from each other, we can easily segment
the CAM to localize these objects. As in Zhou et al. (2016), we use a
straightforward segmentation method that sets thFactor·maxVal to be
the threshold to segment objects from the activation map, where
maxVal denotes the max value of the activation map, and thFactor is a
constant. Due to its simplicity, we call this technique the straightfor-
ward segmentation (SS) method. Fig. 4(a) gives a visual example of the
input and output of SS.

4.2.2. The diffusion-based segmentation method
Unlike objects in natural images, many types of geospatial objects

(e.g., the storage tank, the tennis court) are densely distributed.
Therefore, a direct segmentation (i.e., SS) of the activation map can
only coarsely locate the regions that contain objects but fails to estimate
accurately the size or number of objects. To address this problem, we
smooth the initial activation map by superpixel-based diffusion to
suppress the background and then detect objects from the smoothed
result. More specifically, we use a recent diffusion method (Dou et al.,
2017) to diffuse the initial activation map and then use SS to detect
objects from the diffused activation map. Fig. 4(b) gives a visual com-
parison between the initial activation map and the diffused result. In
our implementation, the superpixel generation method and the critical
parameters were designed based on (Dou et al., 2017). We call this
technique the diffusion-based segmentation (DS) method.

4.2.3. The modification-based segmentation method
For densely distributed geospatial objects (e.g., airplane) with rich

structures, DS does not work well, as rich structures result in low-
quality superpixels, which hurts the diffusion performance of DS. To
segment of these types of geospatial objects, we use a class-agonistic
saliency map to modify the initial activation map and then apply SS to
segment objects from this map. As is well known, saliency methods aim
at enhancing all salient regions (e.g., structural regions, complex tex-
tures, and high-contrast regions). The classical Fourier transform-based
saliency method (Guo et al., 2008), which has a low computation
complexity, was adopted to generate the class-agonistic saliency map.
More specifically, the modification was implemented by pixel-wise
multiplication of two maps. An intuitive validation for this idea is
shown in Fig. 4(c). This is called the modification-based segmentation
(MS) method.

4.3. Overview of the proposed multi-class geospatial object detection
approach

As aforementioned, our proposed multi-class geospatial object
detection approach involves many contents and seems to be very
complicated. To make this easier to follow, we briefly summarize the
training and testing phases of our proposed approach in Algorithm 1.
As depicted in Algorithm 1, the weights of deep networks are opti-
mized in the training phase and fixed in the testing phase. In addi-
tion, the first step in the testing phase depends on the weights of deep
networks, but the second step in the testing phase does not use the
deep networks.

Fig. 4. The CAM-oriented segmentation methods for localizing objects from the CAM. (a) shows the intermediate results in SS, (b) gives the intermediate results in
DS, and (c) shows the intermediate results in MS.
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Algorithm 1. The Proposed Multi-Class Geospatial Object Detection
Approach

The training phase
Input: Remote sensing image scene dataset = ⋯S y i N{( , )| 1, 2, , }i i
Output: Discriminative convolutional weights C; class-specific
activation weights W
1: Learn discriminative convolutional weights C by optimizing Eq.
(1) in Section 3.1
2: Learn class-specific activation weights W by optimizing Eq. (3)
in Section 3.2

The testing phase
Input: The testing remote sensing image I ; discriminative
convolutional weights C; class-specific activation weights W
Output: Bounding boxes of multi-class objects that the testing
image I contains
1: Calculate the class-specific activation maps of I based on C and
W using the multi-scale scene-sliding-voting strategy in Section
4.1
2: Extract multi-class objects from the class-specific activation
maps using one of the recommended segmentation methods {SS,
DS, MS} in Section 4.2

5. Experimental results and discussions

Section 5.1 first introduces the experimental setup of this paper.
From the prediction perspective, Section 5.2 uses pixel-level metrics to
evaluate the class-specific object prediction performance of the CAM.
Using the widely adopted bounding-box-level metrics for multi-class
geospatial object detection, Section 5.3 reports quantitative detection
results of our method as well as some baselines. Finally, Section 5.4
shows the limitations of this work in this paper and gives suggestions on
how to further improve this work.

5.1. Experimental setup

In this section, we specifically introduce the evaluation datasets in
Section 5.1.1, and we give the implementation details of our proposed
method in Section 5.1.2.

5.1.1. Evaluation datasets
Compared with other remote sensing image scene datasets such as

UC-Merced (Yang and Newsam, 2010) with 21 scene categories and
AID (Xia et al., 2017) with 30 scene categories, NWPU-RESISC45
(Cheng et al., 2017) is much larger in terms of the number of scene
categories and the number of scene samples. Therefore, NWPU-RE-
SISC45 was adopted as the training scene dataset of this work. In the
literature, existing geospatial object detection datasets include the TAS
aerial car detection dataset (Heitz and Koller, 2008) with one kind of
object, the LEVIR dataset (Zou and Shi, 2018) with three kinds of ob-
jects, the OAOP dataset (Long et al., 2017) with four kinds of objects,
and the NWPU VHR-10 dataset (Cheng et al., 2014) with 10 kinds of
objects. In this work, the NWPU VHR-10 dataset minus the vehicle
class, which is called NWPU VHR-9, is taken as the testing geospatial
object detection dataset because there does not exist a vehicle scene
category in the training scene dataset. This work takes NWPU VHR-9 as
the testing dataset, not only because it contains more object types but
also because all of its object types have a semantic category corre-
spondence with the training scene dataset.

In Fig. 5, the first 9 scene categories in NWPU-RESISC45 semanti-
cally correspond to the geospatial object types in NWPU VHR-9, and the
other scene categories in NWPU-RESISC45 are used as background
supervision. To augment the training dataset, we rotate each scene by
90°, 180°, and 270°. This augmentation enlarged the training dataset 4

times. Finally, the augmented training dataset contains 45 scene cate-
gories and each category contains 2800 samples. The testing dataset
(i.e., NWPU VHR-9) has 565 large testing images. In addition, the
testing images in NWPU VHR-9 have different sizes, and one image may
contain objects from multiple categories. More specifically, Fig. 6 il-
lustrates the testing dataset.

5.1.2. Implementation details
In our implementation, we follow the architecture of the VGG-F

net (Chatfield et al., 2014). The module for learning discriminative
convolutional weights includes the general parameters and the spe-
cial parameters. As far as the general parameters, we follow the ty-
pical setting in deep learning. More specifically, we set the learning
rate to 0.01, and the weight decay is set to 0.0005. For the special
parameters in our proposed deep learning framework, we set them
based the experience in our previous work (Li et al., 2018a). Speci-
fically, the similarity factor ρ and the regularization coefficient λ are
empirically set to 0.5 and 10, respectively. Without doubt, the per-
formance of our proposed method can be further improved if we
further tune these parameters. We don't do that here because training
deep networks is very time-consuming. In the future, we may eval-
uate these parameters when we have sufficient computational re-
sources.

In the module for generating the CAM, we consider multiple image
scaling coefficients {0.25, 0.50, 1.0, 1.5} to construct the image pyr-
amid. In each scale scene-sliding-voting process, the sliding scene size
was set to 256 by 256, and the sliding step was set to 128. The para-
meter settings in this module mainly aim at pursuing the goal that the
sliding scenes in the testing image have the similar scale with the
training scenes. Hence, the readers can configure the parameters of this
module for their specific applications based on this hint.

As far as the parameters in the module for segmenting the CAM, we
specifically analyze their sensitivity and give the recommendation set-
tings in Section 5.3.3.

All approaches including our proposed approach and other base-
lines are implemented by MATLAB and conducted on a Dell station with
8 Intel Core i7-6700 processors, 32 GB of RAM, and the NVIDIA
GeForce GTX 745.

5.2. Performance evaluation of the class-specific activation maps

To directly verify the class-specific object prediction performance of
the CAM, this section adopts the pixel-level metrics in the saliency
evaluation task (Wang et al., 2017), which calculates the similarity
between the estimated confidence map and the ground truth map.
Section 5.2.1 introduces the evaluation metrics, and Section 5.2.2 gives
the quantitative comparison result with some baselines.

5.2.1. Evaluation measures
Based on the bounding box annotations of NWPU VHR-9, we gen-

erate the class-specific binary ground truth map (CGTM). By seg-
menting the CAM at different thresholds, we calculate the pixel-level
Precision and Recall values by comparing the segmented CAM with
CGTM per object category. Furthermore, the Precision-Recall curve
(Wang et al., 2017) is taken to evaluate the class-specific object pre-
diction performance of the CAM.

5.2.2. Comparison with some baselines
Because this is the first time that the idea has been applied to the

remote sensing domain, there do not exist any methods that are
specially designed for this idea. To verify the superiority of our
proposed method, we design some baselines by employing the other
competitive candidates of the major modules of our proposed
method where the considered major modules include the training
method, the global pooling operation and the voting strategy as
shown in Table 1.
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We specifically introduce the candidates of the training method, the
global pooling operation and the voting strategy as follows. As men-
tioned in Section 3, this paper learns discriminative convolutional
weights C based on the pair-wise scene-level similarity constraint (PSS)
and learns class-specific activation weights W based on the point-wise
scene category prediction constraint (PCP) in two separate stages. To
show the superiority of this training method with two stages, we con-
sider another two candidates. The first candidate uses the derivatives of
the convex function in Eq. (3) to train the convolutional weights C and
the class-specific activation weights W in an end-to-end manner based
on PCP, similar to (Oquab et al., 2015; Zhou et al., 2016). The second
candidate transfers the already-trained convolutional weights C on the
ImageNet, and trains the class-specific activation weights W on the
remote sensing image scene dataset based on PCP. As far as the global

pooling operation, we consider two popular ones, GMP (Oquab et al.,
2015) and GAP (Zhou et al., 2016), in our implementation. In addition
to our proposed scene-sliding-voting (SSV) strategy shown in Section
4.1, we take the image-level-voting (ILV) method as a candidate to
generate the CAM to verify the superiority of SSV, where ILV means
directly applying the learned deep networks on the whole image
without any scene partition. To summarize, four baselines and four
variants of our proposed method are shown in Table 1.

In Fig. 7, we report the Precision-Recall curves of our proposed
method and some baselines for detecting 9 object categories. As shown
in Fig. 7, our proposed CAM with PSS+GAP+SSV simultaneously
achieves the best object prediction performance in all 9 object cate-
gories. Our proposed CAM outperforms the baselines by a large margin,
which shows the superiority of PSS compared to PCP. Furthermore,

Fig. 5. The remote sensing image scene training dataset (i.e., the NWPU-RESISC45 dataset). This dataset has 45 scene categories and there are 700 image scenes per
category. Two random scenes are shown for each category.
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GAP performs better than GMP, and SSV also improves the object
prediction performance when compared with ILV.

In addition, we show our proposed CAM with PSS+GAP+SSV in
a synthesized manner in Fig. 8. As depicted in Fig. 8, our proposed CAM
accurately indicates the presence of objects.

5.3. Performance evaluation of multi-class geospatial object detection

This section evaluates the multi-class geospatial object detection
performance. In the following, Section 5.3.1 gives the evaluation
measures for multi-class geospatial object detection. Section 5.3.2 re-
ports the quantitative comparison result with baselines. Finally, Section
5.3.3 analyzes the sensitivity of critical parameters.

Fig. 6. The testing geospatial object detection dataset (i.e., NWPU VHR-9). Six remote sensing images are randomly selected from this dataset and illustrated with the
bounding box annotations. Specifically, ‘1–9’ on the bounding boxes stand for the airplane, ship, oil tank, baseball diamond, tennis court, basketball court, ground
track field, harbor, and bridge, respectively.

Table 1
The method abbreviations based on different configurations. 'CAM' is the abbreviation of class-specific activation maps; 'GMP' is the abbreviation of global maximum
pooling; 'GAP' is the abbreviation of global average pooling; 'PSS' denotes the pair-wise scene-level similarity constraint; 'PCP' stands for the point-wise scene category
prediction constraint; 'ILV' is the abbreviation of image-level-voting; 'SSV' is the abbreviation of scene-sliding-voting.

The method abbreviation The training method The global pooling
operation

The voting strategy

Baseline1 (Oquab et al., 2015): the CAM with
PCP1+GMP+ ILV

Both of C and W trained by PCP GMP ILV

Baseline2 (Zhou et al., 2016): the CAM with
PCP1+GAP+ ILV

Both of C and W trained by PCP GAP ILV

Baseline3 (Oquab et al., 2015): the CAM with
PCP2+GMP+ ILV

C transferred from the already-trained networks on
ImageNet; W trained by PCP

GMP ILV

Baseline4 (Zhou et al., 2016): the CAM with
PCP2+GAP+ ILV

C transferred from the already-trained networks on
ImageNet; W trained by PCP

GAP ILV

Our proposed CAM with PSS+GMP+ ILV C trained by PSS; W trained by PCP GMP ILV
Our proposed CAM with PSS+GAP+ ILV C trained by PSS; W trained by PCP GAP ILV
Our proposed CAM with PSS+GMP+SSV C trained by PSS; W trained by PCP GMP SSV
Our proposed CAM with PSS+GAP+SSV C trained by PSS; W trained by PCP GAP SSV
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5.3.1. Evaluation measures
Unlike the pixel-level Precision and Recall measures in Section 5.2,

this section uses the bounding-box-level Precision and Recall metrics
for evaluating object detection performance. As also adopted in Cheng
et al. (2014), the Precision metric measures the fraction of detections
that are true positives, and the Recall metric measures the fraction of
positives that are correctly identified. As suggested in Cheng et al.
(2014), a detection is considered to be a true positive if the area overlap
ratio between the predicted bounding box and the ground truth
bounding box exceeds 0.5; otherwise, a detections is considered to be a
false positive. Furthermore, we also consider comprehensive metrics
including average precision (AP) and F-measure, where AP computes
the average value of Precision over the interval from Recall= 0 to
Recall = 1, and the F-measure is calculated by:

=
+

F - measure 2·Precision·Recall
Precision Recall (8)

5.3.2. Comparison to some baselines
In this section, we further evaluate the object detection performance of

the CAMs including our proposed CAM with PSS+GAP+SSV, baseline1

(Oquab et al., 2015): the CAM with PCP1+GMP+ILV, baseline2 (Zhou
et al., 2016): the CAM with PCP1+GAP+ ILV, baseline3 (Oquab et al.,
2015): the CAM with PCP2+GMP+ ILV, and baseline4 (Zhou et al.,
2016): the CAM with PCP2+GAP+ ILV. As depicted in Section 4.2, the
considered segmentation methods include SS, DS, and MS.

Each combination of a CAM and a segmentation method constitutes
a potential object detection method. We report object detection per-
formance of different combinations in Table 2. More specifically, by
varying the segmentation factor constant thFactor in Section 4.2, we
calculate the overall evaluation metric (i.e., AP) to indicate the per-
formance of a particular object detection method. As shown in Table 2,
our proposed CAM can achieve the best object detection performance
on all geospatial object types by tuning the segmentation methods.

In accordance with Algorithm 1, we report the running time of our
proposed object detection method in two phases (i.e., the training and
testing phases). More specifically, Tables 3 and 4 report the running
time of the training and testing phases, respectively. As shown in
Table 3, the most majority of the computational load in the training
phase focuses on learning discriminative convolutional weights, and the
whole weights of deep networks can be trained in 26 h due to the usage
of GPU. In addition, Table 4 summarizes the running time of the testing
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(g) ground track field                               (h) harbor                                         (i) bridge 
Fig. 7. The Precision-Recall curves of the proposed methods and some baselines on 9 object categories.
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phase in two sub-steps. More specifically, we report the average run-
ning time of different segmentation methods in the second sub-step. It is
noted that one can easily accelerate the testing phase by the paralleli-
zation modification as needed.

Fig. 8. The synthesized activation maps of testing remote sensing images. In the synthesized activation maps, the original image is overlaid with the activation maps
for different object categories. Each column shows the activation results of different input images on one particular object class, and each row shows the activation
results of one input image over different object classes. Based on the ground truth, we mark the activation result with ‘Y’ if the input image contains objects of the
corresponding class shown in the bottom, which benefits intuitively showing the quality of the activation maps.

Table 2
Performance comparisons of our proposed CAM and four other baselines based on three segmentation methods in terms of the evaluation metric of AP.

CAM methods Segmentation methods Airplane Ship Oil tank Baseball diamond Tennis court Basketball court Ground track filed Harbor Bridge

Baseline1
(Oquab et al., 2015)

SS 6.10% 0.01% 2.88% 9.61% 0.05% 0.03% 3.97% 0.01% 0.06%
DS 0.03% 2.80% 26.4% 6.54% 0.03% 0.01% 13.2% 0.03% 0.01%
MS 14.4% 2.90% 0.03% 3.24% 0.01% 0.02% 0.04% 10.5% 0.04%

Baseline2
(Zhou et al., 2016)

SS 4.94% 0.04% 3.33% 10.2% 0.01% 0.02% 2.90% 0.02% 0.03%
DS 0.01% 3.43% 30.9% 7.96% 2.30% 0.04% 12.4% 0.01% 0.01%
MS 11.9% 2.85% 0.01% 4.06% 0.01% 0.01% 0.01% 10.1% 0.02%

Baseline3
(Oquab et al., 2015)

SS 7.26% 0.02% 0.00% 14.1% 0.03% 0.00% 2.90% 0.01% 0.07%
DS 0.01% 5.68% 41.4% 7.94% 2.53% 1.65% 9.04% 0.00% 0.02%
MS 17.3% 5.15% 0.02% 5.07% 0.03% 0.01% 0.02% 16.6% 0.03%

Baseline4
(Zhou et al., 2016)

SS 6.73% 0.03% 0.02% 15.6% 0.04% 0.29% 2.74% 0.01% 0.05%
DS 0.02% 4.42% 37.1% 9.67% 0.02% 1.04% 7.83% 0.02% 0.01%
MS 16.8% 4.12% 0.00% 7.42% 0.01% 0.35% 0.02% 16.6% 0.03%

Our proposed CAM SS 18.6% 3.11% 6.93% 27.8% 3.71% 6.51% 1.63% 4.54% 5.15%
DS 0.03% 4.80% 51.2% 12.1% 8.24% 9.44% 13.5% 0.03% 0.02%
MS 26.9% 5.80% 0.01% 19.8% 0.02% 5.12% 0.01% 38.4% 3.03%

Table 3
Computation time of different modules in the training phase.

The training stage Running time on the whole scene
dataset

Learn discriminative convolutional weights 25.8 (hours)
Learn class-specific activation weights 0.35 (hours)

Table 4
Computation time of different modules in the testing phase.

The testing stage Average running time per
image

Calculate the class-specific activation maps 13.8 (seconds)
Extract multi-class objects from the class-

specific activation maps
SS 0.53 (seconds)
DS 11.5 (seconds)
MS 0.62 (seconds)
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5.3.3. Sensitivity analysis of critical parameters
In the following, we specifically analyze the sensitivity of the critical

parameters including the probability constant O, the segmentation
method, and the factor constant thFactor in Section 4.2.

In Fig. 9, we report the overall object detection performance of our
proposed CAM combined with three segmentation methods (i.e., SS, DS,
and MS) under different probability constants where the performance is

measured by Mean AP over all nine object classes. As shown in Fig. 9,
⩾O 0.999 can make our proposed method perform better than a small

probability constant, but the performance of our proposed method
starts to decrease when =O  0.9999. Hence, the probability constant O is
empirically set to 0.999 in our implementation.

With the probability constant O fixed to 0.999, we further analyze
the sensitivity of the segmentation methods and the factor constant
thFactor. Using the F-measure metric, Fig. 10 reports the object detec-
tion performance of our proposed CAM based on different segmentation
methods and factor constants.

As shown in Fig. 10, SS can make our proposed CAM achieve the
best detection performance on the baseball diamond and the bridge
categories because objects in these categories are generally scattered
which makes straightforward segmentation possible. DS achieves the
best detection performance on the ship, the oil tank, the tennis court,
the basketball court, and the ground track field categories. As verified
by this quantitative result, DS not only enhances densely distributed
small objects (e.g., the oil tank), but also helps to enhance large objects
(e.g., the ground track field) to detect the whole object and achieve
better performance than SS, because SS often detects parts of the object
in this case. In addition, MS clearly improves the detection performance
for the airplane and the harbor categories, when compared to SS and
DS.

Fig. 9. The overall object detection performance of our proposed CAM com-
bined with three segmentation methods, measured in terms of the evaluation
metric of Mean AP over all nine object classes, under different probability
constants O.

(a) airplane (b) ship                                             (c) oil tank

(d) baseball diamond (e) tennis court (f) basketball court

(g) ground track field (h) harbor    (i) bridge

Fig. 10. Performance evaluation of three segmentation methods under different factor constants thFactor where the performance is measured by F-measure.
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As only extremely weak supervision is adopted in this paper, it is
worth mentioning that the final segmentation module is sensitive to
the segmentation methods and the segmentation factors. In prac-
tical applications, we can use a small validation dataset with
bounding box annotations to select the optimal segmentation
method and its corresponding factor per object category to obtain
robust object detection performance. Based on the analysis in
Figs. 10, 11 visually shows the geospatial object detection results of
our proposed CAM under the best configuration of the segmentation
method and factor per object category (i.e., the class-configured
segmentation strategy).

5.4. Limitations and future perspectives

Although the proposed geospatial object detection approach does
not depend on bounding box annotations, which saves annotation cost,
the proposed approach still requires a semantic category correspon-
dence between objects and scenes. To tackle this limitation, we can
exploit zero-shot learning techniques (Han et al., 2018; Li et al., 2017;
Zhang and Saligrama, 2016) to combine the detectors of existing object
types to address unseen object types in scene datasets.

Due to the dense distribution of objects and the complex structures
of backgrounds, the final geospatial object detection performance is

Fig. 11. Some visual detection results of our proposed CAM based on the class-configured segmentation method. The true positives, false positives, and false
negatives are indicated by red, blue, and yellow rectangles, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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sensitive to the segmentation methods. While this problem can be ad-
dressed by selecting a suitable segmentation strategy per object cate-
gory using a validation dataset, a uniform segmentation solution is still
preferred. To pursue uniform segmentation, we can utilize our proposed
CAM to output high-confidence class-specific object proposals with the
aid of class-agonistic object proposal techniques (Uijlings et al., 2013)
and further refine the class-specific object proposals by using advanced
learning methods that are robust to label noise (Patrini et al., 2017).

In the future, we may extend the proposed geospatial object de-
tection approach to more challenging object detection tasks such as
infrared object detection (Li and Zhang, 2018) and SAR object detection
(Tan et al., 2015).

6. Conclusion

This paper proposes a new learning framework that can transfer
knowledge from the remote sensing image scene classification task to
the multi-class geospatial object detection task. To make full use of the
supervision from scene tags, we exploit pair-wise scene-level similarity
and point-wise category prediction constraints to learn discriminative
convolutional weights and class-specific activation weights. Based on
these learned weights, we propose a multi-scale scene-sliding-voting
strategy to compute the CAM. In addition, we present a set of CAM-
oriented segmentation methods for detecting objects from the CAM. We
train deep networks on a publicly open remote sensing image scene
dataset, and we conduct multi-class geospatial object detection on an-
other remote sensing geospatial object detection dataset. Even under
this extremely weak supervision, the proposed approach achieves pro-
mising geospatial object detection results and outperforms the base-
lines. In our future work, we will exploit zero-shot learning to address
the detection of unseen object types in the scene dataset and to unify
the segmentation process with the aid of class-agonistic object proposal
techniques and noise-tolerated learning.
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