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ABSTRACT 

 

Automatic registration of remote sensing images is a 

challenging problem in the applications of remote sensing. 

The multimodal remote sensing images have significant 

nonlinear radiometric differences, which lead to the failure 

of area-based and feature-based registration methods. In this 

paper, to overcome significant nonlinear radiometric 

differences and large scale differences of multimodal remote 

sensing images, we propose a new registration algorithm, 

which can meet the need of initial registration of multimodal 

remote sensing images that conform to similarity 

transformation model. Our synthetic and real-data 

experimental results demonstrate the effectiveness and good 

performance of the proposed method in terms of 

visualization and registration accuracy. 

 

Index Terms— Multimodal remote sensing images, 

Log-Gabor filter, multi-scale atlas, phase correlation, image 

registration 

 

1. INTRODUCTION 

 

Image registration is a fundamental and crucial problem in 

remote sensing analysis tasks including change detection, 

image fusion, and image mosaic [1-3]. And it is to 

essentially overlap two or more images, and align the 

reference image and sensed image [1].  

During the last decades, there have been rapid 

developments of image registration methods, which are 

mainly divided into area-based methods and feature-based 

methods. However, these methods cannot satisfy the need of 

multimodal remote sensing image registration because of 

significant nonlinear radiometric differences and the 

remarkable geometric differences. The common way to deal 

with geometric differences is to apply the imaging physical 

model to eliminate the global rotation and scale differences 

[4]. However, the remained local geometric differences 

should be taken into account to improve the robustness of 

registration methods. 

To address the above issues, we extend traditional phase 

correlation method [5, 6] based on multi-scale Log-Gabor [7] 

filtering, which can effectively solve the situation caused by 

significant nonlinear radiometric differences and large scale 

differences. And we call our method as MLPC for 

convenience. The remainder of this paper is organized as 

follows. Section 2 describes related work. Section 3 presents 

some details of MLPC. Section 4 illustrates the rationality of 

MLPC on synthetic images, and the registration performance 

of MLPC on a multimodal image pair. In final, conclusion is 

arranged in section 5. 

 

2. RELATED WORK 

 

Generally, image registration consists of four steps: feature 

detection, feature matching, transformation model estimation 

and image resampling and transformation [1]. There are two 

main approaches to feature understanding: area-based and 

feature-based. The former puts emphasis on the feature 

matching rather than detection, whereas the latter seeks the 

correspondences with similar descriptors between local 

features.  

In area-based registration methods, Normalized Cross 

Correlation (NCC) is a classical representative [8], whose 

idea is to compute the similarity metrics of the two windows 

and consider the most similar one as a correspondence. 

However, the area-based methods are not robust to the 

situation where the regions lack texture. The Fourier 

methods are also used to image registration [9], which are 

efficient and robust to the dependent noises in frequency 

domain. The mutual information (MI) methods work directly 

with image intensities, which are not insensitive to local 

differences, so they are suitable for multimodal image 

registration [10]. However, its shortcoming is the big budget. 

Feature-based methods first extract the features of interest, 

and find the correspondences with similar local descriptors. 

The most widely used feature descriptors in remote sensing 

are SIFT [11]. However, when they are applied to process 

multimodal images, the significant nonlinear radiometric 

differences will cause the contrast change between various 

features, making it difficult to extract highly repeatable 

shared features and describe their feature vectors, further 

degrading the performance of registration methods [12]. 

As the geometric structural information of the same 

features may be kept the same in the multimodal remote 

sensing images, thus the images can be registered through 

the consistency of geometric structural information. The 

Log-Gabor filter is an effective means to obtain the 



geometric structural information [7], which is insensitive to 

local radiometric differences and independent of image 

luminance, compared with contour gradient based methods. 

Therefore, it is usually utilized to assist image registration. 

Phase correlation algorithm, proposed by Kuglin [13], 

and developed by Foroosh [14] and Reddy [6], is used to 

register two images that conform to the similarity 

transformation model. Combining phase correlation and 

other descriptors, a good initial registration result can be 

obtained. However, it cannot handle significant radiometric 

differences and large scale differences between images. 
 

3. PROPOSED METHOD 

 

We choose the similarity transformation model (i.e. rotation, 

scale, and translation) to express the global relationship 

between the reference and sensed images. The proposed 

method (MLPC) is divided into two parts as the entire 

flowchart shown in Fig.1. As some steps of MLPC are 

identical with the traditional extended phase correlation 

algorithm, we then only put emphasis on the special keys.  

 

3.1. Multi-scale Log-Gabor filtering of the magnitudes  

 

The structural information provided by Log-Gabor filter can 

keep highly consistent between the images with significant 

nonlinear radiometric differences. Inspired by this, we can 

obtain the magnitudes of the reference and sensed images in 

frequency domain after Fourier transform. And then, the 

magnitudes are filtered by using different kinds of Log-

Gabor filters with different central frequencies, and a series 

of filtered images can be obtained. It is noting that the 

filtered images basically have no overlapping information, 

so we do not directly conduct phase correlation of the 

filtered images which have different scales. After the 

filtering process, we build a multi-scale atlas space in which 

the upper structural information will be contained in the next 

layer, so as to facilitate phase correlation of the filtered 

images. We choose three different scales in Log-Gabor 

filtering to build the multi-scale atlas, and the scale ratio 

between adjacent scales is 2.1. The multi-scale atlas space 

built in this paper has the following form: 
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2 1 2

2 2 2

3 1 2 3
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A FI FI

A FI FI FI
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
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                            (1) 

 

where 
i

FI  represents the i
th

 filtered image of magnitude 

using Log-Gabor filter with different central frequencies; 
iA  

represents the i
th

 layer of the multi-scale atlas space.  

 

3.2. Conduct atlas phase correlation  

 

This step is to conduct phase correlation between every 

image pair in the atlases of the reference image and sensed 

image. We record all the peaks of all the phase correlation 

results, while the maximum response peak among them is 

considered the optimal solution. The coordinates of the 

maximum response peak will be utilized to calculate the 

scale and rotation, making use of the method proposed in [6]. 

And the parameters of phase correlation module also are 

used as the recommendation of reference [6]. Hereto, the 

rotation and scale differences between the reference image 

and sensed image are eliminated. 

 

3.3. Rectify sensed image 

 

The sensed image is rectified via bilinear interpolation 

according to the rotation angle and scale factor obtained in 

the previous steps, and the rectified sensed image is used as 

new input to eliminate the translation differences to the 

reference image. In the real scene, we should decide whether 

to downscale the large scale image or upscale the small scale 

image according to the specific scale. 

 

3.4. Multi-scale Log-Gabor Filtering of the structural 

spectrums  
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Fig. 1. Flowchart of the proposed method (MLPC). 



This step is to extract the structural spectrums as far as 

possible, in order to eliminate the interface of radiometric 

differences. The structural spectrums with different scales 

are superimposed together. After that, the cross power 

spectrum between the superimposed structural spectrums of 

the reference image and rectified sensed image is calculated. 

And then, inverse Fourier Transform is conducted and the 

maximum peak is obtained, and the coordinates of the 

maximum peak will determine the translation.  

 

4. EXPERIMENTS AND ANALYSIS 

 

The experiments are dived into two classes: synthetic 

experiment, which is used to evaluate the rationality of 

MLPC, and real-data experiment, which is used to evaluate 

the effectiveness of MLPC.  

 

4.1. Synthetic experiment 

 

The reference image is shown in Fig.2 (a), with 512512 in 

size. The sensed image (Fig.2 (b)) is obtained by regional 

automatic balance processing of the reference image, and 

then rotating 30 degrees and downscaling by 4 times.  

The atlas phase correlation results of the reference and 

sensed images are shown in Fig. 3, and only the succeeded 

ones that are able to successfully calculate the rotation angle 

and scale factor are shown. The rotation-scale pairs are 

(29.26°, 3.80), (30.16°, 3.93) and (30.42°, 4.02) 

corresponding to Figs. 3(a)-3(c), respectively. The 

transformation model parameters calculated in Fig. 3(b) are 

closest to the real values, because the corresponding image 

pair has the same scale and highly similar structural 

information. We also omit the visualization results of six 

failed cases. In this experiment, phase correlation failure 

occurs when there is a big difference in the structural 

information between the two images, because the maximum 

response peak in the phase correlation module is difficult to 

be assured under that situation where the scale ratio between 

the two images is larger than 1.8 [6]. The failed cases 

demonstrate that it may be difficult to get the correct results 

by directly extracting the structural information at the 

original scale level. This experiment also indirectly 

demonstrates that it is necessary to build a multi-scale atlas 

space to enhance the stability of phase correlation. 

 

4.2. Real-data experiment 

 

The two images are visible spectral and infrared images, 

both 400400 in size, as shown in Fig. 4. The overlapped 

area covers buildings, and the nonlinear radiometric 

differences between them are ubiquitous, while the structural 

information is almost the same. 

Fig. 5 shows the registration results of MLPC. The 

staggered grids are utilized for the visualization of the 

registration details. It can be seen that MLPC can resist the 

nonlinear radiometric differences between the two images. 

In terms of the local registration details, MLPC qualitatively 

  
(a) 

     
(b) 

  
(c) 

Fig. 3. Atlas phase correlation results. (a) Phase correlation 

result between
1A  of reference image and 

2A  of sensed 

image. (b) Phase correlation result between
1A  of reference 

image and 
3A  of sensed image. (c) Phase correlation result 

between 
2A  of reference image and 

3A  of sensed image. 

The location of the peak determines the rotation and scale 

[6]. 

  

      
            (a)                        (b) 

Fig. 2. Synthetic data. (a) Reference image (b) Sensed 

image.   



owns good registration performance. We also compared 

MLPC to the classical area-based method: NCC, in terms of 

registration accuracy. In this comparison, 30 check points 

were manually chosen and their residuals were counted. As 

the results shown in Table 1, the registration accuracy of 

MLPC was superior to that of NCC. The reason is that NCC 

cannot deal with nonlinear radiometric differences well, 

which affects the distribution and the quality of the 

correspondences and then affects the transformation model 

estimation. In addition, as the greedy search strategy of NCC, 

the transformation model estimated by MLPC was utilized 

as a prior of NCC to constraint NCC’s search area. This 

indicates that our method can serve as a pretreatment of 

other methods. 

 

5. CONCLUSION 

 

In this paper, we propose a new registration method for 

multimodal remote sensing images, focusing on the issues 

caused by significant nonlinear radiometric differences and 

large scale differences. The synthetic and real-data 

experimental results help to confirm the rationality and 

effectiveness of the proposed method. The simple 

quantitative analysis result of the real-data experiment 

verifies its good registration accuracy. In future work, we 

will further research the best multi-scale atlas building 

scheme used in this paper, and more quantitative 

comparisons with other most advanced methods using more 

multimodal data sets should be taken into consideration. 
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 (a) (b) 

Fig. 5. Registration results. (a) Visualization result shown 

with staggered grids. (b) The displayed details of four 

different localities. 

   
(a)  (b) 

Fig. 4. Real data. (a) Reference image. (b) Sensed image.    

  Table 1. Registration accuracy of NCC and MLPC.  

methods RMSE (pix.) Max error (pix.) 

NCC 1.20 2.12 

MLPC 0.28 1.00 
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