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ABSTRACT When the regularized kernel methods are utilized in the mismatch removal problem, the
regularization coefficient and the choice of kernel function will seriously affect the performance of the
methods. In this paper, we propose a method that combines an improved regularization and an adaptive
Gaussian kernel function to interpolate the vector fields so as to overcome the issue. We formulated the
problem as a modified maximum a posterior estimation of a Bayesian model. In this model, a two-order term
of the regularization coefficient is introduced into the regularized risk function in order that the coefficient can
be adaptively estimated in the expectation–maximization algorithm. In addition, an adaptive Gaussian kernel
function also is imposed to construct the regularization, in which thewidth of the kernel function is adaptively
determined by the diagonal length of the maximum enveloping rectangle of the sample set. Our experimental
results verified that our method was robust to large outlier percentages and was slightly superior to some
state-of-the-art methods in precision-recall tradeoff and efficiency. The evidence that the performance of our
method was insensitive to the remaining inner parameters verified its good self-adaptability. Finally, airborne
image pairs were used to demonstrate that our method can establish the feature correspondences even under
a discontinuous vector field scene. In addition, we found that our method can obtain higher precision given
a residual threshold for special applications such as robust epipolar geometry estimation in computer vision
and photogrammetry.

INDEX TERMS Point correspondence, mismatch removal, regularization, Gaussian kernel function.

I. INTRODUCTION
Image mismatch removal is a prerequisite in applications
including motion analysis, camera self-calibration, regis-
tration and object recognition between two images, but
it continues to be a fundamental problem in photogram-
metry and computer vision [1]–[5]. The initial correspon-
dences are usually established by image matching methods
(e.g., SIFT [6] and SURF [7]) that require the correspond-
ing points can only possess similar descriptors and satisfy
some underlying geometric constraints such as homogra-
phy geometry, epipolar geometry and some non-parametric
geometry relationships [8]. However, there are many mis-
matches in the initial correspondences due to occlusion, view-
point change, etc., which may ruin the results of traditional

estimation methods. A great deal of research effort therefore
continues to be put forth by the photogrammetry and com-
puter vision community to eliminate its influence.

A traditional common strategy for solving the matching
problem is to use a two-stage process: 1) putative correspond-
ing points computing, which includes many true matches
but also a large number of mismatches and 2) mismatch
removal, which is removal of the mismatches and estimation
of the inliers and geometric constraint model [5], [8]–[11].
The RANSAC method [11] and its variants [12], [13] are
the classical representatives of this strategy. Although these
methods are very successfully applied to many situations,
their results suffer from the following difficulties. First,
the efficiency of these methods decreases dramatically with
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an increase in the mismatch percentage [5]. Second, setting
the adaptive parameters is difficult, which is detrimental to
the application of these methods. In addition, Yuille and
Grzywacz formulated the visual motion task in terms of
finding those matches which give rise to the best vector
field interpolation [14], [15]. On this basis, this theory is
applied most often to shape matching, image registration,
and machine learning research [16]–[19]. In terms of the
correspondence problem, the results of the related works
were sensitive to the parameter settings, such as VFC [8]
and LLT [19].

In this paper, the mismatch removal problem is formu-
lated as a modified maximum a posteriori estimation of
a Bayesian model which can be solved by an iterative
expectation-maximization (EM) [20] algorithm, whereby
given a large initial value for the EM algorithm, all the
latent variables reach the optimal solution with the iteration
increases, which is similar to deterministic annealing [21].
Our method is adaptively and computationally attractive
especially for its performance in dealing with a large mis-
match percentage.

FIGURE 1. Influence of parameters on precision-recall of VFC.
(a), (b) Valbonne dataset. (c) Mismatch removal result of our method.
(d), (e) Influence of β and λ on the precision-recall using VFC. β is the
parameter of Gaussian kernel function, and λ is the regularization
coefficient in VFC. In this dataset, there is a large depth discontinuity, and
in this case it may be problematic for the vector field interpolation-based
mismatch removal methods as a smoothness constraint is imposed as
a prior.

The mismatch removal methods based on Yuille’s motion
field theory often suffer from the regularization coefficient
and the parameter choice of a kernel function as shown
in Fig. 1. Given a set of putative correspondences matched
from Valbonne dataset used in [8], as shown in Fig. 1(a)
and Fig. 1(b), the VFC with different parameter settings was
implemented with the results as shown in Fig. 1(d)-(e); and
our method’s mismatch removal result shown in Fig.1(c).
Note that our result in Fig. 1(c) is the same as the optimal

result of VFC with parameter settings - (β = 0.1, λ = 3).
Different regularization coefficient and the kernel function
can greatly influence the performance of VFC, which makes
it less attractive for wide application. Interestingly, our exper-
imental result demonstrated that our method exhibited the
same best result that VFC can obtain with some specific
(maybe optimal) parameter settings without loss of precision
and recall. This leads to the core concerns of our method that
how to determine regularization coefficient and the parameter
of kernel function.

To make it easier for the readers to follow this paper,
we firstly grouped the basic terminologies appeared in this
paper as follows.
• Inliers are the correct matches.
• Outliers are the mismatches.
• Precision is the ratio of the preserved correct match
number and preserved correspondence number.

• Recall is the ratio of the preserved correct match num-
ber and correct match number in the original putative
correspondences or ground truth inliers.

The contributions in this paper include the following. First,
a two order term of regularization coefficient is introduced in
the regularized risk function, which can guarantee that the
coefficient can be adaptively estimated in an EM algorithm.
As the smooth term of our method is similar to that of
regularization theory [22], the regularization coefficient can
be considered as a regularization variable at each iteration
process of the EM algorithm, which will be discussed later.
Second, an adaptive Gaussian kernel function is imposed
to construct regularization, where the width of the kernel
function is adaptively determined by the diagonal length of
the maximum enveloping rectangle of the sample set for the
correspondence problem, avoiding the influence of the width
of the Gaussian kernel on the performance of our method.
In addition, we make explicit the calculation of the volume
of uniform distribution in our method, whereas it is fuzzy
and set as 10 by default in some similar methods. It must be
emphasized that the adaptability of the method is the primary
factor in our consideration under the premise of ensuring
considerable precision-recall trade-off and efficiency.

The remainder of this paper is organized as follows.
Section II describes the related literature and background
materials. Section III describes the details of our method,
which is not only and most importantly robust to large mis-
matches percentage, but also insensitive to the parameter
settings, called ‘‘inner parameters’’ in this paper. Section IV
illustrates the performance of our method on datasets as
well as makes comparisons to the following state-of-the-art
methods: RANSAC [11], MLESAC [13], LMedS [23], VFC,
and LLT, which are the most widely used methods in pho-
togrammetry and computer vision. Finally, our conclusions
are discussed in Section V.

II. RELATED WORK
The background material on which our method is based is
discussed in this section. Since methods for putative point
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correspondences computing are included, some of the com-
monly used methods in photogrammetry and computer vision
for mismatch removal are discussed as well. The section also
concludes with a brief overview of vector field interpolation
and regularization.

A. PUTATIVE POINT CORRESPONDENCES COMPUTING
Putative point correspondences are mostly obtained by image
matching using feature-based methods that are the most pop-
ular with the automatic processing of photogrammetry and
computer vision. The feature-based methods basically extract
the salient features, calculate the descriptors, and consider the
one with the most similar descriptor as a correspondence. The
common feature-based methods include SIFT [6], SURF [7]
and shape contexts [24] in the practice software. However,
while the putative point correspondences obtained by these
methods include not only most of the true matches (inliers),
but they also have a large number of mismatches (outliers)
due to the ambiguities in the similarity constraint [19].

B. COMMON METHODS FOR MISMATCH REMOVAL
The mismatches can be removed using geometrical con-
straints such as epipolar geometry and homography geome-
try.When combined with the above constraints, the mismatch
removal methods can be divided into three types: statistical
robust regression methods, resampling methods, and case
diagnostic methods [5].

The statistical robust regression methods, such as
LMedS [23] and M-estimators [25], try to alleviate the pas-
sive influence of mismatches by replacing the sum of the
squared error criterion with ones those are less influenced
by the outliers [5]. The hypothesis of LMedS was evalu-
ated with the median residual of putative correspondences.
In 1994, Deriche combined LMedS and an epipolar geometry
constraint to reject mismatches [26]. In theory, LMedS only
deals with the situation where the outlier percentage is less
than 50%, which restricts its applicability. M-estimators,
classical robust methods, minimize the sum of a symmetric
and positive define function of the residuals, which suffer
from the lack of a good initial estimation in order for the
parameters to be estimated.

The main idea of the resampling methods, like
RANSAC, as well as its variants, such as PROSAC [12]
and MLESAC [13], make use of the following general
hypothesis-and-verify flowchart: a parametric model is esti-
mated from aminimumnumber of randomly selected putative
correspondences; the quality of the model is estimated by
some method; and the hypothesis with the highest score
to reject the mismatches is chosen. RANSAC evaluates the
hypothesis with the inliers whose residuals are below some
given threshold. PROSAC assumes prior beliefs about the
probability of a correspondence being an inlier to modify
the sampling step of the original RANSAC. For a certain
geometric estimation problem, a graph-cut algorithm in the
local optimization step is applied when the so-far-the-best-
model is found in RANSAC flowchart, which can be more

geometrically accurate [27]. While MLESAC utilizes an
M-estimation-based weighted voting strategy and accepts
the solution that maximizes the likelihood rather than the
inlier count as the final optimal estimation [13]. A similar
vote-and-verify strategy also can be found in [28], and it
achieved a verification accuracy similar to some hypothesis-
and-verify approaches. In theory, most of these methods are
capable of rejecting mismatches from the correspondences
with large outlier percentages. However, when the outlier
percentage increases, the computational efficiency dramati-
cally decreases. In addition to being strongly influenced by
the inlier percentage, such methods are also affected by the
number of model parameters to be estimated as well as by
some given threshold such as that used in RANSAC.

The case diagnostic methods are also classical robust mis-
match removal methods [25], [29]. The applications of these
methods can be found in [30] and [31]. Such methods are
very successful for situations where a small number of out-
liers are present. However, when there are many mismatches,
these methods often suffer from the masking effect [32],
which considers somemismatches invisible by others, and the
swamping effect [33], which considers the correct matches
as mismatches. In addition, when the mismatch percentage
increases, these methods also suffer from a very heavy com-
putational load because of their greedy search scheme. There-
fore, initial mismatch removal is needed when many outliers
are present.

Thanks to developments in minimal mapping theory [34]
and motion coherence theory [14], [15], a new strat-
egy for mismatch removal is to formulate it as a
correspondence matrix between point correspondences
together with a parametric constraint, or a non-parametric
constraint [16], [35], [36] in terms of vector field inter-
polation and the choice of kernel function. Building on
Yuille and Grzywacz ’s theory [14], [15], Rangarajan estab-
lished a general framework for the correspondence estimation
problem. Inspired by this, J. Ma solved for correspondences
by interpolating a motion field between two point sets whose
inliers follow a nonparametric geometric constraint [8]. They
then extended the nonparametric geometric constraint to a
local geometric parametric constraint that can preserve local
structures among neighboring feature points, which not only
improved themethod but alsomade it robust to a large number
ofmismatches [19]. However, setting the parameters for these
two methods in order to adaptively obtain the best results is
not an easy task.

C. VECTOR FIELD INTERPOLATION AND REGULARIZATION
The vector field interpolation-based mismatch methods were
built on Yuille’s computational theory for the perception
of coherent visual motion [14], [15], [19], [42]. The theory
is comprised of two stages: measuring and smoothing [15].
On this basis, many methods have been developed in this
context [37] combining with regularization theory. Yuille and
Grzywacz introduced the motion coherence theory for com-
puting the velocity field defined in an image by using a
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quadratic regularizer to impose geometric constraints on the
correspondences [14]. They also demonstrated that this was
equivalent to formulating the problem in terms of a space
of kernels. The relationships between the components of the
vector fields can be directly encoded by a series of operations
in the Reproducing Kernel Hilbert Space (RKHS) [38], [39]
associated with a certain choice of regularization so as to
obtain a meaningful solution. The two most well-known
regularization methods are regularized least-squares [40] and
support vector machines [41] which were developed for
rejecting mismatches in [5]. The regularized least-squares,
which require that the number of functions is equivalent to the
training size, has large time and space complexities, leading
to a significant computational burden on large dataset. On this
basis, J. Ma also proposed a spare approximation to the
vector field learning for the mismatch removal problem [42].
The robust vector field interpolation and regularization tech-
nique were adopted in the Gaussian process by utilizing the
t-progresses [43]. In [8], a new robust vector field interpo-
lation, which associates each correspondence with a latent
variable that determines if it is an inlier, obtained excellent
performance for mismatch removal in rigid and non-rigid
situations. Other field consensus and regularization methods
for rejecting mismatches also can be found in [44]–[47].
However, almost all these methods suffer from the choice
of a suitable kernel function and sensitive parameters, which
can seriously affect the precision of vector field interpolation.
In this paper, we introduce an improved regularized risk
function and impose an adaptive Gaussian kernel function to
address the adaptive issues.

III. METHODOLOGY
This section describes our adaptive algorithm for image
mismatch removal. We start by briefly introducing the vec-
tor field interpolation problem via an improved regular-
ization and then discuss a mixture likelihood model for
mismatch removal in which a modified slow-and-smooth
constraint is introduced on the prior of the vector fields.
We use an iterative EM algorithm next to solve a modi-
fied maximum a posteriori to determine the latent variables
in the mixture likelihood model. Thereafter, we introduce
how to design an adaptive Gaussian kernel function to
construct regularization. Finally, the parameter settings and
computational complexity are described to conclude this
section.

A. VECTOR FIELD INTERPOLATION VIA AN
IMPROVED REGULARIZATION
The problem of vector field interpolation in an image is to
fit a mapping vector f which interpolates a given sample
set S = {(un, vn) : n ⊆ NN }, i.e. ∀n ⊆ NN , vn = f (NN ),
where un is each normalized position in the left image;
vn is the normalized motion field sample by a transforma-
tion vn = v̂n − un (v̂n is each normalized position in the
right image). The purpose of data normalization is to control

the influence of the point coordinate system on the perfor-
mance of vector field interpolation. Generally, the vector field
interpolation problem is ill-posed because of an infinite num-
ber of solutions [8]. As indicated above in the related liter-
ature review, the vector field interpolation problem can be
formulated into a problem with some regularization which
operates in a RKHS. Specifically, we introduce a modified
regularized risk function inspired by the Tikhonov regular-
ization in a RKHS as follows

ε(f ) = min{
N∑
n=1

‖vn − f (un)‖2 + λ‖f ‖2RKHS + ξ}

ξ = −λ2, f ⊆ RKHS (1)

where the first term is the empirical risk which enforces
closeness to the data; the second term is a stabilizer which
enforces smoothness to the vector field f ; λ is a regularization
coefficient which controls the trade-off between the first two
terms; ξ is a two order term of the coefficient which also
enforces smoothness to the vector field; and ‖·‖RKHS denotes
the norm of RKHS.

In our method, parameter λ is considered as a constant
in each iteration process of the EM algorithm, which is
discussed later. It is clear that parameter ξ will not affect
the solution of the modified regularized risk functional (1).
Therefore, according to [39], the solution of Eq. (1) is
given by

f (u) =
N∑
n=1

0(u, un)cn (2)

with the set {cn} determined by the following system

(
∼

0 +λI )
∼

C=
∼

V (3)

where
∼

0 is the Gram matrix with the (i, j) block 0(ui, uj),

I is an identity matrix, and
∼

V= (v1, . . . , vn)T and
∼

C=
(c1, . . . , cn)T are column vectors.
In this paper, we chose a Gaussian radial basis function

kernel in the regularization for the correspondence problem,
whose performance was verified by [19] and [45]. We will
discuss how to adaptively determine thewidth of theGaussian
kernel later in this paper.

B. MIXTURE LIKELIHOOD MODEL
In order to robustly estimate vector field f , we followed the
common assumption that the noise is isotropic Gaussian with
zero mean and covariance σ 2 for the inliers; and the outliers
distribution is uniform with the volume a. A latent variable
zn ⊆ {1, 0} is associated with the nth sample correspondence,
where zn = 1 indicates the sample is an inlier, otherwise it is
an outlier. Let U and V be the inputs and outputs, in which
the nth rows represent un and vn. Thus, the mixture likelihood
model of the Gaussian and uniform distributions [13] has the
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following form:

P(V |U , θ) =
N∏
n=1

∑
zn

p(vn, zn|un, θ)

=

N∏
n=1

[
γ e−

‖vn−f (un)‖2

2σ2

2πσ 2 +
1− γ
a

] (4)

where θ = (f , σ, γ ) includes a set of unknown parameters
that should be determined and γ represents the mixing coef-
ficient specifying the marginal distribution over the latent
variable (i.e., p(zn = 1) = γ ).

In order to solve Eq. (4), we assume vector field f to
be with a prior probability distribution p(f ) and impose it
on f . On the basis of a slow-and-smooth model [48] which
is mostly applied to the motion phenomena, the prior of f is
modified as the following form:

p(f ) = e−[
λ
2ψ(f )+ξ ], ξ = −λ2 (5)

where ψ(f ) is a smoothness term and λ is a positive real
number. Note that Eq. (5) is much like Eq. (1) in terms of
form. (The reason for which will be discussed later.)

Unlike the estimation of the maximum a posterior solution
of θ in [8] and [42], we estimated a modified maximum a
posterior solution of θ , as a new prior probability distribution
is imposed on the vector field. Its optimal solution is θ∗ =
argmaxθ p(V |U , θ)p(f ), which is equivalent to minimizing
the negative log-likelihood function:

E(θ ) = −
N∑
n=1

ln
∑
zn

p(vn, zn|un, θ)− ln p(f ) (6)

Then, the vector field f is determined from the optimal solu-
tion θ∗. We demonstrate how to solve Eq. (6) in the next
subsection.

C. ITERATIVE EM ALGORITHM
In this paper, we use an iterative EM algorithm that is a
common means to deal with the latent variables to solve
Eq. (6), including expectation step (E-step) andmaximization
step (M-step).

Because we could not use the complete-data log likelihood
directly, we considered its expectation under the posterior
distribution of the latent variable in the E-step and maxi-
mized the expectation in the M-step [49]. This expectation
is denoted as �(θ, θold ). The complete-data negative log
posterior, which omitted some constant terms, is given by

�(θ, θold )

= −
1

2σ 2

N∑
n=1

pn‖vn − f (un)‖2 − ln σ 2
N∑
n=1

pn

+ ln γ
N∑
n=1

pn+ln(1− γ )
N∑
n=1

(1− pn)−
λ

2
ψ(f )+ λ2

(7)

where pn = P(zn = 1|un, vn, θold ) is a posterior prob-
ability which determines how the sample (un, vn) fits an
inlier.

E-step: Denote a diagonal matrix P = diag(p1, . . . , pn),
where pn can be computed by using Bayes rule, as in

pn =
γ

2πσ 2 e
−
‖vn−f (un)‖2

2σ2 /(
γ

2πσ 2 e
−
‖vn−f (un)‖2

2σ2 +
1− γ
a

) (8)

M-step: We re-estimated the parameter set θnew by max-
imizing the function [49]: θnew = argmaxθ �(θ, θold ).
Taking the first-order derivatives of � with respect to σ 2, λ,
and γ , and setting them to zero, we obtained the following
expressions, 

σ 2
=

(V − F)TP(V − F)
2 · trace(P)

γ =
trace(P)

N
λ =

1
4
ψ(f )

(9)

where F = (f (u1)T , . . . , f (un)T )T . In order to estimate
Eq. (9), the mapping of f should be estimated firstly in this
step.

We considered the terms of �(θ ) with respect to the prior
probability distribution p(f ), and the modified regularized
risk functional (i.e. Eq. (1)) was obtained as follows

ε(f ) =
1

2σ 2

N∑
n=1

pn‖vn − f (un)‖2 +
λ

2
ψ(f )− λ2 (10)

where the first term is a weighted empirical error; the second
and third term together control the trade-off with respect to
the first term, and they are together the denoted smoothness
term.

As λ is a constant in every iterative M step, it does not
affect the extreme of Eq. (10), so we were able to obtain the
coefficient set {cn} by solving the linear system (The proof is
given in [19]):

(
∼

0 +λσ
2P−1)

∼

C=
∼

V (11)

We solved λ in Eq. (9) as follows. The regularized risk
functional (i.e. Eq. (10)) satisfies

ε(f ) =
1

2σ 2

N∑
n=1

pn‖vn − f (un)‖2 +
λ

2
‖fN + f1/N‖2

≥
1

2σ 2

N∑
n=1

pn‖vn − f (un)‖2 +
λ

2
‖fN‖2 (12)

where f (un) = fN (uN ), ‖fN + f1/N‖2RKHS = ‖fN‖
2
RKHS +

‖f1/N‖2RKHS , ‖fN‖
2
RKHS =

∼

C
T ∼
0
∼

C , which means that ψ(f ) =
‖fN‖2RKHS + ‖f1/N‖

2
RKHS . The reader is referred to [8] for the

details of these equations, i.e. fN , f1/N .
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We imposed ψ(f ) into Eq. (7), and then obtained

�(θ, θold ) ≤ −
1

2σ 2

N∑
n=1

pn‖vn − f (un)‖2 − ln σ 2
N∑
n=1

pn

+ ln γ
N∑
n=1

pn + ln(1− γ )
N∑
n=1

(1− pn)

−
λ

2
‖fN‖2RKHS + λ

2 (13)

Eq. (13) indicates themaximum expectation of Eq. (7) with
respect to the prior p(f ) coming from fN and λ. Therefore,
Eq. (13) is equivalent to Eq. (7) in terms of maximizing the
expectation. Taking the derivative of Eq. (13) with respect
to λ, and setting it to zero, we obtained

λ =
1
4
‖fN‖2RKHS =

1
4

∼

C
T ∼
0
∼

C (14)

Eq. (14) is our reason for introducing the improved regular-
ized risk function as Eq. (1) and our motivation for imposing
the modified slow-and-smooth model constraint as Eq. (5).

After the iterative EM algorithm converges, the inlier set
SI can be obtained according to the following criterion:

SI = {(un, vn) : pn > τ } (15)

where τ is a present threshold, and is insensitive to its choice
on the later experiments.

From the above process, parameters σ 2, λ, γ were adap-
tively estimated in the iterative EM algorithm. However,
mapping f was highly correlated with a kernel function 0,
which was very detrimental to adaptively realizing mismatch
removal. In the next subsection, we discuss how to determine
an adaptive kernel function.

D. ADAPTIVE GAUSSIAN KERNEL FUNCTION
The adaptive estimation of Eq. (14) depends on the choice of
a kernel function. We chose a Gaussian radial basis function
kernel (RBF) for the correspondence problem because of its
simple form and good performance, as in

0(x, x ′) = e

(
−
‖x−x′‖22
2σ̄2

)
(16)

where σ̄ is the width of the kernel function, which controls the
radial scope of the function; x is a multidimensional vector;
and x ′ is the center vector of RBF.
According to the representor theorem [39], the optimal

solution in a RKHS is a linear combination of a number
of basis functions as the form (2), which means that the
kernel function is determined by the distributed points in
the left image for our method. Fig. 2 below shows how
we subsequently used an adaptive calculation method of σ̄ .
In Fig. 2(a), the red double arrow represents the diagonal of
the image, while the blue one represents the diagonal of the
maximal enveloping rectangle of all the normalized point set.
Therefore, the maximal scope of the kernel function is the
diagonal length of the left image intuitively (e.g., the length

FIGURE 2. Schematic diagram for determining the width-σ̄ of RBF.
(a) Determine σ̄ by maximal enveloping rectangle of all the normalized
point set. (b) Determine σ̄ by maximal enveloping rectangle of the
normalized sample point set. The gray rectangle represents the image
range, and the green points represent the normalized point set in the left
image.

of the red double arrow in Fig.2(a)). Considering its square
form, σ̄ 2 was calculated as:

σ̄ 2
= w2

x + h
2
y (17)

where wx , hy represent the normalized width and height of
the left image, respectively. Considering the correspondence
problem, we utilized the diagonal length of the maximal
enveloping rectangle of the normalized point set in the left
image as the width of the kernel (e.g., the length of the blue
double arrow in Fig.2(a)) as:

σ̄ 2
= max ‖ui − uj‖2 (18)

Since solving vector field f suffers from heavy computa-
tional burdens, it was overcome by a spare approximation
and a suboptimal solution searching with much less basis
functions in the RKHS. We found that random sampling
of the training inputs (the normalized points in the left
image) did not reduce the performance of the vector field
interpolation-based methods [19], [42]. In order to avoid the
impact of the isolated points on the width of RBF, we utilized
a simple training method to determine optimal σ̄ based on
the fact that parameter σ̄ should be uniquely determined
by the maximal enveloping rectangle of the sampling points
excluding the isolated points. Likewise, as shown in Fig. 2(b),
the blue rectangle represents maximal enveloping rectangle
of the normalized sample point set, from which we can see
that it is more reasonable to determine σ̄ according to the
orange rectangle because an isolated sample point in left cor-
ner pulls up its value intuitively. The concrete implementation
means was as follows:

First, we randomly selected M sample points in the left
image (M was fixed as 16 for the correspondence problem in
this paper).

Second, we calculated the current maximum square dis-
tance of each pair of sample points, as in

σ̄ 2
k = max ‖ui − uj‖2, k < maxT i, j < M (19)
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where, k represents the current training; andmaxT represents
the max training number.

Third, if k < maxT , return to the first step; otherwise, a set
of σ̄ 2 can be obtained, as in

Sσ̄ =
{
σ̄ 2
i , . . . , σ̄

2
maxT

}
(20)

Finally, we excluded the 5%maximum of set Sσ̄ and chose
the maximum of the remaining set to determine σ̄ , as in

σ̄ 2
= max S0.95σ̄ (21)

where, S0.95σ̄ represents the remaining set after excluding the
5% maximum sample.

Next, we conducted the adaptive Gaussian kernel func-
tion selection through Eq. (18) or Eq. (21). We recommend
Eq. (21) that was used in our later experiments to calculate
the width of the kernel function.

The volume of uniform, parameter-a, used in Eq. (4) also
was determined by the maximal enveloping rectangle of the
normalized point set. Since residual term vn − f (un) used in
Eq. (4) is either positive or negative, the volume of uniform
was calculated as

a = 2σ̄ (22)

which means that constant a was two times the diagonal of
the maximal enveloping rectangle of all the normalized point
sets in an image. It is worth noting that the calculation of
constant a in this paper was different from the similar vector
field interpolation-based methods, such as VFC and LLT in
which it was set as a default of 10.

E. PARAMETER SETTINGS AND INITIALIZATION
A good adaptive mismatch removal method should not con-
tain the parameters that are known to affect its performance.
There are two fixed parameters in our method: τ , which is
the posterior probability of a sample being an inlier, and
maxT , which is the maximum number used in the simple
training method to determine the width of RBF. We found
that, in general, our method was insensitive to these two
parameters and thus they were selected for τ = 0.7 and
maxT = 100 throughout this paper.

In the iterative EM algorithm, there are two free parameters
that should be initialized: σ 2, which is the covariance of
the Gaussian distribution for inliers, and γ , which is the
mixing coefficient specifying the marginal distribution over
the latent variable. σ 2 is given a large initial value-σ̄ 2 which
was adaptively determined in the previous steps, and γ was
initialized as γ = 0.5. Our method also was not influenced
by the initialization of parameter γ .

Our adaptive mismatch removal method is summarized in
Algorithm 1 to facilitate understanding and programming for
the readers.

F. COMPLEXITY ANALYSIS
We also use a spare approximation matrix and a subopti-
mal solution searching with much less basis functions to

Algorithm 1 Adaptive Image Mismatch Removal
Input:

Normalized correspondences S = {(un, vn) : n ⊆ NN },
parameter-τ , parameter-maxT (optional);

Output:
Inliers SI ;
Pretreatment:

1: Calculate σ̄ using Eq. (21) or Eq. (17) or Eq. (18) (We
recommend Eq. (21).);

2: Calculate RBF by Eq. (16);
3: Calculate a by (22);

Initialization:
4: F = 02N , diag(PN×N ), λ = σ̄ 2; Initialize σ and γ using

Eq. (9), and construct
∼

0;
5: repeat

E-Step
6: Update P by Eq. (8)

M-Step
7: Update

∼

0 by solving Eq. (11);
8: Update F by using Eq. (12);
9: Update σ 2, γ and λ by Eq. (9) and Eq. (14)
10: until Eq. (13) converges
11: return Inliers SI calcuate by Eq. (15)

solve vector field f so as to overcome heavy computational
burdens [19], [44]. The corresponding 0 matrix of the pro-
posed method is M × M in size, so the time complexity of
estimating the mapping f by solving a linear equation (11)
is O(NM2). And the total time complexity of the iterative
EM algorithm is O(mNM2), where m is the iterative number
of the EM algorithm. In addition, as the width of Gaussian
kernel function should be determined in the pretreatment,
the time complexity of this process is maxT · M2. As a
result, the total time complexity is O(mNM2

+ maxT ·M2).
As storing the 0 matrix in the pretreatment, the space com-

plexity is O(M2). For the matrix
∼

0 with the sparse approx-
imation, the space scales is reduced to O(NM ) from (N 2).
Therefore, the total space complexity is O(M2

+ NM ). For
a large sample set, as M (16) � N , the space complexity is
reduced to O(NM ).

IV. EXPERIMENTS AND DISCUSSIONS
The performance of our method was assessed from the fol-
lowing aspects. First, the robustness of our method was tested
on datasets with different percentages of mismatches. Sub-
sequently, the precision-recall and efficiency of our method
were evaluated in a comparison with the following state-
of-the-art methods: RANSAC, MLESAC, LMedS, VFC and
LLT. Finally, the influence of the inner parameters on the
performance of our method also was analyzed in exper-
iments, followed by further experiments on high resolu-
tion airborne image pairs to conclude this section. All the
putative point correspondences were computed by SIFT
matching.
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A. EXPERIMENTS ON ROBUSTNESS
The robustness of our method was tested on the putative point
correspondences with different percentage of mismatches.
The test data come from the VGG affine benchmark that
contains five different changes in imaging conditions: image
blur, illumination, viewpiont changes, rotation-scale changes
and JPEG compression1. The images are either of planar
scenes or the camera position is fixed during acquisition,
thus they obey homographies or plane projective transfor-
mation, and the ground truth homographies are supplied
by the benchmark. From this benchmark, we chose three
image pairs with different imaging conditions that contained
image blur (Bikes), illumination (Leuven), and viewpoint
change(Graffiti) respectively. In addition, we also chose an
image pair, i.e. Valbonne, in which a large depth discontinuity
exists as shown in Fig. 1(a)-(b). The ground truth inliers of
Valbonne were provided by Ma et al. [8].
In order to determine the correct matches to be regarded as

ground truth, we first carried out a robust standard deviation
estimation of the residuals [29], as in

σ̆ = 1.486
(
1+

5
n− DoF

)
median|ri| (23)

where n is the number of putative correspondences; DoF is
the degree of freedom of the homography matrix; ri is the
residual of the ith correspondence according to the ground
truth homography, which was calculated by

ri =
1
2

(√
‖x2 − Hx1‖ +

√
‖x1 − H−1x2‖

)
(24)

A correspondence (x1, x2) was regarded as an inlier if
ri ≤ 3σ̆ , where σ̆ is a threshold. In general, σ̆ , which is set
as 2 pixels in this paper, is necessary to prevent excessive
outliers from corrupting the correct matches. Once σ̆ > 2,
the correspondences whose residuals were larger than 3σ̆
were considered as outliers and eliminated; and then, σ̆ was
recalculated with the remaining putative correspondences.

The selection results of correct matches (ground truth)
were shown in Fig. 3(b), Fig. 4(b), and Fig. 5(b) for
the datasets, i.e., Bikes, Leuven, and Graffiti, respectively.
The residual distribution shown in Fig. 3(d), Fig. 4(d) and
Fig. 5(d) demonstrate that the preserved correspondences
obtained good accuracy and were good candidates for ground
truth. In addition, the image pair of Valbonne provided the
ground truth by [8], so there was no need to calculate the
correct matches using the above criterion.

Subsequently, the putative correspondences with a differ-
ent percentage of correct matches were obtained by eliminat-
ing correct matches or eliminating mismatches. Considering
a posteriori percentage of correct matches defined as

Pposter =
cM − eC

iM − eC − eM
(25)

where iM is the initial matches; cM is the correct matches;
eC is the possibly eliminated correct matches; eM is the

1http://www.robots.ox.ac.uk/∼vgg/data/data-aff.html.

FIGURE 3. Determining inliers with Bikes. (a) Putative correspondence
with 480 inliers and 150 outliers. (b) Inliers, which are regarded as
ground truth. (c) The residual distribution of (a). (d) The residual
distribution of (b). The standard deviation of the residuals was reduced
from 202.26 pixels in (c) to 0.96 pixels in (d). Only 150 randomly selected
correspondences are present in (a) and (b) for visualization (blue
color: a correspondence, green dot: location) (The same visualization
method was used in Leuven and Graffiti).

possibly eliminated mismatches; and Pposter is the percentage
of correct matches.

A criterion was defined to eliminate the correct
matches or the mismatches, as in
eC = 0, eM = iM −

cM
Pposter

, if cM< iM ·Pposter

eM = 0, eC =
cM − iM · Pposter

1− Pposter
, else

(26)

where the first expression determines how to eliminate the
mismatches while the second one determines how to elimi-
nate the correct matches.

In this series of experiments,Pposter was reduced from 90%
to 20%. We considered two situations: 1) inlier percentage
larger than 50% and 2) inlier percentage less than 50%. The
mismatch removal results for the above four datasets are
presented in Table 1, where each digital pair in parentheses
represented a precision-recall pair (The same representation
also was used in the proceeding experiments). For the Bikes,
Leuven, and Graffiti, almost all the correct matches were
identified and a high precision level was remained when the
inlier percentage was more than 50%. However, when the
inlier percentage was less than 50%, the precision slowed
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TABLE 1. Robustness when inlier percentage decreased. The inlier percentage preserved integers.

FIGURE 4. Determining the inliers with Leuven. (a) Putative
correspondence with 318 inliers and 152 outliers. (b) Inliers, which are
regarded as ground truth. (c) The residual distribution of (a). (d) The
residual distribution of (b). The standard deviation of the residuals was
reduced from 209.30 pixels in (c) to 0.83 pixels in (d).

down as the inlier percentage continued to decline. Dramati-
cally, the recall more than 99%, whichmeant that it was rarely
possible for our method to reject the correct matches. The
mismatch removal results of Valbonne were unsatisfactory
because of the following reasons. The putative correspon-
dences and the inliers contained in the putative correspon-
dences were 126 and 69, respectively. However, the numbers
decreased to (77, 69), (86, 69), (99, 69), (116, 69), (114, 57),
(95, 38), (81, 24), (71, 14) for the inlier percentages from 90%
to 20%. In addition, comparing to the ground truth, there were
ten inliers on the sky that were removed by our method as
shown in Fig. 1(c). In reality, it was hard to determine whether
the correspondences on the sky were inliers or outliers, and
these correspondences were not what we desired in the appli-
cation because of their ambiguities. Therefore, the ground
truth was corrupted by the so-called inliers on the sky when a
different percentage of correct matches were generated using
Eq. (26). In addition, a small number of inliers would make
our method ineffective in statistics. For example, the recall

FIGURE 5. Determining the inliers with Graffiti. (a) Putative
correspondence with 1141 inliers and 229 outliers. (b) Inliers, which are
regarded as ground truth. (c) The residual distribution of (a). (d) The
residual distribution of (b). The standard deviation of the residuals was
reduced from 174.91 pixels in (c) to 0.60 pixels in (d).

0.75 (18/24) was larger than 0.67 (16/24), which is significant
in statistics, but there was almost no difference in terms of the
preserved inlier number (18 vs. 16).

B. EXPERIMENTS ON PRECISION-RECALL
AND EFFICIENCY
In this subsection, we compared our method with the follow-
ing state-of-the-art methods: RANSAC, MLESAC, LMedS,
VFC, and LLT in terms of precision-recall and efficiency.
Our first aim was to illustrate the ability of our method
to eliminate large outlier percentage mismatches but not to
demonstrate it as a replacement for the existing methods,
utilizing once again the Bikes, Leuven and Graffiti datasets.
Our second aim was to show the overall performance com-
parisons between our method and the five compared methods
in terms of average precision-recall and efficiency on the
whole VGG affine benchmark. The maximum number of
iterations for all the above methods were set as 1000. We also
provide the results of SparseVFC, which is VFC’s fast
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implementation version and those of LLT’s non-rigid version
and LLT’s affine version. For VFC and LLT, we imple-
mented them based on the publicly available codes, and their
parameter settings were kept at the default. For RANSAC,
the distance threshold was set as 6.0 pixels because the max
error of the ground truth was below 6.0 pixels as shown
in Fig. 3(d). All the experiments were performed on a laptop
with 2.50 GHz Inter(R) Core(TM) i5-3210M CPU, 8GB
memory and Matlab Codes.

1) RESULTS ON BIKES, LEUVEN and GRAFFITI WITH
LARGE OUTLIER PERCENTAGE
a: PRECISION-RECALL
The experimental results in Table 2, Table 3 and Table 4
show that the precision of our method was inferior to that
of RANSAC and the recall of our method was superior
to that of RANSAC. Actually, RANSAC had the highest
precision because it was able to set up the best distance
threshold according to the ground truth calculated by Eq. (26)
in these experiments. In general, the distance threshold of
RANSAC is difficult to be determined in advance, which
is not conducive to its universal application, and this is the
reason we develop an adaptive mismatch removal method.

TABLE 2. Precision-recall of our method comparing with RANSAC,
MLESAC, LMedS, VFC and LLT on Bikes.

TABLE 3. Precision-recall of our method comparing with RANSAC,
MLESAC, LMedS, VFC and LLT on Leuven.

TABLE 4. Precision-recall of our method comparing with RANSAC,
MLESAC, LMedS, VFC and LLT on Graffiti.

MLESAChad high precision and low recall, whichmeant that
a considerable number of inliers were regarded as outliers and
eliminated. MLESAC also suffers from a prior sigma value in
normal distribution in its maximizing the likelihood process.
The precision of LMedS declined sharply when the outlier
percentage was more than 50%. Generally speaking, LMedS
is only robust to the situation where high inlier percentages
exist. VFC, LLT and our method, which are all based on
vector field interpolation theory, had similar precision-recall
trade-offs. However, our method performed slightly better
than VFC and LLT due to its adaptive design where the most
sensitive parameters were adaptively estimated in the iterative
EM algorithm process.

b: EFFICIENCY
The experimental results of efficiency shown in Table 5,
Table 6 and Table 7 demonstrated that the RANSAC-like
methods (i.e., RANSAC,MLESAC and LMedS) were almost
ten times less efficient than the vector field interpolation-like
methods (i.e., VFC, LLT and our method). The efficiency
of our method has the same magnitude as those of Spar-
seVFC and LLT-affine, and it is slightly better than the
latter, but it is also obviously superior to those of VFC

TABLE 5. Efficiency of our method comparing with RANSAC, MLESAC,
LMedS, VFC and LLT on Bikes (seconds).

TABLE 6. Efficiency of our method comparing with RANSAC, MLESAC,
LMedS, VFC and LLT on Leuven (seconds).

TABLE 7. Efficiency of our method comparing with RANSAC, MLESAC,
LMedS, VFC and LLT on Graffiti (seconds).
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TABLE 8. Average precision-recall of our method comparing with RANSAC, MLESAC, LMedS, VFC and LLT on VGG affine benchmark.

TABLE 9. Average efficiency of our method comparing with RANSAC, MLESAC, LMedS, VFC and LLT on VGG affine benchmark (seconds).

and LLT-nongrid. For LLT-affine, vector field f is an affine
matrix so it does not need to be interpolated in the com-
plex matrix-value RKHS as in Eq. (1) and can yield a
significant increase in speed. For SpareVFC, a spare approx-
imation was proposed by [8] and [42] to increase the effi-
ciency without losing its performance. Our method, similar
to SpareVFC, applies an improved regularization and adap-
tive RBF to increase its robustness and wide application.
However, as shown in Table 5, Table 6 and Table 7, our
method performed slightly better in efficiency than Sparse-
VFC. We found that solving the linear system in SpareVFC
was easy to singular with a fixed regularization coefficient-λ,
which would be avoided by our improved adaptive regular-
ization term as shown in Eq. (1), Eq. (5) and Eq. (14). As it
may change the iterative number of EM algorithm and further
influence the efficiency of the proposed method, it was no
surprise that it improved the efficiency of our method.

2) RESULTS ON THE WHOLE VGG AFFINE BENCHMARK
The VGG affine benchmark contains eight different types of
datasets, i.e. Bark, Bikes, Boat, Graffiti, Leuven, Trees, Ubc,
Wall, and each one contains five image pairs. We set the
SIFT distance ratio threshold as 1.0, and tested our method
compared with the other five methods in terms of average
precision-recall and efficiency.

The experimental results in terms of average precision-
recall were shown in Table 8, and the average precision-recall
pairs on the whole benchmark were (97.61, 98.69), (97.87,
99.00), (86.67, 70.08), (97.57, 99.56), (97.57, 99.55), (97.13,
99.73), (96.40, 92.29) and (97.47, 99.62) for RANSAC,
MLESAC, LMeds, VFC, SpareVFC, LLT-affine, LLT-
nongrid and our method, respectively. As shown in Table 8,
the average precision of our method was basically the same as
those of RANSAC-like methods (RANSAC and MLESAC),
but the average recall was slightly superior to those of

the latter. However, our method was superior to RANSAC-
like methods in terms of both precision and recall in some
cases, such as Leuven, Ubc and Wall. MLESAC performed
slightly better than RANSAC, and they both achieved excel-
lent performance. LMeds showed the worst precision-recall
trade-offs because of the fact that the verify progress in
LMeds’ hypothesis-and-verify flowchart is blind without
knowing the prior inlier percentage. VFC, LLT and our
method had the best precision-recall trade-offs, and our
method was a little better than LLT. In addition, the num-
ber of the cumulative inliers identified by our method
was 20299, compared to 20110, 20173, 14280, 20287,
20286, 20321 and 18805 for RANSAC, MLESAC, LMeds,
VFC, SpareVFC, LLT-affine, and LLT-nongrid respectively,
which only was less than that identified by LLT-affine.
These experiments also indirectly demonstrated that the
mismatch removal capability of our method is not affected
by image blur, illumination, viewpoint changes and image
rotation-scaling as these cases are all contained in VGG
benchmark.

The experimental results of average efficiency were shown
in Table 9, and the average elapsed time (seconds) on
the whole benchmark were 6.93, 7.04, 7.21, 1.42, 0.15,
0.25, 0.41 and 0.08 for RANSAC, MLESAC, LMeds, VFC,
SpareVFC, LLT-affine, LLT-nongrid and our method, respec-
tively. As shown in Table 9, the vector field interpolation-like
methods have obvious advantages in terms of efficiency, com-
pared to the RANSAC-like methods. However, our method
is most time efficient, compared to the other vector field
interpolation-like methods. This may be explained by the
adaptive design of regularization coefficient that reduces
the iteration numbers of EM algorithms, because the fixed
improper regularization coefficients may increase the num-
ber of iterations, or even affect the solution to the mixture
likelihood model.
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C. SENSITIVENESS OF INNER PARAMETERS
There are two insensitive fixed parameters (called inner
parameters) in our method: τ , which is the posterior prob-
ability of a sample being an inlier, and maxT , which is the
maximum number used in the simple training method to
determine the width of RBF according to Eq. (19), Eq. (20)
and Eq. (21). When we determined the width of RBF via
Eq. (17) or Eq. (18), there was an inner parameter τ left.
Few parameters also indirectly determine the adaptability and
robustness of our method, and illustrated our method is easier
to implement software applications.

To validate the sensitiveness of these two parameters, using
the Valbonne dataset again, we fixed each one of them indi-
vidually and evaluated the influence of the remained inner
parameter on the precision-recall. The putative correspon-
dence and ground truth with 69 inliers determined that we
neither eliminated the outliers nor the inliers as was done in
subsection IV-A.

Other factors remained unchanged, and parameter τ was
reduced from 95% to 55%. The experimental results shown
in Table 10 demonstrated that our method was slightly sen-
sitive to parameter τ . Actually, the posterior probability of a
sample being an inlier was either larger than 90% or less than
5% as shown in Fig. 6. Therefore, we utilized 70% throughout
this paper.

TABLE 10. Influence of τ on identifying inliers.

FIGURE 6. Posterior probability of a correspondence being an inlier.
The value of blue triangle on y-axis is the probability of the ith
correspondence being an inlier.

Likewise, we fixed parameter-τ as 70% and reducedmaxT
from 500 to 100. Intuitively, the larger maxT , the closer the
width of RBF to the optimal. The experimental results shown
in Table 11 demonstrated thatmaxT had no obvious influence
on the performance of our method and also indirectly verified
that the width of RBF calculated according to Eq. (19),

TABLE 11. Influence of maxT on identifying inliers.

Eq. (20) and Eq. (21) could be approximated to the optimal.
Considering the efficiency needed, therefore, we recommend
maxT at 100 throughout this paper.

D. EXPERIMENTS ON HIGH RESOLUTION
AIRBORNE DATASETS
We also tested our method on two high resolution airborne
image pairs that were structured scenes where the vector
fields were discontinuities, which meant that the the priori
assumption about the vector field f (Eq. (5)) was likely
untenable. The experiments aimed to show the ability of our
method to reject mismatches and identify correct matches
under these scenarios.

FIGURE 7. Results on an airborne image pair with 60% overlap along the
track. (a) 4711 putative correspondences. (b) 2447 preserved
correspondences. They are both 7500×11500 in size, downscaled two
times in the experiment. There are no obvious outliers from visualization.

The SIFT distance ratio threshold was set at 1.5 to estab-
lish the putative correspondences as shown in Fig. 7(a) and
Fig. 8(a) and most of the correct correspondences were estab-
lished as shown in Fig. 7(b) and Fig. 8(b). However, for the
wide baseline image pairs, such as Fig. 8, where the vector
fields were likely discontinuous, partial outliers corrupted the
preserved inlier correspondences.

In order to evaluate the precision-recall, we utilized the
preserved inlier correspondences to re-estimate the epipo-
lar geometry using RANSAC and obtained the funda-
mental matrix that was subsequently used to measure the
residual distribution of the preserved correspondences and
rejected correspondences. The experimental results are pre-
sented in Table 12 and Table 13 for the two experiments,
which were referred to as ‘‘Test-along’’ and ‘‘Test-across,’’
respectively. As shown in Table 12 and Table 13, con-
sidering the correspondences with the residuals below
2 pixels, 4 pixels, or 6 pixels as inliers, the mismatch
percentages in the putative correspondences were 59.97%,
53.45%, 51.12% for ‘‘Test-along’’ and 93.42%, 91.10%,
89.73% for ‘‘Test-across,’’ respectively. Correspondingly, the
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FIGURE 8. Results on an airborne image pair with 15% overlap across the
track. Both the images are rotated 90 degrees for visualization.
(a) 3010 putative correspondences. (b) 360 preserved correspondences.
They are both 7500×11500 in size, downscaled two times in the
experiment. From (b), we can see that a very small number of outliers are
mixed in the preserved inliers.

TABLE 12. Residual distribution of ‘‘Test-along.’’

TABLE 13. Residual distribution of ‘‘Test-across.’’

precision-recall pairs were (77.93, 99.84), (90.56, 99.77),
(95.14, 99.74) for ‘‘Test-along’’ and (54.44, 98.99), (73.33,
97.78), (84.74, 98.71) for ‘‘Test-across,’’ respectively.

These experiments demonstrated that when our method
established good correspondences even with a large mis-
match percentage (e.g. 90%), a small number of outliers also
may be introduced. However, these outliers actually can be
eliminated given a certain residual threshold. For example,
providing a residual threshold of 2.0 pixels and thereby con-
sidering the correspondences with residuals below 2.0 pixels
as inliers, the precision-recall is raised from (54.44, 98.99) to
(100.0, 98.99) for ‘‘Test-across.’’

V. CONCLUSION
In this paper, we introduced a modified regularized risk func-
tion and an adaptive Gaussian kernel function to interpo-
late vector fields to achieve our adaptive mismatch removal
method. Experiments on real datasets demonstrated our
method was robust to a large outlier percentage and slightly
outperformed the vector field interpolation-like methods
such as VFC and LLT and some RANSAC-like methods
such as RANSAC, MLESAC and LMedS in precision-recall

FIGURE 9. Results on other image pairs. (a) Result on Temple,2 and
precision-recall is (92.13,93.60). (b) Result on Unkown [42], and
precision-recall is (98.92,99.84). (c) Result on an oblique image pair
(obtained by unmmanned aerial vehicle), and precision-recall is
(100.0,99.75). (d) Result on Computer (obtained by our smart
mobilephone), and precision-recall is (95.53,100.0) (blue = true positive,
green = true negative, red = false positive, greed dot = location). And at
most 100 randomly chosen matches are shown for visibility.

trade-off and efficiency. Our method has a significant advan-
tage over state-of-the-art methods such as RANSAC in self-
adaptability, in which the inner parameters were proved to
have no obvious influence on its performance. In addition,
we also tested our method on high resolution airborne image
pairs where our modified slow-and-smooth assumption of
the vector fields (Eq. (5)) may not hold because of the

2This dataset is available from: http://vision.middlebury.edu/mview/data.
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vector fields’ discontinuities. However, the experimental
results showed that our method was still very effective for
these cases. In summary, our method exhibited good perfor-
mance and adaptability, and demonstrated that it is suitable
for wide use to solve the image mismatch removal problem in
computer vision and photogrammetry. However, more quan-
titative experiments comparing with more advanced methods
also should taken into consideration in future work.

APPENDIX
VISUALIZATION RESULTS ON OTHER DATASETS
At the end of this paper, we also provided some visualization
results on other datasets as supplements to the experiment
section shown in Fig. (9)(a)-(d). In these cases, the ground
truth was obtained by manually selecting inliers. However,
the ground truth may have some ambiguities (i.g. some inliers
were regarded asmismatches in the ground truth), because the
manual inspection was affected by the image local texture,
which played a negative impact on visualization. For exam-
ple, some correct matches (i.g. some red ones) on the top of
Fig. 9(a) were regarded as mismatches in the ground truth,
however, they were identified as inliers in our method and
they were exactly correct matches from their actual locations
on the image pair. The other three image pairs have higher
resolution than Temple, so there are no such ambiguities.
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