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A novel seam detection approach based on vector building maps is presented for low-attitude aerial
orthoimage mosaicking. The approach tracks the centerlines between vector buildings to generate the
candidate seams that avoid crossing buildings existing in maps. The candidate seams are then refined
by considering their surrounding pixels to minimize the visual transition between the images to be
mosaicked. After the refinement of the candidate seams, the final seams further bypass most of the build-
ings that are not updated into vector maps. Finally, three groups of aerial imagery from different urban
densities are employed to test the proposed approach. The experimental results illustrate the advantages
of the proposed approach in avoiding the crossing of buildings. The computational efficiency of the pro-
posed approach is also significantly higher than that of Dijkstra’s algorithm.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Orthoimages have increasingly become a popular visualization
product and planning tool for integrating the rich information
content of images with geometric properties of maps (ground
projection). An advantage is that they can be easily combined
and employed within a geographic information system
(Kerschner, 2001). However, the coverage area of an individual
orthoimage is typically very small; thus, it is necessary to mosaic
several individuals to combine and create larger images to cover
greater geographic regions. This process is implemented in many
applications, e.g., environmental monitoring and disaster
management (Díaz-Varela et al., 2015; Li and Shao, 2014; Pan
et al., 2014a). For mosaicking orthoimages (referred to as ‘‘im-
ages” from here on), the seam-based mosaicking method is com-
monly used (Ai et al., 2011; Mills and McLeod, 2013; Pan et al.,
2009, 2014b; Soille, 2006; Wang et al., 2016). In this method,
the seams between the images to be mosaicked must be deter-
mined in such a way as to minimize the visual transition. This
includes consideration of color and geometric characteristic tran-
sition, from one image to the next, before combining. In this
paper, we concentrate on determining seams to minimize geo-
metric characteristic transition.

Most existing seam detection methods are based on raster data
to prevent seams from crossing high difference areas, where geo-
metric, radiometric, and color characteristics may significantly
vary for some objects (Choi et al., 2015). Examples of these are
high-rise buildings. Many scholars have also presented automatic
methods for selecting seams, which can then be checked using
interactive, computer-assisted methods. Milgram (1977) defined
the ‘‘best” seam as that which automatically minimizes visual
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confusion and employed an image of the absolute difference
between two overlapping image windows to determine the least-
weight path. Soille (2006) proposed a morphological image com-
positing algorithm. The scope of this algorithm is to position seams
along salient image structures to diminish their visibility in the
output mosaic even in the absence of radiometric corrections.
Kerschner (2001) proposed a method called the ‘‘twin snake tech-
nique” for the determination of the optimal seam. This algorithm
uses two lines starting from the opposite borders on the overlap-
ping area. The two lines attract each other, with the optimal seam
determined when the two lines merge. Chon et al. (2010) pre-
sented a method limiting the level of maximum difference in the
seam selection process using normalized cross-correlation. They
first determined this desired level of maximum difference and then
applied Dijkstra’s algorithm to find the optimal seam. Chen et al.
(2014) proposed a method guiding seams toward low areas based
on the digital surface model (DSM). This method generates an ini-
tial path network by using a morphological algorithm to process
the orthoimage elevation synchronous model (OESM) data and
then uses Dijkstra’s algorithm to determine the least-cost path
from the initial network. The performance of this method depends
on the accuracy of DSM. Pan et al. (2015) presented a seam deter-
mination method based on region change rate (RCR). The RCR is
defined as the percentage of changed pixels in the segmented
region. The seams are then designed to pass through the connected
regions with minimized maximum RCR value. Pang et al. (2016)
proposed a semi-global matching (SGM)-based method to guide
seam determination. In this method, the Hilditch thinning algo-
rithm is used to generate the skeleton line of the non-obstacle
regions. Dijkstra’s algorithm is then used to determine the optimal
path on the skeleton network. Lin et al. (2016) used a semi-optimal
blending zone instead of a seamline for image patch stitching and
color blending. This method efficiently eases pixel mismatch and
color discontinuity problems.

The methods outlined above are raster-based methods and are
commonly time-consuming and ineffective due to the large size of
the aerial images to be mosaicked. In scenarios such as this, it
becomes impossible to recognize and avoid the crossing of some
high difference objects, such as buildings. The areas of high mis-
match are typically related to the objects that are not contained
in the DEM and thus the DEM cannot be used to rectify correctly
(Chon et al., 2010). Compared to the high difference areas recog-
nized from images, vector surveying and mapping data, including
various man-made or natural surface features, such as roads, build-
ings and mountains, are more accurate and easier to follow for
urban areas. To avoid recognizing high difference objects for image
mosaicking, Wan et al. (2013) proposed a vector-road-based
method using vector roads alone to generate candidate seams. This
method of tracking vector roads within the overlapping area avoids
the recognition of roads from images and thus proves extremely
effective, particularly when vector roads are available. However,
the vector-road-based method has its limitations. In some urban
or rural areas, roads are sparse or unavailable. Conversely, in many
of these cases, vector buildings are available. To extend the appli-
cation range of the vector-based seam detection method, this
paper proposes an approach using vector building maps to gener-
ate candidate seams. Contrary to the vector-road-based method,
which tracks vector roads to generate seams, the proposed
vector-building-based method is designed to prevent the extracted
seams from crossing vector buildings.

The structure of the remainder of this paper is as follows. The
definitions for generating candidate seams and the proposed
method for generation of optimal seams using vector building
maps are given in Sections 2 and 3, respectively; experimental
results and summary are reported and discussed in Section 4. Con-
cluding remarks are presented in Section 5.
2. Definitions for generating candidate seams

An ideal seam between adjacent images is one where the geo-
metric and color characteristics of each pixel pair from adjacent
images are the same. Achieving the ideal seam may be impossible,
but the geometric and color differences can at least be minimized
(Wan et al., 2013). Generally, buildings cannot be rectified cor-
rectly and thus appear as ‘‘high difference areas” in adjacent
orthoimages. It is natural that candidate seams should be designed
to bypass the buildings where the geometric differences are lower,
although color differences may still exist. The feathering operation
(Chon et al., 2010) can then be applied along the seams to achieve
color balance after the geometric alignment but lies beyond the
scope of this study. A feasible approach to achieving that purpose
is to follow the centerlines between buildings.

Based on this idea, we propose that candidate seams preferen-
tially follow the occlusion-free land centerlines, where the building
interspaces are wider and the building heights are lower. In some
areas where no other occlusion-free land centerlines exist, candi-
date seams are designed to follow the straight skeleton of the over-
lapping area between the adjacent images to be mosaicked. This is
the worst-case scenario, as some high difference areas may be
crossed. Fig. 1 shows a simple diagram for determining candidate
seams from vector buildings. Fig. 1(a) shows the potential sub-
paths, consisting of occlusion-free land centerlines and the straight
skeleton of the overlapping area. The thickness of the solid lines
represents the valid widths of potential subpaths. Thicker solid
lines indicate lower passing cost (weight) of potential subpaths.
The widest occlusion-free land centerlines, shown as the thickest
solid lines, have the greatest valid widths. However, skeleton seg-
ments, shown as the dotted lines, have the minimum valid widths.
The centerlines between buildings can be considered equivalent to
the street centerlines. The straight skeleton of the overlapping area
is a method of creating some self-connected straight-line segments
within the overlapping area to connect some scattered paths for
constructing candidate seams. A detailed introduction and the gen-
eration of the potential subpaths, including straight skeletons and
centerlines, are discussed in Section 3. The candidate seam with
the lowest weight is determined from the potential subpaths, as
shown in Fig. 1(b). The candidate seam tracks two skeleton seg-
ments and three centerline segments.

To ensure that the potential subpaths follow the wider center-
lines, we need to obtain the valid widths of potential subpaths.
These potential subpaths include the centerlines and the skeleton
of the overlapping area, which in turn are used to define functions
to describe the weights of potential subpaths. This ensures that the
lowest-weight candidate seams can be determined using Dijkstra’s
algorithm. Definitions used to determine candidate seams are
given as follows.
2.1. Valid widths of potential subpaths

The valid width of a potential subpath is defined as the width of
the region unshaded by its surrounding buildings. Generally, the
occlusion distance or projection difference of a building in an
image is proportional to the height of the building and the distance
from the building to the principal point of the image. The valid
width can be obtained through subtracting the total projection dif-
ference of the surrounding buildings from the minimal distance
between the surrounding buildings. More than two buildings
may affect the potential subpath. To minimize the complexity,
we assume that only two surrounding buildings affect the poten-
tial subpath. Readers can derive functions to satisfy more complex
cases, but this is less important because the impact radius of a
building is typically limited. For example, for a 2-km long image
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Fig. 1. Diagram for determining candidate seams from vector buildings: (a) potential subpaths consisting of centerlines between buildings (the solid lines) and the straight
skeleton (the dotted lines) of the overlapping area. (b) Candidate seam determined from potential subpaths, consisting of two skeleton segments and three centerline
segments. The outer rectangle indicates the overlapping area of adjacent images. The small rectangles filled with downward diagonal lines denote buildings. li denotes the ith
potential subpath. Start and end points denote the start and end points of the candidate seam.
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captured at a height of 2 km, a 100-m high building has a maxi-
mum projection difference of 50 m. In this scenario, this building
may affect the potential subpaths within 50 m, which represents
the same impact as a 10-m high building to the potential subpath
within 5 m. Therefore, the effects of the nonadjacent buildings can
be ignored.

Fig. 2 shows the geometry of photographic imaging. In the fig-
ure, li denotes the ith potential subpath (the centerline segment
between buildings 1 and 2); dðliÞ denotes the minimal distance
O1

Building 1 h1

li

vad

d (li)

θ 1

Fig. 2. Geometry of photographic imaging. li denotes the ith potential subpath. O1 and O
small diamond area between buildings 1 and 2 denotes the occlusion-free area.
between buildings 1 and 2; vadWðliÞ denotes the valid width of
the occlusion-free area; O1 and O2 denote the principal points
of the left image and the right image, respectively; h1 and h2

denote the heights of buildings 1 and 2, respectively. The valid
width of the potential subpath li can be expressed as:

vadWðliÞ ¼
0; if li is a skeleton segment
dðliÞ � projDðh1;h2Þ; if li is a centerline

�
ð1Þ
O2

Building 2
h2

θ

W (li)

2

2 denote the principal points of the left image and the right image, respectively. The
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In the equation, the valid widths of skeleton segments are set as
zero because these segments typically cut surrounding buildings.
Those of centerlines are set as the difference between dðliÞ and
projDðh1;h2Þ. projDðh1;h2Þ is the sum of projection differences of
buildings 1 and 2. Then,

projDðh1; h2Þ ¼ tan h1 � h1ðliÞ þ tan h2 � h2ðliÞ ð2Þ
In Eq. (2), h1 and h2 are the look angles at buildings 1 and 2, respec-
tively; tan h1 � h1ðliÞ and tan h2 � h2ðliÞ are the effective projection
differences of buildings 1 and 2, respectively.

Eq. (1) shows that when projDðh1;h2Þ P dðliÞ, valid widths of
centerlines between adjacent buildings vadWðliÞ 6 0. This means
that the centerlines with valid widths 60 m are not defined as
potential seam paths and must be removed from the potential
set of subpaths before seam determination.

2.2. Weights of potential subpaths

After defining the valid widths of potential subpaths, the weight
function of each potential subpath must be built to allow the use of
Dijkstra’s algorithm. This algorithm will then find the lowest-
weight seam from these potential subpaths. Dijkstra’s algorithm
requires that: (i) the path graph is connected and (ii) the path
weights are strictly positive. Dijkstra’s algorithm can then be used
to find the lowest-weight paths between nodes in the graph.
Therefore, the path weights must be positive. Moreover, the weight
function must decrease with path width because priority must be
given to tracking wide occlusion-free land centerlines over narrow
ones. The requirements can ensure that (i) the centerlines with
greater valid widths have lower weights and (ii) the weight func-
tion can distinguish potential subpaths in valid widths. Otherwise,
Dijkstra’s algorithm cannot follow wider occlusion-free land
centerlines.

As an example, suppose that M potential subpaths form the
potential subpath set. The weight of tracking the potential subpath
li is written as:

TcostðliÞ ¼ jðliÞ � lenðliÞ ð3Þ
where jðliÞ indicates the contribution of the width information to
the weight and lenðliÞ is the length of the potential subpath li, which
represents the contribution of the length information to the weight.
jðliÞ is expressed as:

jðliÞ ¼
1

c�minW ; if li is a skeleton segment
1

vadWðliÞ ; if li is a centerline

(
ð4Þ

In Eq. (4), if the potential subpath li is a centerline, jðliÞ is set as the
reciprocal of the valid width of the centerline vadWðliÞ; if the
potential subpath li is a skeleton segment, jðliÞ is set as the recipro-
cal of ðc �minWÞ. minW is defined as the minimal valid width of all
centerlines (excluding skeleton segments). c is a positive constant. If
these conditions are not adhered to, jðliÞ is not a legal expression.
To ensure that all centerlines have lower weights than those of
skeleton segments, c must be less than 1. Thus, c can be any real
number between 0 and 1. An experimental analysis of the relation-
ship between c and the quality of seams given in Section 4.1 shows
that when 0 < c < 1, the change of c has no influence on the quality
of seams. To simplify the definition of path weights, c is fixed as

c ¼ 0:1 ð5Þ
This assigned value indicates that tracking of a skeleton seg-

ment pays ten times the weight of the narrowest centerline. In this
situation, it is highly unlikely for the candidate seam to track a
skeleton segment when other occlusion-free land centerlines exist.

In Eq. (3), the potential subpaths with great valid widths are
assigned low weights. On the one hand, the weight function meets
the requirements of Dijkstra’s algorithm, as mentioned above. On
the other hand, the weight function considers the contributions
of the interspaces between buildings, the heights of the buildings,
the distances between buildings to the principle points, and the
path lengths. In Eq. (4), the reciprocal function is used to construct
the weight of the width information to the weight. The result of
this is that tracking of narrow potential subpaths must pay more
weight than wide ones. This weight assignment is expected to
ensure that almost all seams follow wide occlusion-free land cen-
terlines. For example, if the valid width of a centerline that build-
ings do not shade is not greater than 0 m, the centerline is then
removed from the potential subpath set. This condition means that
the centerline is not considered a potential seam path. For a center-
line li, if vadWðliÞ is 100 m (suppose that this is the widest center-
line), then Tcostðc; liÞ is set as 0:01 � lenðliÞ. If vadWðliÞ is 1 m
(suppose that this is the narrowest centerline), then Tcostðc; liÞ is
set as 1 � lenðliÞ. However, if the potential subpath is a skeleton seg-
ment, Tcostðc; liÞ is set as 10 � lenðliÞ, which means that tracking a
skeleton segment must pay 10 times the weight of the narrowest
centerline or 1000 times the weight of the widest centerline.
3. Methodology for generating optimal seams

Based on the candidate seam definition described in Section 2, a
vector-building-based approach for generation of the optimal
seams from building maps is now proposed. Typically, the individ-
ual seams between two or more adjacent images must be deter-
mined and optimized before mosaicking (Pan et al., 2009; Wan
et al., 2013). As an example and to minimize complexity, extraction
of the seam of a pair of aerial orthoimages is described. These two
images and the corresponding vector building map are part of the
first group of test data. Detailed information regarding the data can
be found in Section 4.

The work flow is presented in Fig. 3. First, the overlapping
region of adjacent images is extracted, followed by the second step
of extraction of the straight skeleton of the overlapping area of
adjacent images. Third, the centerlines between the buildings
within the overlapping region of adjacent images are extracted
based on the constrained Delaunay triangulation skeletonization
algorithm (Morrison and Zou, 2007; Nguyen Minh et al., 2009;
Tang and You, 2003). Fourth, the centerlines between the buildings
are overlaid with the skeleton of the overlapping region to build a
weighted graph. Dijkstra’s algorithm (Dijkstra, 1959) is then
applied to find the lowest-weight candidate seam in the weighted
graph. The lowest-weight path is considered a candidate seam.
Finally, the candidate seam is refined using its surrounding pixels
and the raster-based Dijkstra’s algorithm (Chon et al., 2010; Pan
et al., 2014a). The refined seam is employed as the final seam.
These five steps are presented in more detail in Sections 3.1–3.5.
3.1. Extraction of the overlapping area polygon of adjacent images

The image data typically include null and non-null value pixels,
and the valid regions indicate those covered by non-null value
pixels. The valid regions of the two adjacent images, consisting of
non-null value pixels, are first extracted using the Moore neighbor
contour tracing algorithm (Pradhan et al., 2010). The reason that
the four contours of each image are not directly used to compose
the boundary polygon of each image is to avoid unnecessary back-
ground holes (null value pixels) appearing in the final mosaic
images. The procedure is detailed in Wang et al. (2012). After
extraction of the vector valid regions of the two adjacent images,
the overlapping area of adjacent images is obtained through poly-
gon clipping (Vatti, 1992), as shown in Fig. 4.
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Fig. 3. Workflow for generation of the optimal seam between two images.

Fig. 4. Left (a) and right (b) are images to be mosaicked. The overlapping region and its skeleton are shown in (c). The overlapping areas are also indicated by the dotted boxes
in (a) and (b). Two intersections of the polygons of the left and right images are marked as ‘‘M0” and ‘‘Mn”, respectively.
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The raster image data are no longer used for extraction of the
candidate seams but are reincorporated to refine the candidate
seams using the image context described in Section 3.5.

3.2. Extraction of the straight skeleton for the overlapping area of
adjacent images

The skeletons have long been recognized as an important tool
in computer graphics, computer vision and medical imaging. The
straight skeleton of a polygon, similar to the medial axis of a
polygon, can be described as a set of ridge lines in the likeness
of a building roof, as shown in Fig. 1(a). The skeleton of the over-
lapping area of adjacent images is used to chain the centerlines
between buildings together in the overlapping area. The straight
skeleton of the overlapping region can be extracted using the
constrained Delaunay triangulation skeletonization algorithm
(Morrison and Zou, 2007; Nguyen Minh et al., 2009; Tang and
You, 2003). The generation steps can be found in Wang et al.
(2012). In most cases, any kind of line, even a straight-line con-
necting the start point and end point of the candidate seam,
can be used to chain the centerlines between buildings together
to build the best candidate seam. However, using the skeleton
as the connector is one of the optimum solutions, as the skeleton
of the overlapping area is inherently always located within the
overlapping area. Thus, the skeleton can replace the candidate
seam with more centerlines between buildings. Fig. 4(c) shows
the extracted straight skeleton for the overlapping area. Two
intersections of the polygons of the two images are marked as
M0 and Mn and will be considered as the start and end points
of the candidate seam.
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3.3. Generation of the centerlines existing between buildings from
vector building maps

To minimize visual transition, the candidate seam must avoid
crossing salient objects, such as buildings. Minimization can be
achieved by tracking the occlusion-free land centerlines.
Occlusion-free land centerlines, similar to street centerlines, are
defined as the medial axes of the occlusion-free areas located
between the buildings (Fig. 1). The extraction of the centerlines
from a vector-building map is an area-line conversion. Well-
known methods for area-line conversion include triangulation,
water lining, and straight skeletons (Selvi et al., 2010). Considering
the operational speed, a Delaunay-triangulation-based straight
skeleton method (Roberts et al., 2005) is employed to extract cen-
terlines existing between buildings. The extracted centerlines are
approximate substitutions of the occlusion-free land centerlines.

The steps for extracting the centerlines from the vector building
maps are similar to those for extracting the straight skeleton of the
overlapping region of adjacent images. The difference between
these two procedures is the choice of triangles: for the former,
the triangles falling outside the polygon (the overlapping area)
are removed; however, for the latter, the triangles falling in the
polygons (building polygons) are removed, while the triangles out-
side the polygons (building polygons) remain. The steps for gener-
ating the centerlines existing between buildings are as follows:

The vector building map is clipped by the overlapping area of
adjacent images to ensure that all clipped vector building polygons
fall in the overlapping area of adjacent images.

Vertices on vector building polygons are degenerated into
Delaunay triangulation (DT) points; the Bowyer-Watson Delaunay
triangulation algorithm (Chen and Ai, 2004; Morrison and Zou,
2007) is then run on DT points. A Delaunay triangulation network
(DTN) is then built.

The constrained Delaunay triangulation network (CDTN) sub-
algorithm (Morrison and Zou, 2007) is run to transform DTN into
CDTN, ensuring that no triangle in DTN crosses the polygon edges.
Fig. 5. (a) Vector buildings within the overlapping area (cantaloupe polygons) and center
G (V, E) created from centerlines (their passing weights shown using varying thickness)
thickness). (c) Candidate seam generated from the weighted undirected graph (white po
(For interpretation of the references to colour in this figure legend, the reader is referre
Subsequently, all triangles that fall in building polygons are
removed and triangles in the space polygon between buildings
remain.

Skeletons of vacant land polygons between buildings are
extracted based on CDTN. Skeletons are a set of straight-line seg-
ments, each connecting the mid-points of internal edges or the
centroids of the constrained Delaunay triangles (Nguyen Minh
et al., 2009; Wang et al., 2012). The skeletons of vacant land poly-
gons are referred to here as ‘‘centerlines between buildings”.

Fig. 5(a) shows the vector buildings within the overlapping area
and the centerlines extracted from vector buildings.

3.4. Determination of candidate seam from centerlines existing
between buildings

After generation of the centerline network, the candidate seam
is determined using Dijkstra’s algorithm (Dijkstra, 1959). Candi-
date seams should preferentially follow the wider centerlines,
where geometric and color differences are lower. The best candi-
date seam is defined as the least-weight path in the centerline net-
work that connects the start and end points. The four key steps for
determining the candidate seam from the centerline network are
as follows:

Step 1: The start and end points of the candidate seam are cho-
sen. There are several methods for choosing start and end
points of the candidate seam in the overlapping area. Hsu
et al. (2002) presented a local-global method based on ordinary
Voronoi diagrams of frame centers. This method was used to
place start and end points of the candidate seam, but cannot
be ensured to generate seams lying in the overlapping area of
adjacent images. This may generate gaps that cannot be covered
by any image. To reduce these drawbacks in mosaicking, Pan
et al. (2009) presented a method based on the concept of ‘Area
Voronoi Diagrams with Overlap’ (AVDO) to ensure that start
and end points of the candidate seam can be placed in the
lines extracted from vector buildings (thin polylines). (b) Weighted undirected graph
and the straight skeleton of the overlapping area (the straight lines with constant
lyline) and refined seam (red polyline). Details of the mosaic are given in Figs. 8–10.
d to the web version of this article.)
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overlapping area of adjacent images. However, the start and end
points of the candidate seam may be placed in areas of high
mismatch. To this end, Mills and McLeod (2013) proposed a
method to replace the heuristic (fixed) placement of the seam
network junctions using a local search for optimal positions.
This provides greater flexibility in selecting optimal seams. In
this study, we choose two intersections between the two adja-
cent image polygons as the start and end points of the candi-
date seam. Note that if there are two or more intersections,
the two intersections with the longest distance are automati-
cally chosen as start and end points of the candidate seam to
ensure that the candidate seam is a simple polyline.
Step 2: The straight skeleton of the overlapping area of adjacent
images is obtained using the method presented in Section 3.2.
The centerlines existing between buildings are extracted using
the method presented in Section 3.3, after vector buildings fall-
ing in the overlapping area are obtained.
Step 3: A weighted undirected graph G (V, E) is created for
determination of candidate seams. This graph creation method
begins with the creation of a null set of virtual paths. Next, the
skeleton extracted in the second step and the centerlines
between buildings extracted in the third step are added to the
set of potential subpaths. Then, these potential subpaths,
including skeleton segments and occlusion-free land centerli-
nes, are split at intersections using the line-splitting algorithm
(Zhao et al., 2004). This line-splitting processing is equated with
the use of function ‘‘planarize lines” in ArcMap. Finally, the
weights are assigned to these potential subpaths according to
(3). If the set of the intersections and end points of virtual paths
is considered as the set of vertices V and the set of the various
potential subpaths is considered as the set of edges E, a
weighted undirected graph G (V, E) can be built to find the
least-weight candidate seam, as shown in Fig. 5(b). The thick-
ness of the polylines represents weights of the centerlines and
skeleton lines.
Step 4: Dijkstra’s algorithm (Dijkstra, 1959) is applied to find
the lowest-weight path from the start point to the end point
in GðV ; EÞ. The total weight of tracking a candidate seam CS that
contains several candidate subpaths (i.e., potential seam paths)
can be written as

f ðCSÞ ¼
X

TcostðliÞ; li 2 SL 2 W ð6Þ

where f ðCSÞ is the sum of the weights of tracking these candidate
subpaths and W is the overlapping area of adjacent images to be
mosaicked. The smaller the weight of a potential subpath, the
greater the potential of the subpath li being part of a seam.

The lowest-weight (optimal) path is then obtained through
minimizing f ðCSÞ using Dijkstra’s algorithm; the weight is

f ðBSÞ ¼ min½f ðCSÞ�; li 2 SL 2 W ð7Þ
Fig. 5(b) and (c) shows the weighted undirected graph and the can-
didate seam generated from the centerline network, respectively.

3.5. Refinement of candidate seam by considering surrounding pixels

The best candidate seam generated from vector building maps
in Section 3.4 chooses paths by avoiding the crossing of buildings
existing on the vector map. They do not consider any image con-
tent information, as in the raster-based mosaicking method
(Agarwala et al., 2004; Chon et al., 2010; Kerschner, 2001). Conse-
quently, this may lead to the crossing of some salient objects, such
as cars and trees on roads, or some new buildings not updated in
real-time on the vector map. Therefore, the candidate seam should
be considered as an intermediate production. To generate an opti-
mal seam for seamlessly combining images, the candidate seam
must be refined using a local search incorporating image data
within the overlapping area. The refinement procedure is given
as follows:

Step 1: Limit search area for the candidate seam. Generally,
searching a 5-m buffer area from the initial candidate seam
could easily take the candidate seam over cars and trees on
roads. In this study, the search area is defined as a buffer area
along the candidate seam with varying buffer distance. If the
local valid width of the candidate seam is lower than 10 m, then
the corresponding subpath is likely a centerline between dense
buildings. The search distance is then set as 50 m to avoid cross-
ing buildings (users can increase the search distance when nec-
essary). If the local valid width of the candidate seam is
between 10 m and 60 m, then the corresponding subpath is
likely a street centerline. The search distance is then set as
5 m to avoid crossing cars or trees on streets. However, if the
local valid width of the candidate seam is greater than 60 m
(the maximum street width of China), then the corresponding
subpath is likely a centerline between sparse buildings. Some
newly built buildings may emerge. The search distance is set
as 50 m. Overall, the buffer distances are expressed as:

BufDisðliÞ ¼
5; if 10 6 vadWðliÞ < 60
50; if vadWðliÞ < 10 or vadWðliÞ > 60

�
ð8Þ

where BufDisðliÞ is the buffer distance for the ith subpath on the can-
didate seam.

Step 2: Refine the candidate seam in the search area using sur-
rounding pixels within the corresponding overlapping area.
Assume that m images (F1, F2,. . ., Fm) have overlaps with the
overlapping area W containing the candidate seam and that
the refinement is conducted in the search area. The total weight
of the final seam FS passing through a certain number of pixels
can be defined as Eq. (9), as seen in (Wang et al., 2012):

TcostðFSÞ ¼
X

Tcostðu;vÞ; ðu;vÞ 2 FS 2 D 2 W ð9Þ

where D indicates the search area defined in the first step and
Tcostðu;vÞ indicates the weight for the final seam FS passing
through the pixelðu;vÞ. Tcostðu;vÞ is defined as the difference
between the maximum and minimum luminance values among
the m overlapping images at pixel ðu;vÞ. Explicitly:

Tcostðu; vÞ ¼ max
j¼1���m

Ljðu; vÞ � min
j¼1���m

Ljðu;vÞ ð10Þ

where Ljðu;vÞ is the luminance image of the jth image at pixel ðu;vÞ,
which can be defined as

Ljðu;vÞ ¼ 0:3PR
j ðu;vÞ þ 0:59PG

j ðu;vÞ þ 0:11PB
j ðu;vÞ ð11Þ

where PR
j ðu; vÞ, PG

j ðu; vÞ, and PB
j ðu;vÞ indicate the pixel (u, v) values

in the red, green, and blue bands of the jth image, respectively, and
0.3, 0.59, and 0.11 are the weights of red, green, and blue bands
used to build the luminance image, respectively.

Following this, the best choice for the candidate seam is to min-
imize TcostðFSÞ to obtain the optimal seam:

TcostðFSÞ ¼ min½TcostðFSÞ� ð12Þ

In Eq. (12), min½TcostðFSÞ� is the minimum of TcostðFSÞ. This is sim-
ilar to minimizing f ðCSÞ in Eq. (7), achieved by running the raster-
based Dijkstra’s algorithm (Chon et al., 2010; Pan et al., 2014a).

Fig. 5 shows the refined seam (the red polyline). Note: this sec-
tion only shows the procedure of generating seams. Details of the
mosaic are given in Figs. 8–10.



Fig. 6. Final mosaic of 36 images using the building map. Details of three sub areas (A1, A2, and A3) are shown in Figs. 8–10.
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Fig. 7. The pixel numbers and path weights of the candidate seams for increasing c.
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4. Experimental results and discussion

Three groups of aerial orthoimages are employed in the fol-
lowing experiments. The first, second, and third groups of
images are from a downtown area representing dense high-rise
buildings and roads, a suburban area representing many low-
rise buildings and roads, and a rural area where a few flat
houses and minimal roads are found, respectively. Visual inspec-
tions of the mosaicking results, weights and efficiency of the
proposed method are also compared with those of two alternate
methods: the vector-road-based method (Wang et al., 2012) and
Dijkstra’s method (Kerschner, 2001). Before mosaicking, these
images have been orthorectified to the World Geodetic System
of 1984 (WGS-84) using ground control points and a digital
elevation model (DEM) with a resolution of 5 m. The dominant
geographic features of study areas are Jianghan plain (elevation
20–50 m).

The algorithms described above were developed with C++ in
Visual Studio 2010. The mosaicking process was conducted under
64-bit Windows 7 running on a laptop with an Intel(R) Core(TM)
i5 Duo 2.2-GHz processor, 4-GB internal memory, and a hard disk
with 750-GB capacity, 8-MB cache, and 5400 r/min speed.
4.1. Mosaicking thirty-six images from downtown area

The first test image data consist of thirty-six colored aerial
images generated from four photographic strips. These images
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cover a study area containing many high-rise buildings from the
Hankou district, a downtown area of Wuhan, China. Each photo-
graphic strip contains nine images. These images were also cap-
tured using DMC (Mumtaz and Palmer, 2013), with
approximately 65% forward-overlap and 35% side-overlap. The
spatial resolution of each image is 0.2 m and the image size is
6528 � 9856 pixels. The vector building map used in this test has
a horizontal accuracy of 0.5 m and height accuracy of 1 m.

Using the method presented in Section 3, seams of these images
are determined. Furthermore, the effective mosaic polygons
(EMPs) (Pan et al., 2009) are formed for each image from the seams
using the turn-left algorithm (Liang et al., 2005). The details of the
Fig. 8. Sub area A1 showing seams determined using the proposed vector-building-
overlapping refined seam, (c) right image overlapping refined seam, and (d) result mosa

Fig. 9. Sub area A2, selected for comparison of the mosaics and seams determined using
polyline), vector-road-based method (green polyline) and vector-building-based method
vector-road. (d) Mosaicking result of vector-building. (For interpretation of the referenc
article.)
EMP construction method are shown in (Wang et al., 2012). Each
EMP defines the useful part(s) of each image. The final mosaic
image is generated through filling the EMPs with the correspond-
ing image context. Fig. 6 shows the final mosaic using the proposed
method.

According to Eq. (4), the quality of the seams is dependent on c,
which is used to define the weight of the skeleton of the overlap-
ping area. We first use half of this group of images to analyze the
influence of c on the passed pixel numbers of seams and the path
weights. Path weights are calculated using Eq. (9). Fig. 7 shows the
pixel numbers and weights of candidate seams. Fig. 7 shows that
when c > 1, increasing c presents a lower possibility of centerlines
based method: (a) vector buildings overlapping candidate seam, (b) left image
icked using refined seam.

the three examined methods. (a) Seams determined using Dijkstra’s algorithm (blue
(red polyline). (b) Mosaicking result of Dijkstra’s algorithm. (c) Mosaicking result of
es to colour in this figure legend, the reader is referred to the web version of this
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being chosen as parts of seams. This generally results in decreasing
seam lengths and increasing path weights. The pixel numbers of
candidate seams reduce from 153,181 to 151,597; the path
weights of candidate seams increase from 7,964,785 to
7,976,377; however, when 0 < c < 1, increasing c has no influence
on seam quality. This result shows that c can be assigned any real
number between 0 and 1, as mentioned in Section 2.2. To simplify
the definition of path weights, c is fixed as 0.1 in the following
experiments.

Fig. 8 shows details of the seams determined using the pro-
posed method. Fig. 8(a)–(d) shows the vector building map over-
lapping the candidate seam, the left image overlapping the
refined seam, the right image overlapping the refined seam, and
the result mosaicked using the refined image without feathering,
Fig. 10. Sub area A3, selected for comparison of the mosaics using the seams determined
(blue polyline), vector-road-based method (green polyline), and vector-building-based m
Mosaicking result of vector-road. (d) Mosaicking result of vector-building. (For interpreta
version of this article.)
respectively. The results show good alignment. After visual inspec-
tion, the initial candidate seam lies between buildings and follows
the wide roads to avoid crossing buildings. However, the initial
candidate seam is jogged because the Delaunay triangulation algo-
rithm (Roberts et al., 2005) was used for the generation of the cen-
terlines between buildings. The centerlines consist of straight-line
segments, each connecting the midpoints of the internal edges or
the centroids of the Delaunay triangles. The refined seam is opti-
mized to bypass smaller salient objects, such as trees and cars,
and is thus more seamless than the candidate seam.

Using the same images, mosaicking is also conducted using two
alternate methods: the vector-road-based method (Wang et al.,
2012) and Dijkstra’s method (Kerschner, 2001). Two selected
regions of seams and mosaicking results corresponding to the
using the three examined methods. (a) Seams determined using Dijkstra’s algorithm
ethod (red polyline), respectively. (b) Mosaicking result of Dijkstra’s algorithm. (c)

tion of the references to colour in this figure legend, the reader is referred to the web
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three methods are shown in Figs. 9 and 10, respectively. The seams
generated using Dijkstra’s algorithm (blue polylines), vector-road-
based method (green polylines), and vector-building-based
method (red polylines) are shown in Figs. 9(a) and 10(a). The
details of mosaics are shown in Figs. 9(b)–(d) and 10(b)–(d). The
performance of the vector-building-based method is similar to that
of the vector-road-based method when vector roads are available
(Fig. 9) but crosses less buildings in the absence of or with low
occurrence of roads (Fig. 10). For example, the railway in Fig. 10
(a) is not included in the vector road network. The vector-
building-based method can still follow the wide centerlines (where
the railway is located) between buildings, whereas both the
vector-road-based method and Dijkstra’s method cut many build-
ings. Dijkstra’s method chooses the path with the lowest intensity
difference as seams. However, the weights depend only on the
length of the seam and the degree of color mismatch (Chon et al.,
2010). The color match is sometimes worse on roads than on roofs.
With this method, it is extremely difficult to locate salient features
and then avoid crossing them. The mosaicking results from this
method are thus barely satisfactory, as the seams cut the most
number of buildings.

In Table 1, the numbers of buildings that seams crossed, the
weights of the extracted seams calculated using Eq. (9), and the
associated computation times are presented for the three methods.
The candidate seams extracted using Dijkstra’s algorithm can be
described as the straight lines connecting two intersections of
the polygons of adjacent images. As seen in Table 1, these candi-
date seams cross the most buildings (1839) and thus have the
highest path weights (17,951,532). Even after refinement, when
the refined seams have the lowest weight (921,486), they still cross
the most buildings (807). The candidate seams extracted using the
proposed method are jogged, as shown in Fig. 8(a), and have longer
paths than those of the vector-road based method. As expected, the
proposed method generates candidate seams with higher weights
(14,024,805) than those of the vector-road-based method
(9,418,726). However, the refined seams have lower weights
(1,261,564) than those of the vector-road-based method
(2,443,554). According to the definition, it is easy to understand
that Dijkstra’s algorithm generates the lowest-weight refined
seams. The vector-road based method relies heavily on the vector
road network to determine candidate seams. Its seams cross many
salient objects (candidate seams: 252 buildings, refined seams:
152 buildings), especially in the absence of enough vector roads.
Consequently, the vector-road-based method generates higher-
weight seams. However, the proposed method can generate good
candidate seams by using the vector-building map to reduce the
crossing of buildings even in the absence of roads. The seams cross
the least number of buildings (candidate seams: 192, refined
seams: 24). The crossed buildings generally appear in image edges
and no other lands are available to be chosen to be crossed. The
crossed buildings also include those not updated into the building
maps. Ultimately, this novel aspect reduces weights.

The numbers of crossed buildings and weights described above
indicate that the proposed vector-building-based method could
Table 1
Comparison of the three examined methods using thirty-six images from downtown area

Crossed buildings 35 Candidate seams
35 Refined seams

Weights 35 Candidate seams
35 Refined seams

Times (s) Extracting 35 candidate seams
Refining 35 seams

a Note that Dijkstra’s algorithm does not depend on vector data. Candidate seams are th
thus, their lengths are shortest. Computation time for extracting candidate seams appro
obtain final seams of higher quality than the other methods exam-
ined. However, the proposed method requires more computation
time for generation of the candidate seams. The vector-road-
based method requires 1 s to extract 35 candidate seams. The pro-
posed method, however, spent approximately 348 s. This is due to
the increased computational time associated with the generation
of centerlines between buildings. The time complexity of the algo-
rithm used in this study for generation of the centerlines is O(N2),
where N is the vertex number of all building polygons (approxi-
mately 10,000 building polygon vertices per overlapping area in
this study). Both the proposed and vector-road-based methods
employ the same refinement algorithm, i.e., raster-based Dijkstra’s
algorithm, and thus require similar times (92 and 98 s) to refine 35
seams. Contrary to the other examined methods, Dijkstra’s algo-
rithm only connects the two intersections of the polygons of adja-
cent images to form the candidate seams. Consequently, the
computation time for extracting candidate seams approaches 0 s,
but additional time (2158 s) is required to search for 35 seams
globally. Overall, the total computation time of the vector-
building-based method is approximately 4 times greater than that
of the vector-road-based method, but still only 1/5 that of Dijk-
stra’s algorithm.

The time and memory requirements of the proposed method
also vary with the number of images to be mosaicked. The algo-
rithms are run on subsets of the images containing 3, 9, 18, 27,
and 36 images. Fig. 11 shows the time required for generation of
candidate seams and refined seams. It can be seen that the times
required both for generation of candidate seams and refined seams
are roughly linear in the number of images, which is expected.
Generating a candidate seam takes an average of approximately
10 s. Refining the candidate seam takes an average of another 3 s.
The peak memory usage also varies with the number of images,
as shown in Fig. 12. When the number of images to be mosaicked
is less than nine, constant memory usage is exhibited both for the
.

Dijkstra’s Vector-road Vector-building

1839 252 192
807 152 24

17,951,532 9,418,726 14,024,805
921,486 2,443,554 1,261,564

0a 1 348
2158 98 92

e straight lines connecting the two intersections of the polygons of adjacent images;
aches 0 s.
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generation of candidate seams and refined seams. However, when
the number of images to be mosaicked is more than nine, the
memory required is approximately doubled in both cases. This is
because the greatest memory consumption for generation and
refinement of seams is searching for least-weight paths. This is lin-
ear in the area of the overlapping area of adjacent images or pho-
tographic strips. When the images to be mosaicked come from two
or more photographic strips (the number of images increases to
Fig. 13. Final mosaic of six images using the building map. Details
nine), the double memory must be utilized to search for least-
weight paths in the overlapping area of adjacent photographic
strips (the area is approximately double that of the overlapping
area of adjacent images in this example). When the number of pho-
tographic strips is greater than one, the peak memory usage no
longer increases significantly with the number of photographic
strips. This is because the maximum area of the overlapping areas
no longer increases. Generating candidate seams between adjacent
images consumes approximately 110 MB. That of refining candi-
date seams between adjacent images is approximately 635 MB.
This memory is almost completely assigned to the weight graph
structures, which are currently held in memory throughout the
process. For larger scenes, the memory requirements may exceed
the available RAM on computers. In such cases, the weight graph
structures could easily be cached on a disk because their construc-
tion is independent of one another and their use for determining
optimal seams is local.

4.2. Mosaicking six images from suburban area

The second example presented is a set of six aerial images from
the Qingshan district, a suburb of Wuhan, China. The landscape
consists of open lands with a few low-rise buildings (typically
lower than 20 m) distributed throughout. The images were
extracted from two photographic strips. The images were captured
of three sub areas (A1, A2, and A3) are shown in Figs. 14–16.



Fig. 14. Sub area A1, showing details of refined seam determined using the proposed method: (a) upper image overlapping refined seam, (b) lower image overlapping refined
seam, and (c) mosaicking result without feathering.

Fig. 15. Sub area A2, showing example of mosaic when new buildings are excluded from the building map: (a) left image overlapping candidate and refined seams, (b)
mosaicking result using candidate seam, and (c) result mosaicked using refined seam.
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Table 2
Comparison of the three examined methods using six images from suburban area.

Dijkstra’s Vector-road Vector-building

Buildings crossed 183 32 13
Weights 163,558 324,137 205,234
Times (s) 316 16 62
Peak memory usage (MB) 2120 1260 640
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using an Ultracam-D camera (Erfanifard et al., 2014) with approx-
imately 30% forward-overlap and 35% side-overlap. The resolution
of each image is 0.5 m and image size is 7020 � 12,430 pixels. The
vector building map used in this test is a generalized building map,
where adjacent buildings are merged into a polygon with a hori-
zontal accuracy of 5 m and height accuracy of 5 m.

These six images from the suburban area are mosaicked using
the proposed method. The vector building map was unable to
exactly match these images, particularly where some small-scale
buildings are newly built, but experiments show that this has no
obvious influence on the final mosaic. Fig. 13 shows the mosaick-
ing result of six images using the vector building map. Fig. 14
shows the details of a refined seam determined using the proposed
method. The refined seams successfully avoided the crossing of
buildings.

In addition to small salient objects, the refined seams can avoid
crossing many new buildings not included in the building map.
New buildings are common in this area due to recent development
policies. Fig. 15 shows an example of a mosaic when new buildings
are not updated in the building map. Fig. 15(a) shows the candi-
date and refined seams. The candidate seam cuts some new build-
ings. Using this candidate seam to generate the mosaic, the left
parts of the buildings are clearly offset from the right parts, as
shown in Fig. 15(b). However, the refined seam relocates the can-
didate seam to follow the boundaries of the new buildings to gen-
erate a seamless mosaic, as shown in Fig. 15(c). This example
proves the necessity of refining candidate seams. Users can
increase search buffer distances to bypass the larger salient objects
using the proposed refinement method described in Section 3.5 to
allow for effective refinement, but we do not guarantee that every
attempt will be successful because Dijkstra’s algorithm tends to
produce a shorter path even with some high-cost pixels (salient
objects).

The three methods are also compared based on this group of
data. A selected region for the comparison is shown in Fig. 16. Both
the vector-building-based method and vector-road-based method
successfully follow roads. However, Dijkstra’s algorithm crossed
Fig. 16. Sub area A3, selected for comparison of mosaics and seams using six images fro
algorithm (blue polyline), vector-road-based method (green polyline) and vector-buildin
building. (For interpretation of the references to colour in this figure legend, the reader
some buildings. This is another clear example that indicates that
the vector-building-based method and vector-road-based method
have better performance than Dijkstra’s algorithm when vector
roads are available.

Using this group of data, the numbers of buildings that seams
crossed, the weights of the extracted seams calculated using Eq.
(9), the computation times, and the peak memory usage are pre-
sented in Table 2. The results show good agreement with those
of the first test. Dijkstra’s algorithm generates the lowest-weight
refined seams (921,486) but uses the most time (316 s) to generate
the candidate and seams, and the final seams cross the most build-
ings. The vector-road-based method takes the least time (16 s) to
generate the candidate and seams, but the refined seams have
the highest weights (324,137) and cross the second most buildings.
Overall, the proposed method generates the most accurate seams,
crossing the least number of buildings (13), though the weights of
the refined seams (205,234) and the computation time (62 s) are
not the least. Due to the use of the width-varied search area in
(8), the proposed method also utilizes the least memory compared
with the other methods examined.

4.3. Mosaicking one hundred and ten images from rural area

The final example presented is a set of 110 Unmanned Aerial
Vehicle (UAV) images from Xiangjiawei Village, a rural area of
Hongshan district, Wuhan, China. These images cover a study area
dominated by farmland. Only a few flat houses (typically lower
m suburban area. (a) Left image overlapping the seams determined using Dijkstra’s
g-based method (red polyline). (b) Dijkstra’s algorithm. (c) Vector-road. (d) Vector-
is referred to the web version of this article.)



Fig. 17. Final mosaic of 110 images using building map. Details of three sub areas (A1, A2, and A3) are shown in Figs. 18–20.

Fig. 18. Sub area A1, showing details of refined seam determined using the proposed method: (a) left image overlapping refined seam, (b) right image overlapping refined
seam, and (c) mosaicking result without feathering.

D. Wang et al. / ISPRS Journal of Photogrammetry and Remote Sensing 125 (2017) 207–224 221
than 6 m) and three roads are distributed in the area. The images
are extracted from 11 photographic strips. The images were cap-
tured using a Leica M camera with approximately 65% forward-
overlap and 35% side-overlap. The resolution of each image is
0.5 m and the image size is 5952 � 3976 pixels. The vector building
map used in this test has a horizontal accuracy of 3 m and height
accuracy of 2 m. Fig. 17 shows the final mosaic using the vector-
building map.
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Due to the sparse distribution of buildings, many candidate
seams only consist of skeleton segments. However, the mosaicking
results have no obvious geometric differences on the final mosaic.
Fig. 18 shows details of a refined seam determined using the pro-
posed method. Fig. 18(a)–(c) shows the left image overlapping the
refined seam, the right image overlapping the refined seam, and
the mosaicking result without feathering, respectively. In Fig. 18
(c), the texture characteristics match very well, although color
characteristics vary significantly for farmland. This example proves
the effectiveness of the seam detection method in rural settings.

As a comparison, mosaicking was conducted for these images
using all examined methods. The seams generated using Dijkstra’s
algorithm (blue polylines), vector-road-based method (green
polylines), and vector-building-based method (red polylines) are
shown in Figs. 19(a) and 20(a). The details of mosaics are shown
in Figs. 19(b)–(d) and 20(b)–(d). The proposed method avoids the
crossing of buildings in the regions with dense buildings. How-
ever, for the regions without buildings and roads, the proposed
method generated the same seams as the vector-road-based
Fig. 19. Sub area A2, selected for comparison of mosaics and seams using 110 images fr
algorithm (blue polyline), vector-road-based method (green polyline), and vector-buildin
building. (For interpretation of the references to colour in this figure legend, the reader
method. The seams of Dijkstra’s algorithm are almost the same
as those of these two vector-based methods. The seams consis-
tently cut farmlands where geometric characters align very well,
as shown in Fig. 20.

The numbers of crossed buildings, the weights of the extracted
seams, and the computation times are presented in Table 3. Similar
to the former tests, Dijkstra’s algorithm also generates the lowest-
weight refined seams and uses the most memory and time to gen-
erate the candidate and refined seams. The vector-road-based
method takes the least time to generate the candidate and seams.
The proposed method generates the most satisfying seams, cross-
ing only 5 buildings. However, weights of refined seams, running
time, and peak memory usage are approximately equal to those
of the vector-road-based method. This is because few vector build-
ings and roads are available for extracting seams and many skele-
ton segments are directly chosen as parts of seams. The
comparison shows that the proposed method has similar or better
performance for mosaicking images in rural areas, where both
roads and buildings are extremely sparse.
om rural area. (a) Upper image overlapping the seams determined using Dijkstra’s
g-based method (red polyline). (b) Dijkstra’s algorithm. (c) Vector-road. (d) Vector-
is referred to the web version of this article.)



Fig. 20. Sub area A3, selected for comparison of mosaics and seams using 110 images from rural area. (a) Left image overlapping seams determined using Dijkstra’s algorithm
(blue polyline), vector-road-based method (green polyline) and vector-building-based method (red polyline). (b) Dijkstra’s algorithm. (c) Vector-road. (d) Vector-building.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Comparison of the three examined methods using 110 images from rural area.

Dijkstra’s Vector-road Vector-building

Buildings crossed 32 25 5
Weights 1,812,632 2,338,543 2,625,473
Times (s) 7560 695 742
Peak memory usage (MB) 2420 680 640
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5. Conclusions

In this study, a novel method using vector building maps to
generate seams is proposed. Different from the vector-road-based
method, which tracks vector roads to generate seams, the proposed
method is designed to follow the centerlines between buildings
and to reduce the crossing of salient objects on images, particularly
high-rise buildings.

The experimental results of this study demonstrate that the
vector-building-based method has considerable potential to
improve the efficiency and quality of mosaicking, especially for
the areas where vector buildings are dense. The proposed method
ensures that seams avoid crossing buildings, trees and cars as
much as possible by placing them along the centerlines between
buildings. Compared with Dijkstra’s algorithm and the vector-
road-based method, the proposed vector-building-based method
generates higher quality of seams for images within downtown
and suburban areas, where buildings are dense, and generates
the same quality of seams for images from rural settings, where
buildings are sparse or nonexistent. The memory requirements of
this method are also the least. The vector-building-based method
is a novel, efficient and effective development. Its use would also
improve other things outside of showing images, including survey-
ing and mapping, image recognition and classification, land use,
land cover, and biomass estimation studies. For example, it is
impossible to measure accurately the area of a building from a
mosaic where seams cross the building. However, there are several
potential pathways to improve.

First, the performance of the proposed method relies on the
level of correlation or matching degree between vector buildings
and the images to be mosaicked. To ensure this, vector building
maps need to be updated in real time. Generally, large-scale con-
struction projects are becoming less common in more and more
cities in the world, particularly in China. Therefore, discrepancies
between vector building maps and images are similarly becoming
less of an issue. When new construction areas do dominate the
resultant overlapping area, the proposed method will be invalid
for determination of candidate seams. In such a scenario, the pro-
posed method will strongly rely on Dijkstra’s algorithm. Users can
expand the search area for refining candidate seams, but some sali-
ent objects may also be crossed because Dijkstra’s algorithm does
not limit the crossing of the maximum-cost pixels, as discussed in
Section 3.5. Some advanced strategies, such as the AVDO-based
seam network refinement approach (Pan et al., 2014a) and the
graph weighting strategy (Yu et al., 2012), could be applied to
improve the resultant seams. The former combines the bottleneck
model and Dijkstra’s algorithm for refinement of the seam net-
work. The latter considers all variables related to image appear-
ance (i.e., color, edge and texture), image saliency and location
constraints to find optimal seams. The influence of matching
degree on mosaicking results is also analyzed based on three
groups of test data. Experiments show that building maps with a
horizontal accuracy of 5 m and height accuracy of 5 m are accurate
enough to perform seam determination, but more data with lower
accuracy should be analyzed to test the proposed method further.

Furthermore, the total processing time of the proposed novel
method is less than that of Dijkstra’s algorithm, but it remains
much greater than that of the vector-road-based method for
mosaicking images from areas with densely distributed buildings,
such as downtown and suburban areas. This is because generation
of the centerlines between buildings is very time-consuming. The
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time complexity is O(N2). The computation time for generation of
centerlines between buildings can be reduced in two known ways:
(1) Incorporate a higher efficiency Delaunay triangulation algo-
rithm, e.g., the divide-conquer Delaunay triangulation algorithm
(Chew, 1989), whose time complexity is O(N log N). This technique
can dramatically reduce the computation time without changing
generated centerlines. (2) Combine adjacent buildings to reduce
computation vertices (N). This approach can reduce computation
time without changing the algorithm but may generate different
or invalid centerlines. Combining these processes may provide an
optimal balance between computation time and quality.

As the vector-road-based method has already been confirmed
efficient for seam detection in the previous work, the proposed
use of a vector-building-based method in combination with
vector-road and other vector data may produce seams of higher
quality. This will be addressed in our future work.
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