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a b s t r a c t 

Because infrared small target detection plays a crucial role in infrared monitoring and early warning sys- 

tems, it has been the subject of considerable research. Although many infrared small target detection 

approaches have been proposed, how to robustly detect small targets in poor quality infrared images re- 

mains a challenge. Since existing feature descriptors are often sensitive to the quality of infrared images, 

this paper advocates the use of a local steering kernel (LSK) to encode the infrared image patch because 

the LSK method can provide robust estimation of local intrinsic structure, even for poor quality images. 

Furthermore, this paper proposes a novel local adaptive contrast measure based on LSK reconstruction 

(LACM-LSK) for infrared small target detection. To demonstrate the effectiveness of the proposed ap- 

proach, a diverse test dataset, including six infrared image sequences with different backgrounds, was 

collected. Extensive experiments on the test dataset confirm that the proposed infrared small target de- 

tection approach can achieve better detection performance than state-of-the-art approaches. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Automatic infrared small target detection is one of the most

ignificant aspects of an automatic target recognition (ATR) system

1,2] . For early warning applications, the incoming targets must be

etected at a great distance. As the infrared sensor is distant from

n object of interest, such objects occupy only a small number of

ixels in the infrared image. Furthermore, the infrared radiant en-

rgy of the object of interest decays greatly over long distances,

hich causes the signal-to-noise ratio (SNR) of the target of inter-

st generally to be very low [3] . Additionally, the targets are often

uried in complex background clutter. In addition, the brightness

f infrared images is often affected by the variability of thermal

adiation sources in the field of view, and infrared images tend to

e polluted by infrared sensor noise. As a consequence, infrared

mages are often of poor quality. Due to the poor quality images,

raditional image descriptors are unable to provide infrared small

arget detection. Hence, robust small target detection from poor

uality infrared images presents a number of challenges. 

In the past several decades, numerous sequential image-based

pproaches for the infrared detection of small moving targets

4,5] have been proposed. However, temporal information extrac-

ion from infrared sequential images is still extremely challenging
∗ Corresponding author. 

E-mail addresses: yansheng.li@whu.edu.cn (Y. Li), zhangyj@whu.edu.cn (Y. 

hang). 
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ecause common feature descriptors [6–8] and matching methods

9–10] are not often used directly when compensating for mo-

ion in infrared sequential images. To avoid this open problem,

any researchers and engineers turn to infrared small target de-

ection based on a single image. Generally, an infrared small target

resents as a Gaussian light blob in the image, which is the cru-

ial distinction between the infrared small target and background

lutter. Methods based on this distinction include max-mean and

ax-median filtering [11] , the mathematical morphological-based

ethods [12,13] , line-based reconstruction [14] , and the image

ntropy-based method [15] . Based on the theory of extrema, facet-

ased methods [16–18] and LS-SVM-based filtering [19] were used

o identify objects of interest as well as suppress background clut-

er. From the visual attention perspective, several kinds of saliency-

ased infrared small target detection approaches were proposed

20–22] . Unfortunately, most saliency-based infrared small target

etection approaches have high computational complexity and are

ifficult to optimize using parallelism. Subsequently, Chen et al.

23] proposed a local contrast measure to identify infrared small

argets. These researchers subsequently proposed a refinement of

he local contrast measure to improve dark target detection per-

ormance [24] . Deng et al. [25] proposed a weighted local con-

rast measure to suppress cloudy-sky backgrounds. To improve on

he local contrast measure, Wei et al. [26] proposed a patch-based

ontrast measure. The patch-based processing style has also been

dopted for infrared small target detection in [27] and our previ-

us work [4] . In these patch-based infrared small target detection

https://doi.org/10.1016/j.patcog.2017.12.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.12.012&domain=pdf
mailto:yansheng.li@whu.edu.cn
mailto:zhangyj@whu.edu.cn
https://doi.org/10.1016/j.patcog.2017.12.012
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approaches, the feature descriptor of an infrared image patch was

encoded by simply vectoring the raw pixel intensities. The feature

descriptor encoded by raw pixel intensities is directly affected by

the image quality, which negatively affects patch-based infrared

small target detection approaches [4,26–28] . Hence, realizing ro-

bust patch-based infrared detection of small targets requires re-

search into the robust representation of infrared image patches. 

To address this aim, this paper investigates the use of a local

steering kernel (LSK) [29] to encode the infrared image patch be-

cause the LSK has been specifically designed to address pixel-level

image noise and uncertainty through estimation of the local intrin-

sic structure. To date, the LSK method has been successfully used

in such applications as noise reduction [29] , super-resolution [30] ,

saliency modeling [31] , and object detection [32] . In this paper, we

explore the utility of LSK for the infrared small target detection

task. Extensive experiments have shown that feature descriptors

using LSKs are robust to brightness variation and noise interfer-

ence. In addition, a patch containing a uniform region (flat region),

another containing textural clutter and a third containing a struc-

tural region have dramatically different LSK descriptors. Unfortu-

nately, the LSK descriptor of an image patch containing a small tar-

get highly resembles a texture clutter patch. Hence, use of the LSK

alone cannot accomplish the infrared small target detection task.

Considering that the small target is isolated but that texture clut-

ter is repeated along at least one direction, this paper proposes a

local adaptive contrast measure based on regularized LSK recon-

struction (LACM-LSK) that can simultaneously identify the small

target of interest and suppress the background clutter, including

the texture clutter. Extraction of LSK descriptors and calculation

of the contrast map using the LACM-LSK can be easily optimized

by a parallel algorithm to meet the requirements of real-time ap-

plications. From the contrast map, the final determination of the

small targets’ locations can be achieved using a simple threshold

segmentation method. 

A test dataset composed of six infrared sequences containing

several typical backgrounds with sea, ground, and cloud clutter

is used to demonstrate the validity of the proposed approach.

Compared with state-of-the-art approaches, the proposed approach

shows very impressive results. As a whole, the contributions of this

paper can be summarized as follows: 

• Because the quality of infrared images is often poor (e.g., in-

frared images are often polluted by infrared sensor noise),

we propose encoding the infrared image patch using the LSK

method. More specifically, LSKs can robustly estimate the in-

trinsic image structure and address pixel-level image noise and

ambiguity. 
• This paper proposes a local adaptive contrast measure based

on regularized LSK reconstruction that has an efficient closed-

form solution. This proposed adaptive contrast measure is used

to identify infrared small targets. Many experiments have con-

firmed that the proposed infrared small target detection ap-

proach can outperform existing approaches. 

The remainder of this paper is organized as follows.

Section 2 details the proposed infrared small target detection

approach, including descriptions of the L SK and LACM-L SK.

Section 3 presents the experimental results, which include a sen-

sitivity analysis of the crucial parameters of the proposed infrared

small target detection approach and a comparison of the proposed

approach to state-of-the-art approaches. The study’s conclusions

are presented in Section 4 . 

2. Methodology 

In this section, we first introduce the calculation of the lo-

cal steering kernel (LSK) and its infrared image results. Next, we
resent the local adaptive contrast measure based on regular-

zed LSK reconstruction (LACM-LSK). Finally, the proposed infrared

mall target detection approach is summarized. 

.1. Robust representation of an infrared image patch using a local 

teering kernel (LSK) 

In this paper, the position of one pixel is represented by a co-

rdinate vector x i = [ x 1 
i 
, x 2 

i 
] T , and the pixel intensity at x i is de-

oted by I ( x i ). As shown in [29] , the descriptive power of the

SK mainly derives from the steering matrix, which is also known

s the gradient covariance matrix. Given an image patch W( x i ) =
 x 1 , · · · , x i , · · · , x P } centered at x i where P denotes the number of

ixels in the given patch, the corresponding LSK representation can

e modeled as 

( x i , x j ) = 

√ 

det ( C j ) 

h 

2 
exp 

{
( x i − x j ) 

T 
C j ( x i − x j ) 

−2 h 

2 

}
(1)

here x j ∈ W( x i ), and h is the global smoothing parameter and is

et to 0.2 for all experiments, according to Seo and Milanfar [31] . In

ddition, the covariance matrix C j is estimated from a collection of

patial gradient vectors within the neighborhood centered at po-

ition x j = [ x 1 
j 
, x 2 

j 
] T . The covariance matrix estimation is of great

mportance to LSK generation and is specified as follows. 

Let �( x j ) = { x 1 , · · · , x j , · · · x M 

} denote the coordinate set of

eighboring pixels centered at pixel coordinate x j = [ x 1 
j 
, x 2 

j 
] T and

 denote the number of neighboring pixels. Natively, the covari-

nce matrix C j can be directly estimated by G 

T 
j 
G j where G j can be

xpressed by 

 j = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

I 1 ( x 1 ) I 2 ( x 1 ) 
. . . 

. . . 
I 2 ( x j ) I 2 ( x j ) 

. . . 
. . . 

I 1 ( x M 

) I 2 ( x M 

) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(2)

here I 1 ( · ) and I 2 ( · ) denote the first derivatives along the hori-

ontal and vertical axes. 

To improve robustness and stability, based on the successful

xperience of Takeda et al. [29] , our approach estimates the co-

ariance matrix using a regularized parametric method. Based on

he singular value decomposition (SVD) of G j , the stable covariance

atrix C j can be expressed by 

 j = 

(
s 1 s 2 + λ′′ 

N 

)α
( (

s 1 + λ′ 
s 2 + λ′ 

)2 

u 1 u 

T 
1 + 

(
s 2 + λ′ 
s 1 + λ′ 

)2 

u 2 u 

T 
2 

) 

(3)

here λ′ and λ′′ are parameters that are set to 1 and 10 -7 ,

espectively, for all experiments, based on Seo and Milanfar

31] . The sensitivity analysis of the amplification factor α is de-

ailed in Section 3 . In addition, the singular values ( s 1 , s 2 ) and

he singular vectors ( u 1 , u 2 ) come from the SVD formula G j =
 j S j V 

T 
j 
= U j diag [ s 1 , s 2 ] j [ u 1 , u 2 ] 

T 
j 
. 

In our implementation, before calculating the LSK representa-

ion, we first normalize the gradients in the global domain be-

ause the contrast in the infrared image is relatively smaller than

n natural images. Fig. 1 illustrates the results of the LSK represen-

ation. As depicted in Fig. 1 , LSK shows discrimination stability un-

er conditions of brightness variation and noise interference. From

ntuitive comparison of the shapes, the LSK representations of the

atch containing the flat region (i.e., the 2nd patch in Fig. 1 ), the

atch containing textural clutter (i.e., the 3rd patch in Fig. 1 ), and

he patch containing the structural region (i.e., the 4th patch in

ig. 1 ) are dramatically different from one another. Unfortunately,

he LSK representation of the patch containing the small target of
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Fig. 1. Robust and invariant representation of infrared image patch using LSK. (a) shows the original image; (b) shows the image with brightness change; (c) shows the 

image polluted by Gaussian noise with a standard deviation = 10. In addition, the 1st patch contains the target of interest, the 2nd patch contains a flat region, the 3rd patch 

contains textural clutter, and the 4th patch contains an edge structure. 
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nterest (i.e., the 1st patch in Fig. 1 ) is highly correlated with the

atch containing textural clutter (i.e., the 3rd patch in Fig. 1 ). Ac-

ordingly, an infrared small target cannot be directly recognized

y the existing LSK template matching method [32] or the met-

ic learning methods [33,34] because a unique target feature sig-

ature is a prerequisite of these methods. How to make full use of

he robust LSK representations to uniquely enhance small targets

f interest deserves more exploration. 

.2. Local adaptive contrast measure based on regularized LSK 

econstruction (LACM-LSK) 

As mentioned in Section 2.1 , LSK representations can robustly

epresent an infrared image even under conditions of brightness

ariation and noise interference. However, a single LSK representa-

ion cannot recognize an infrared small target because the LSK rep-

esentation of the infrared small target region is indistinguishable

rom the LSK representation of the textural clutter region. In prac-

ice, human beings can readily distinguish infrared small targets

rom complex backgrounds, which results primarily from the se-

ective attention mechanism of the human visual system (HVS). In

he literature, various types of local contrast measures have been

roposed to imitate the selective attention mechanism and have

hown great potential in infrared small target detection. Specifi-

ally, the contrast measures a difference between the current unit

nd its neighboring units, which makes full use of spatial context

nd is capable of eliminating the confusion resulting from the ex-

mination of a single unit in infrared small target detection. Ac-

ordingly, defining the contrast is one of the most important tasks

n infrared small target detection [26] . Hence, this paper proposes

 local contrast measure based on LSK representations that si-

ultaneously enhances infrared small targets and suppresses back-

round clutters. 

First, we provide examples of the infrared small target and

ackground clutter images to show the appearance of the area of
nterest and the appearances of its neighbors to intuitively demon-

trate why a contrast measure based on LSK representations would

etect an infrared small target. As is widely recognized in the

iterature, an infrared small target has a signature discontinuous

ith its neighborhood [23,26] . As depicted in Fig. 2 (a), the cen-

er patch (i.e., the 5th patch) corresponds to one infrared small

arget, and its neighboring patches greatly differ from it. In addi-

ion, textural clutter is often not isolated, which means that the

eighboring patches also probably contain textural clutter if the

enter patch does. For example, as illustrated in Fig. 2 (b), the

th patch is the center patch and contains ground clutter, and

ome of its neighboring patches, i.e., the 1st, 2nd, 4th, 6th, and

th patches, also contain ground clutter. Accordingly, an ideal lo-

al contrast measure should output a large contrast value when

he center patch contains the infrared small target and a small

ontrast value when the center patch contains background clut-

er. As depicted in Fig. 2 (a), the center patch (i.e., the 5th patch),

ontaining the small target, differs from its neighbors in both the

aw image representation domain and the LSK representation do-

ain, thus the contrast between the center patch and its neigh-

ors should be large in both domains. In contrast, as depicted in

ig. 2 (b), the center patch (i.e., the 5th patch), containing ground

lutter, differs from all of its neighbors in the raw image repre-

entation domain, but resembles some of its neighbors, such as

he 1st, 2nd, 4th, 6th, and 9th patches, in the LSK representa-

ion domain. As a consequence, when the center patch contains

nly background clutter, the contrast value between the center

atch and its neighbors would be large in the raw image repre-

entation domain, but the contrast value between the center patch

nd its neighbors may be small in the LSK representation do-

ain using a qualified contrast measure. Therefore, this paper at-

empts to use an appropriate contrast measure based on the LSK

epresentations to highlight the small target of interest and sup-

ress various types of background clutter, including textural clutter,

imultaneously. 
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Fig. 2. Illustration of raw image patches and LSK representations in a local neighborhood, and the intuitive reconstruction residual at different regions. The blue rectangles 

denote the LSK representations of the neighboring patches. The red rectangle delineates the LSK representation of the center patch. The green rectangle denotes the recon- 

structed LSK representation when we use the neighboring LSK representations to approximate the center LSK representation. In addition, the magenta rectangle shows the 

difference between the reconstructed LSK representation and the original LSK representation of the central patch. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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This paper proposes a local adaptive contrast measure based

on regularized LSK reconstruction (LACM-LSK) to identify infrared

small targets. The intuitive sense behind this proposal is illustrated

by Fig. 2 . As depicted in Fig. 2 (a), the LSK representation of the

center patch (i.e., the 5th patch) containing the small target is sig-

nificantly different from its neighbors’ and cannot be linearly re-

constructed from the neighbors’ LSK representations, which is ver-

ified by the large reconstruction residual shown in Fig. 2 (a). How-

ever, as depicted in Fig. 2 (b), the linear combination of the neigh-

boring patches’ LSK representations can approximately reconstruct

the LSK representation of the central patch containing only textu-

ral clutter, which is verified by the small reconstruction residual

shown in Fig. 2 (b). Hence, the reconstruction residual of the center

patch’s LSK representation can be used to define an adaptive con-

trast measure that can robustly indicate whether the given center

patch contains a small target. 

In the following, the proposed LACM-LSK is described. Let

f c ∈ R P × 1 denote the vectorization of the center’s LSK represen-

tation, where P = s × s and s is the patch size. In addition, F =
[ f 1 , · · · , f N ] denotes the union of the neighboring feature vectors,

each of which is the vectorization of the corresponding neigh-

boring LSK representation, where N is the number of neighboring

patches. Let w ∈ R 

N × 1 be the linear combination coefficients. Based

on the neighboring LSK representations, the LSK representation of

the center patch can be reconstructed by optimizing the following

objective function: 

min 

w 

‖ f c − F · w ‖ + λ ‖ w ‖ 

2 (4)

where λ is the regularization term that controls the trade-off be-

tween the estimation bias and the variance of the fitting model.

Benefiting from the discriminative LSK representation, the recon-

struction process is less sensitive to the regularization term λ than

when the raw image feature of Li et al. [4] is used. Hence, the reg-

ularization term λ is empirically set to 1.0. 

Optimizing the objective function in Eq. (4) , the coefficient vec-

tor w has a closed-form solution expressed as w = ( F T · F + λ · I ) −1 ·
 

T · f c . Furthermore, based on the neighboring feature vectors F =
 f 1 , · · · , f N ] and the coefficient vector w , the reconstruction feature

ector f r of the central feature vector f c can be efficiently expressed

y 

 

r = F · w = F · ( F T · F + λ · I ) 
−1 · F T · f c (5)

The reconstruction residual of the center’s LSK representation

s further used to measure the local contrast between the cen-

er patch and its neighboring patches. More specifically, the pro-

osed local adaptive contrast measure based on LSK reconstruction

LACM-LSK) can be expressed by 

LCM − LSK ( f c , F ) = ‖ f c − f r ‖ 

2 

= ‖ f c − F · ( F T · F + λ · I ) 
−1 · F T · f c ‖ 

2 (6)

In the following section, we demonstrate the use of the pro-

osed LACM-LSK to enhance the representation of potential in-

rared small targets. 

.3. Robust infrared small target detection using LACM-LSK 

Fig. 3 presents the flowchart of the proposed infrared small tar-

et detection approach. As depicted in Fig. 3 , the overall infrared

mall target detection approach can be divided into two main

teps: infrared small target enhancement and infrared small target

egmentation. Infrared small target enhancement works to high-

ight the infrared small target of interest and suppress background

lutter, and infrared small target segmentation explicitly identifies

he targets of interest. 

As an example, in the infrared small target enhancement step,

he 1st image in Fig. 3 is the input, the patch size is set to s , and

he size of the overlap between adjoining patches is set to t . The

SK representation centered at each pixel is first encoded accord-

ng to Eq. (1) . Based on the proposed LACM-LSK defined in Eq. (6) ,

he confidence value E ( i, j ) can be estimated using the LSK repre-

entation centered at ( i, j ) and its neighboring LSK representations,

here E ( i, j ) stands for the likelihood value of the pixel belonging
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Fig. 3. The flowchart of the proposed infrared small target detection approach. s and t denote the size of the patch and the overlap size between adjoining patches, re- 

spectively. The red circle contains the infrared small target, and the yellow circle shows the background clutter. The 1st, 3rd, and 5th images show the original image, the 

confidence map, and the final detection result, respectively. The 2nd, 4th, and 6th images present the 3D mesh views of the 1st, 3rd, and 5th images, respectively. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Algorithm 1 Proposed infrared small target detection approach. 

Input: The Original Infrared Image 

Output: The Target Detection Result 

1: Compute the local steering kernel (LSK) representations centered at each pixel according to Eq. (1) . 

2: Compute the infrared small target enhancement map E using LACM-LSK. 

E ( i, j ) is calculated using the LSK representation centered at the pixel coordinate ( i, j ) and its neighboring LSK representations. The specific calculation process 

is based on Eq. (6) . 

3: Segment the infrared small target from the confidence map E based on the adaptive threshold given in Eq. (7) . 
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o a small target and ( i, j ) denotes the pixel coordinates. In this

rocess, the sliding patch moves on the infrared image top down

nd left to right, pixel by pixel. At each position, E ( i, j ) is calcu-

ated based on the LSK representation of the current center patch

nd the LSK representations of its neighbors. The confidence map E

s the output of this step, and it can effectively identify the small

arget, as depicted in the 3rd image in Fig. 3 . As depicted in the

th image of Fig. 3 , which is the 3D mesh view of the confidence

ap shown in the 3rd image of Fig. 3 , the confidence map still

ontains a number of false positives, which are marked by the yel-

ow circle. Fortunately, the false positives are easily distinguished

rom the true positive (the infrared small target). 

In the small target segmentation step, the confidence map is

he input, and the infrared small targets can be segmented from

onfidence map E based on the widely adopted adaptive thresh-

ld Th [4,23,27] defined in Eq. (7) . The final infrared small target

etection result is depicted in the 5th image and the 6th image

n Fig. 3 . By visually comparing the 4th and 6th images of Fig. 3 ,

e can see that the false positives have been removed and the in-

rared small target is explicitly identified in the segmentation step.

 h = u + k · σ (7)
here u is the mean value of the confidence map E , σ is the stan-

ard deviation value of the confidence map E , and k is an empirical

onstant that is set to 10 in our implementation. 

Finally, we summarize the specific calculation process of the

roposed infrared small target detection approach in Algorithm 1 . 

. Experimental results 

In this section, we first introduce the test dataset and evalua-

ion metrics for infrared small target detection. Next, the sensitiv-

ty of the crucial parameters of the proposed infrared small tar-

et detection approach is quantitatively analyzed in Section 3.2 .

inally, a comprehensive comparison with state-of-the-art ap-

roaches is given in Section 3.3 . 

.1. Test dataset and evaluation metrics 

All experiments are implemented on a laptop with a 2.5 GHz In-

el Core i5 CPU, 8 GB memory and using MATLAB. To fairly evalu-

te the performance of infrared small target detection approaches,

 representative dataset comprised of six infrared sequences was

onstructed. With the field of view set to 4 °× 3 °, these infrared

equences were shot under various background conditions (e.g.,
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Table 1 

Test dataset. 

Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5 Sequence 6 

Number of Frames 100 63 100 45 125 100 

Number of Key Frames 20 13 20 9 25 20 

Target Category Ship Vehicle Vehicle Airplane Airplane Airplane and Bait 

Image Resolution 228 × 280 236 × 345 160 × 220 256 × 256 452 × 561 150 × 200 

Target Size 4 × 4 8 × 8 5 × 5 3 × 3 4 × 6 5 × 53 × 3 

Meteorological Conditions Rainy Sunny Cloudy Sunny Cloudy Sunny 

Infrared Sensor Position Airborne Platform High Building Airborne Platform Ground Airborne Platform Airborne Platform 

Background Type Sky-Sea Ground Ground Sky Sky Sky 

Primary Interference Type Sensor Noise Ground Clutter Ground Clutter Structure Clutter Cloud Clutter Sensor Noise 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Average evaluation scores of the proposed infrared small target detection ap- 

proach with variation of the amplification factor α. 

α= 1 α= 3 α= 5 α= 7 α= 9 

Sequence 1 SCRGain 0.02 158.18 207.06 216.74 209.43 

BSF 3.06 21.72 28.34 30.52 27.77 

Sequence 2 SCRGain 1.05 26.19 26.34 17.54 0.01 

BSF 2.49 17.10 20.82 18.29 3.07 

Sequence 3 SCRGain 4.70 27.54 22.19 20.99 17.71 

BSF 0.58 2.52 2.27 2.33 2.08 

Sequence 4 SCRGain 0.26 30.15 26.56 25.18 13.16 

BSF 1.26 7.14 7.45 7.88 6.27 

Sequence 5 SCRGain 0.28 29.88 30.48 20.30 2.42 

BSF 2.55 23.90 28.98 22.58 7.30 

Sequence 6 SCRGain 7.96 43.52 40.77 37.41 11.18 

BSF 2.59 13.46 13.73 12.86 4.46 

Table 3 

Average evaluation scores of the proposed infrared small target detection ap- 

proach with variation of the patch size s . 

s = 3 s = 5 s = 7 s = 9 s = 11 

Sequence 1 SCRGain 206.31 158.18 135.27 107.17 114.50 

BSF 52.07 21.72 20.20 18.79 13.89 

Sequence 2 SCRGain 26.02 26.19 24.11 19.97 13.37 

BSF 27.04 17.10 14.10 8.25 5.70 

Sequence 3 SCRGain 15.58 27.54 24.57 22.84 17.27 

BSF 3.63 2.52 1.63 1.27 0.99 

Sequence 4 SCRGain 39.27 30.15 19.55 11.88 7.46 

BSF 14.25 7.13 4.94 3.63 2.66 

Sequence 5 SCRGain 12.59 29.88 23.18 21.37 17.31 

BSF 45.62 23.90 18.97 15.77 12.98 

Sequence 6 SCRGain 88.82 43.52 27.22 16.38 10.90 

BSF 41.34 13.46 6.63 4.86 3.93 
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sea-sky, ground, and sky). In addition, the operating wavelength

interval of the infrared sensor is in the longwave infrared range, 8-

14 um . For details of the constructed dataset, please refer to Table 1 ,

where the key frames are comprised of every fifth image frame se-

quentially selected from the original sequences and the infrared

small targets in the key frames have been manually annotated

at the pixel-level. From Table 1 , we can see that the six sample

sequences include a variety of situations encountered in infrared

small target detection. Hence, the test dataset is sufficient to evalu-

ate the performance of infrared small target detection approaches. 

Various quantitative evaluation metrics, including the SCR Gain,

the background suppression factor (BSF), and the receiver oper-

ating characteristic (ROC) curve, are commonly used for infrared

small target detection [4,20,27] . More specifically, the SCR Gain

reflects the amplification of target signals relative to their back-

grounds before and after processing, and the BSF mirrors the level

of background suppression. In addition, the ROC curve represents

the varying relationship between the true positive rate (TPR) and

the false positive rate (FPR). Hence, SCR Gain, BSF, and ROC curve

are chosen as the quantitative evaluation metrics in this paper. 

3.2. Sensitivity analysis of the crucial parameters 

In this section, we analyze the sensitivity of the crucial pa-

rameters, i.e., the amplification factor and patch size, and discuss

the superiority of the local steering kernel (LSK) in comparison

to traditional local features, such as the local binary pattern (LBP)

[6] and the histogram of gradients (HOG) [7] . 

In our implementation, the overlap size t is set to 2, and the

number of neighboring patches N is set to 8. Holding these param-

eters fixed, we quantitatively analyze the change in infrared small

target detection performance as we vary the amplification factor α
and the patch size s . The sensitivity analysis of the amplification

factor is given in Section 3.2.1 , the sensitivity analysis of the patch

size is reported in Section 3.2.2 , and the superiority of the LSK is

verified in Section 3.2.3 . 

3.2.1. Sensitivity analysis of the amplification factor 

Table 2 and Fig. 4 summarize the quantitative evaluation results

on the six test sequences for different amplification factor values.

From the SCR Gain and BSF results in Table 2 , we can see that if

α is a member of {3, 5, 7}, the proposed approach provides effec-

tive target enhancement and background suppression under var-

ious background conditions. Furthermore, the ROC curve results

show that the proposed approach achieves the best performance

on the six test sequences when α= 3 . Hence, in our proposed ap-

proach, the amplification factor α is set to 3. 

3.2.2. Sensitivity analysis of the patch size 

With amplification factor α set to 3, the quantitative evaluation

results on the six test sequences for different patch sizes are as re-

ported in Table 3 and Fig. 5 . From the SCR Gain and BSF results in

Table 3 , we can see that for a patch size s of 3 or 5,the proposed
pproach is effective for target enhancement and background sup-

ression under various background conditions. As s = 5 provides

he proposed approach with better ROC performance than does

 = 3 , the patch size s is set to 5.Our proposed approach represents

he image patch by an LSK that describes the local image struc-

ure, instead of using the raw image. As a benefit of using the LSK,

he detection performance of the proposed approach is only mod-

rately sensitive to the patch size. To a certain extent, the proper

hoice of a fixed patch size makes the proposed method suitable

or the detection of small targets of different sizes. 

.2.3. Detection performances using different local features 

To show the superiority of the LSK representation we test two

ther local features, specifically the LBP presented in [6] and the

OG presented in [7] , keeping all other details of the proposed ap-

roach the same. For the LBP, the radius is set to 1 and the pattern

umber is set to 8. For the HOG, the number of histogram bins

s set to 8 and the angle is set to 360.Thequantitative evaluation

esults for our approach using these parameters are summarized

n Table 4 and Fig. 6 . From Table 4 and Fig. 6 , we can see that
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Fig. 4. The ROC curves for the six sequences with variation of the amplification factor α. 

Table 4 

Average evaluation scores using different local features. 

Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5 Sequence 6 

SCRGain LBP 0.45 0.02 0.14 0.20 0.02 0.19 

HOG 0.07 0.01 0.40 0.01 0.08 0.01 

LSK 158.18 26.19 27.54 30.15 29.88 43.52 

BSF LBP 24.63 11.92 2.70 7.20 36.43 7.84 

HOG 3.77 1.84 0.66 1.38 4.06 2.06 

LSK 21.72 17.10 2.52 7.14 23.90 13.46 
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Fig. 5. ROC curves for the six sequences with variation of the patch size s . 
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the proposed LSK noticeably outperforms the other local features

in the infrared small target detection task. Hence, this comparison

demonstrates the effectiveness of the LSK representation. 

3.3. Comparison with other existing approaches 

To show the effectiveness of the proposed infrared small tar-

get detection approach based on a local adaptive contrast mea-

sure using L SK reconstruction (LACM-L SK), several representative

infrared small target detection methods are used as baselines for
omparison. More specifically, the facet-based infrared small tar-

et detection approach (hereafter referred to as Facet) of Wang

t al. [16] , the LS-SVM filter-based infrared small target detection

pproach (LS-SVM) of Wang et al. [19] , the new top-hat operator-

ased infrared small target detection approach (New Top-Hat) of

ai and Zhou [13] , the local contrast measure-based method (LCM)

f Chen et al. [23] , the local adaptive contrast measure based on

egularized feature reconstruction (LACRFR) of [4] , and the multi-

cale patch-based contrast measure (MPCM) of Wei et al. [26] are

onsidered in this comparison. 
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Fig. 6. ROC curves on six sequences using different local features. 
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Sample visual results for the various methods are shown in

ig. 7 . As depicted in Fig. 7 , the proposed approach can obviously

utperform the baseline methods. 

We also perform quantitative comparison of the proposed

ethod and these state-of-the-art approaches. The evaluation re-

ults for the SCR Gain indicator and BSF indicator are summarized

n Table 5 and the ROC curves are reported in Fig. 8 . 

We can see from Table 5 that LS-SVM [19] , New Top-Hat [13] ,

nd MPCM [26] can occasionally achieve the best target enhance-
ent or background suppression performance. In most situations,

he proposed LACM-LSK achieves the best performance on the SCR

ain and BSF indicators. In addition, with respect to the ROC met-

ic, the proposed approach achieves the best performance on all

ix sequences compared to every other existing approach, which

eans that the proposed approach outputs a more intact target

egmentation compared to the other, state-of-the-art approaches. 

To intuitively show the complexity of the proposed approach,

he average per-image running times of the proposed approach
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Fig. 7. The visual confidence maps for the proposed infrared small target detection approach and other existing approaches. From the 1st row to the 6th row, one repre- 

sentative image from Sequence 1 - Sequence 6 is used as an example for illustration. In addition, (a) - (h) present the original images, the Facet confidence maps [16] , the 

LS-SVM confidence maps [19] , the New Top-Hat confidence maps [13] , the LCM confidence maps [23] , the LACRFR confidence maps [4] , the MPCM confidence maps [26] , and 

the proposed LACM-LSK confidence maps, respectively. The yellow circle indicates the location of the infrared small target(s) of interest. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 5 

Average evaluation scores and the average running time(s) of the proposed infrared small target detection approach and other existing infrared small 

target detection approaches. 

Facet in [16] LS-SVM in [19] Top-Hat in [13] LCM in [23] LACRFR in [ 4 ] MPCM in [26] Ours LACM-LSK 

Sequence 1 SCRGain 26.09 43.16 101.92 2.11 23.14 59.71 158.18 

BSF 20.72 16.76 24.91 1.01 3.39 24.90 21.72 

T ime 0.012 0.013 0.074 3.95 4.03 0.662 4.57 

Sequence 2 SCRGain 1.80 3.43 22.41 1.04 2.25 10.15 26.19 

BSF 8.03 5.32 14.37 1.34 1.88 13.17 17.10 

T ime 0.017 0.018 0.091 5.12 5.31 0.853 5.81 

Sequence 3 SCRGain 6.55 58.16 32.35 1.82 15.16 41.19 27.53 

BSF 8.79 14.00 4.40 0.30 0.98 8.07 2.52 

T ime 0.009 0.010 0.045 1.87 2.01 0.423 2.26 

Sequence 4 SCRGain 3.69 6.94 1.54 1.43 2.36 11.30 30.15 

BSF 6.19 4.91 80.99 0.75 1.37 6.97 7.14 

T ime 0.015 0.017 0.080 4.03 4.19 0.695 4.59 

Sequence 5 SCRGain 8.39 15.90 25.19 1.11 6.95 13.26 29.88 

BSF 19.31 21.06 18.97 0.99 3.84 21.13 23.90 

T ime 0.049 0.051 0.318 8.18 8.58 2.642 9.16 

Sequence 6 SCRGain 5.40 53.15 85.46 4.40 12.97 84.89 43.52 

BSF 47.66 63.91 51.91 1.37 3.26 91.57 13.46 

T ime 0.006 0.007 0.044 1.55 1.67 0.307 1.86 
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and other existing approaches are reported in Table 5 . Among all

methods, Facet [16] shows the most efficient performance. The

complexity of the proposed approach is approximately equal to

those of LCM [23] and LACRFR [4] . Fortunately, as described by

Algorithm 1 , the proposed approach is highly suited to parallel
mplementation. Hence, the proposed approach can be acceler-

ted by a GPU or FPGA to meet the requirements of real-time

pplications. 
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Fig. 8. ROC curves of the proposed infrared small target detection approach and other existing infrared small target detection approaches for the six sequences. 
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. Conclusions 

To address the issue of often poor infrared image quality, this

aper advocates the use of a local steering kernel (LSK) to en-

ode the infrared image patch because the LSK method enjoys a

ood reputation for robustly capturing image structure when an

mage patch suffers from noise pollution or brightness variation. In

act, such situations are quite common in infrared images. Based

n the robustness of LSK representation, this paper further pro-

oses a novel local adaptive contrast measure based on LSK recon-

truction (LACM-LSK) that can simultaneously enhance an infrared
mall target of interest and suppress any background clutter. To

emonstrate the effectiveness of the proposed approach, the pro-

osed LACM-LSK is visually and quantitatively compared to state-

f-the-art approaches on six infrared image sequences shot under

ifferent background conditions. Extensive experiments show that

he proposed infrared small target detection approach can signifi-

antly outperform these existing infrared small target detection ap-

roaches. 

In future research, we will explore the utility of the proposed

ACM-LSK in the image salient object detection task [35,36] and

he video salient object detection task [37] . We will also work on
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using LSK to cope with such issues as the infrared image fusion

problem [38] and the infrared matching problem [39] . In addition,

we will explore the utility of deep networks [40,41] in infrared

small target detection. 
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