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Object-based change detection from satellite imagery by
segmentation optimization and multi-features fusion
Daifeng Peng and Yongjun Zhang

School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei, P.R. China

ABSTRACT
This article presents a novel object-based change detection
(OBCD) approach in high-resolution remote-sensing images by
means of combining segmentation optimization and multi-fea-
tures fusion. In the segmentation optimization, objects with opti-
mized boundaries and proper sizes are generated by object
intersection and merging (OIM) processes, which ensures the
accurate information extraction from image objects. Within
multi-features fusion and change analysis, the Dempster and
Shafer (D-S) evidence theory and the Expectation-Maximization
(EM) algorithm are implemented, which effectively utilize multi-
dimensional features besides avoiding the selection of an appro-
priate change threshold. The main advantages of our proposed
method lie in the improvement of object boundary and the fuzzy
fusion of multi-features information. The proposed approach is
evaluated using two different high-resolution remote-sensing
data sets, and the qualitative and quantitative analyses of the
results demonstrate the effectiveness of the proposed approach.

ARTICLE HISTORY
Received 1 July 2016
Accepted 11 March 2017

1. Introduction

Remote-sensing change detection (CD) is the process of identifying the differences in
the state of an object or natural phenomena by observing it at different times (Singh
1989). Natural surface CD is helpful in analysing vegetation growth while the detection
of changes of artificial objects is useful in the management of natural resources and
urban expansion monitoring. Remote-sensing imagery is widely used in CD research
where the coverage areas are large, the revisit times are short, and the image informa-
tion is abundant. CD is a significant tool in the field of land-use and land-cover
investigation, resource surveying, urban expansion monitoring, environmental assess-
ment, and rapid response to disaster events (Coppin et al. 2004; Lu et al. 2005; Hay et al.
2005; Gang and Hay 2011; Gong, Li, and Zhang 2013; Xu et al. 2015).

Numerous CD methods have been proposed by many researchers over the last few
decades, which can be mainly divided into pixel-based and object-based methods
(Nackaerts et al. 2005). In the pixel-based methods, the change features from two
images are compared for each pixel independently. In the object-based methods, the
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images are segmented into disjoined and homogenous objects, from which their
change features are extracted and compared. Pixel-based CD methods are mainly
employed in medium- and low-resolution remote-sensing imagery. Many pixel-based
CD techniques have been developed, including post-classification (Chang et al. 2010;
Ghosh, Roy, and Ghosh 2014), change vector analysis (CVA) (Bruzzone and Prieto 2000;
Nackaerts et al. 2005), principal component analysis (PCA) (Deng et al. 2008; Bao et al.
2012), and machine learning (Huang et al. 2008; Volpi et al. 2013; Cao et al. 2014).
However, contextual information is ignored in pixel-based CD methods, which leads to
lower CD accuracy and ‘salt and pepper’ noise. To overcome these drawbacks, the
spatial-contextual information needs to be integrated to properly model the spatial
properties of the scene to improve the CD accuracy. Spatial-context information can
be introduced by kernels (Volpi et al. 2013), Markov Random Field and Conditional
Random Field (Bruzzone and Prieto 2000; He et al. 2015; Cao, Zhou, and Li 2016),
neighbouring windows (Celik 2009), neural networks (Ghosh et al. 2007), morphological
filter (Falco et al. 2013), and hypergraph (Jian, Chen, and Zhang 2016).

With the ever-increasing spatial resolution, very-high-resolution (VHR) remote-sensing
images tend to exhibit more scene details. With the traditional pixel-based CD methods,
this increased variability in VHR images often results in too many changes being
detected (‘salt and pepper’ noise). It is also difficult to model contextual information
with pixel-based CD methods because the spatial relationships and arrangements of
real-world objects are neglected. In addition, CD accuracy is highly dependent on the
effectiveness of radiometric calibration and image registration. High-performance com-
puting systems and efficient segmentation algorithms are providing greater ease of
segmentation and feature extraction for VHR remote-sensing images, thereby enabling
the implementation of object-based change detection (OBCD).

An object can be regarded as a set of pixels that are adjacent in space and spectrally
similar to each other. There is abundant spectral, spatial, and shape information in an
object (Möller, Lymburner, and Volk 2007). OBCD can effectively avoid the influence of
‘salt and pepper’ noise in VHR images by making full use of the contextual information
and the abundant feature information. OBCD has become the main trend in the areas of
VHR image CD and a great deal of progress has been made, which can be roughly
categorized into three classes, namely feature-based object change detection (FOCD),
classification-based object change detection (COCD), and hybrid change detection
(HCD). (1) In FOCD, objects are generated by image segmentation, which is then
followed by feature extraction (spectrum, texture, geometry, etc.), feature vector con-
struction, and generation of a change map utilizing a similarity analysis of the feature
vectors (Hall and Hay 2003; Bontemps et al. 2008; Tang, Zhang, and Huang 2011; Wang
et al. 2015; Chen, Chen, and Jiang 2016; Yousif and Ban 2016). FOCD is an unsupervised
CD method that can incorporate the latest computer vision and machine learning
theory. Furthermore, object features and similarity measurements can be selected
flexibly, making it the most studied OBCD method. (2) In COCD, the image objects are
generated by image segmentation and then are classified using the object features. A
change map is generated by a comparison and analysis of the class membership and
geometry attributes of the objects (Xian and Homer 2010; Yang et al. 2012; Qin et al.
2013; Wu, Zhang, and Zhang 2016). Unlike the FOCD method, the COCD method
possesses the ability to determine the change type of image objects; however, the CD
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accuracy is highly dependent on the accuracy of the segmentation and classification,
resulting in a lower CD overall accuracy (OA). (3) The HCD approach makes full use of the
classification and feature extraction techniques for object detection. Then, a similarity
measurement is introduced to determine the change information of the target (Li and
Narayanan 2003; Qin et al. 2015; Xiao et al. 2016). The HCD method has the advantages
of the former two methods and can achieve higher CD accuracy. However, HCD is
complex and time-consuming and therefore is mainly applied to CD for a specific target
(such as buildings, water areas, forests, etc.).

Despite all of the above advantages, since objects are of different sizes and shapes, OBCD
results heavily depend on the accuracy of segmentation. Another challenge of OBCD is the
requirement to select an appropriate change threshold in the mostly used FOCD methods.
In traditional multi-temporal OBCD analysis, objects with the same geographical boundary
must be generated first either by overlaying the vector data with the raster image (Lefebvre,
Corpetti, and Hubert-Moy 2008) or by segmenting the multi-temporal images simulta-
neously as one new image (Conchedda, Durieux, and Mayaux 2008; Li et al. 2014).
However, the influences of changes in the object’s boundary and size are not fully con-
sidered by the above-mentioned methods. In particular, the object boundary in CD from
different periods of images may differ greatly due to phenological or artificial changes, in
which case a large number of missed alarms and false alarms may arise using the same
object boundary. In addition, the increased variability present in VHR images reduces the
spectral consistency and separability of the image objects, leading to considerable false
alarms and missed alarms using only the spectral features in OBCD. Different visual features
(spectrum, texture, gradient, shape, etc.) are complementary for image interpretation, and
CD accuracy can be improved by integrating multi-features (Hegaratmascle and Seltz 2004;
Du and Liu 2012; Chen, Chen, and Jiang 2016).

To address the aforementioned problems, a novel OBCD method is proposed in this
article by combining segmentation optimization and multi-features fusion. First, watershed
segmentation is implemented for each period of imagery to acquire the initial multi-
temporal objects independently; second, the refined objects are generated based on the
strategy of object intersection and merging (OIM); third, the spectral, spatial, and textual
histogram features are extracted and the histogram heterogeneity is calculated by the
G-statistic; finally, the Dempster and Shafer (D-S) theory and the Expectation-
Maximization (EM) algorithm are applied for multi-features fusion and change analysis.
The processing flow of the proposed method is shown in Figure 1. The remainder of this

Image T1

Image T2
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Segmentation

Watershed 

Segmentation

Object Intersection 

and Merging

Spectral Feature

Spatial Feature

Textual Feature
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Spatial Feature
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Textual Distance

D-S theory and 
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Change Map

Figure 1. Flow chart of the proposed method.
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article is organized as follows. Section 2 presents the proposedmethod in detail; the data set
description and preprocessing are described in Section 3; the experimental results and
analyses are illustrated in Section 4; and finally, Section 5 draws the conclusions.

2. Methodology

2.1. Image segmentation and optimization

Image segmentation is the basis of OBCD, whereby objects with intrinsic spectral consistency
and spatial continuity are acquired. In our testing, a watershed segmentation algorithm (Hu
et al. 2013) was applied to implement the multi-temporal independent segmentation, after
which object intersection was carried out. Figure 2 shows the image segmentation and
intersection results, where Figure 2(c) is the intersection result superimposed on image T1,

Figure 2. Image segmentation and intersection result: (a) segmentation result of image T1, (b)
segmentation result of image T2, (c) intersection result superimposed on image T1, and (d) local
result of (c).
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and Figure 2(d) is the local magnification map. As can be seen from Figure 2(d), many small
objects composed of only one or two pixels were produced, primarily at the edge of the
segmentation results of two periods. In addition, due to some small remaining incorrect
registrations or radiometric differences caused by seasonal or Sun angle changes, the object
edges of the segmentation results from two different dates could not be matched perfectly
(Tian et al. 2013). In particular, small objects composed of only a few pixels may lead to poor
object statistical stability and the ‘salt and pepper’ effect to a large degree, which introduces
considerable false alarms to the final results. Hence, proper object merging is required before
performing further steps. To this end, a region merging strategy, which merges the small
objects to their neighbouring larger objects based on the spectral consistency and spatial
constraint, is employed to generate the final merging objects.

Let s be the scale, each small object Rs that must be merged is surrounded by several
objects, which are hereafter referred to as candidate objects Ri (i = 1, 2, . . ., k, k is the
total number of neighbours). The objective of this step is to merge the small objects into
one of the candidate regions, which are larger but spectrally similar to the small objects.
To achieve this objective, the similarity between the small objects and the candidate
objects is measured, which is based on the difference map D x; yð Þ.

Dðx; yÞ ¼ 1
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXB
i¼ 1

ðIi1ðx; yÞ � Ii2ðx; yÞÞ2
vuut ; (1)

where B is the number of bands, and Ii1 x; yð Þ and Ii2 x; yð Þ represent the pixel value at position
(x,y) of the two periods of images, respectively. Merging a small object Rs into one candidate

object Ri will produce a new object R
0
i . Generally speaking,merging that utilizes only spectral

features can lead to meaningless objects with zigzag contours; therefore, it is necessary to
incorporate them with the spatial features to improve the merging quality. We assume that
the adjacent regions with a longer shared boundary and larger area should be merged with
higher priority. Hence, we define the following heterogeneity function to measure the

distance between Ri > and R
0
i :

Hi ¼
μðRiÞ � μðR0

iÞ
�� ��

Aλ1Lλ2
; (2)

where Hi represents the heterogeneity between Ri and R
0
i , μ Rið Þ > and,

respectively; μ R
0
i

� �
represent the mean grey value of Ri and R

0
i in D x; yð Þ, A is the size of

Ri, L is the length of the shared boundary of regions Rs and Ri, and λ1 and λ2 are defined
as the parameters to adjust the area and shared boundary constraints. During the
merging process, we define the size of the smallest object as the merge scale, and the
merging process will iterate until the size of all of the regions is larger than the merge
scale. The general procedure of the merging process is as follows.

Step 1: Set the merge scale s, initiate the merging state, and calculate the attributes
(area, mean value, neighbours, and length of shared boundary) of every object.

Step 2: Traverse all the objects that are not merged; then, for each object smaller than
s, merge it to its nearest neighbour calculated by Equation (2); finally, update the
merging state and attributes.
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Step 3: Repeat Step 2 until all the objects are larger than the merge scale.
Step 4: Generate the refined segmentation results.

The refined objects are generated after merging each small object into its candidate
objects based on the above-mentioned merging process. As shown in Figure 3, small
objects composed of a few pixels are merged into candidate objects and the object
boundary becomes more consistent with the real boundary after merging.

2.2. Feature extraction and distance measurement

In this article, the spectral, spatial, and textual features are extracted and combined to
improve the CD accuracy, where spectral features are delineated by the grey value of the
pixel, spatial features are described using the gradient value of the pixel, and textual
features are defined by Local Binary Pattern (LBP).

LBP is an effective texture description operator that utilizes a statistical analysis
method, which was proposed and improved by Ojala (Ojala and Pietikäinen 1999).
LBP is widely used in the areas of image analysis and object detection (residential
area extraction, face detection, etc.) for its advantages of simple calculation and
powerful texture description. LBP is computed using a 3� 3 window, where the
centre pixel serves as the threshold for the neighbourhood pixels segmentation, and
the LBP value is obtained by convoluting with the same size of weight template,
which is defined as follows:

LBPP;R ¼
XP�1

p¼ 0

2psp; (3)

Figure 3. Object intersection and merging result: (a) intersection result and (b) merging result (the
red ellipses denote the merging result of small objects).
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sp ¼ sðgp � gcÞ ¼ 0 gp < gc
1 gp � gc

;

�
(4)

where P represents the number of pixels in the local window with a radius of R; gp and
gc represent the grey values of the p-th neighbour and the centre pixel, respectively, and
sp is a binary flag denoting the relation of gp and gc. Figure 4 is a schematic diagram of
LBP calculation. The original LBP is calculated with a fixed weight, making it sensitive to
texture orientation. To overcome this problem, rotation-invariant LBP, namely LRI, is
computed as proposed by Ojala (Ojala, Pietikäinen, and Mäenpää 2002), which is defined
as follows:

LRI ¼ 1
P

XP�1

i¼ 0

RðLBPP;R; iÞ; (5)

RðLBPP;R; iÞ ¼
Pi�1

p¼ 0
2P�iþ psp þ

PP�1

p¼ 1
2P�isp 0< i< P � 1

LBPP;R i¼ 0

;

8<
: (6)

where R LBPP;R; i
� �

represents the calculated LBP value after the i-th clockwise rotation of
the weight template. For a 3� 3 window, there are eight neighbourhoods and only 36
possible values for the rotation-invariant LBP. Local contrast (LC) portrays the magnitude
of texture, which can be defined as follows:

LCP;R ¼ T1
n1

� T2
n2

; (7)

where T1 represents the sum value of the brighter pixels in the window, n1 is the
number of brighter pixels, T2 represents the sum value of the darker pixels in the
window, and n2 is the number of darker pixels. Both structure and magnitude informa-
tion can be obtained by combining LBP and LC, which is of great importance for
distinguishing different textures.

Moreover, the Sobel gradient is calculated to extract the object spatial features
(Wahler and Shih 1989). After feature extraction, effective feature distances must be
determined. In this method, the spectral distance of two regions is computed using their
colour histograms, texture distance is calculated using the joint histograms of LBP and
LC, and spatial distance is computed using gradient histograms. Meanwhile, to avoid
making erroneous assumptions about feature distribution, the nonparametric statistical

Figure 4. Scheme diagram of LBP and LC computation (LBP = 1 + 16 + 64 = 81; LC = (7 + 9 + 8)/
3� (5 + 2 + 5 + 1 + 3)/5 = 4.8).
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method should be implemented to measure the distance of the two distributions of
histograms. The G-statistic (Ojala, Pietikäinen, and Mäenpää 2002), which is a modifica-
tion of the Kullback–Leibler distance, is used to measure the distance of the two
histograms in this article.

Let B be the image band number and L be the grey level. Meanwhile, let

f bi b ¼ 1; 2; . . . ; Bð Þ be the frequency of grey value i in the object on band b. Hence,
the distance of two histograms t1 and t2 on band b can be calculated as follows:

Gb ¼ 2

�X
t1;t2

XL�1

i¼ 0

f bi In f bi
� ��X

t1;t2

�XL�1

i¼ 0

f bi

�
In

XL�1

i¼ 0

f bi

 !
� :

XL�1

i¼ 0

�XL�1

i¼ 0

f bi

�
In

X
t1;t2

f bi

 !
þ
�X

t1;t2

XL�1

i¼ 0

f bi

�
In

X
t1;t2

XL�1

i¼ 0

f bi Þ
 	 (8)

The cumulative frequency is equal to 1 for each object; thus

P
t1;t2

PL�1

i¼ 0
f bi

� �
In

PL�1

i¼ 0
f bi

� �
¼ 0

P
t1;t2

PL�1

i¼ 0
f bi

 !
In

P
t1;t2

PL�1

i¼ 0
f bi

 !
¼ 2 In 2

	
: (9)

By substituting Equation (8) into Equation (7), we can obtain Equation (9):

Gb ¼ 2
X
t1;t2

XL�1

i¼ 0

f bi In f bi
� ��XL�1

i¼ 0

X
t1;t2

f bi

 !
In

X
t1;t2

f bi

 !
þ 2In2

( )
: (10)

The amount of information in a single band image can be measured by image entropy.
To make full use of the band information, the band’s weighted value using the entropy
value of each band is calculated and defined as follows:

ωb ¼ E bð ÞPB
i¼ 1

E ið Þ
: (11)

Finally, for each object we can compute the object homogeneity Hf , which can be
defined as follows:

Hf ¼
XB
b¼ 1

ωbGb: (12)

2.3 Feature fusion by the D-S theory and the EM algorithm

The D-S evidence theory is a mathematical tool for uncertainty modelling and reasoning,
which considers both objectivity and subjectivity of the evidence in probability reason-
ing. The probability of the evidence theory is the belief of a proposition based on the
evidence. The theory implements induction and estimation based on multi-source
information, from which a correct decision can be drawn (Ruthven and Lalmas 2002).

INTERNATIONAL JOURNAL OF REMOTE SENSING 3893



In the D-S theory, let Θ be the frame of discernment, then the power set of Θ is
denoted by 2Θ. The probability mass m Að Þ is assigned to every class A�2Θ by a
sensor, such that 0 � m Að Þ � 1, m ϕð Þ ¼ 0, and

P
A22Θ

m Að Þ ¼ 1, where ϕ denotes the

empty set.
The D-S theory combines the different evidence with an orthogonal sum. If the p

sources are available and we let m1;m2;m3 . . .mp be the corresponding probability
masses, their orthogonal sum is denoted as follows:

m ¼ m1 �m2 � . . .�mp; (13)

and the combined mass for each class A�2Θcan be defined as follows:

m Að Þ ¼
P

\Ai ¼A

Q
1� j� pmj Aið Þ

1�P\Ai ¼ϕ
Q

1� j� pmj Aið Þ : (14)

In this article, the discernment frame Θ ¼ Y;Nf g, where Y represents the changed class
and N is the unchanged classes. The non-empty subsets of 2Θ are {Y}, {N}, {Y, N}. Then,
the probability mass for each non-empty subset can be created with Equation (15):

mi Yf gð Þ ¼ Piαi
mi Nf gð Þ ¼ 1:0� Pið Þαi
mi Y;Nf gð Þ ¼ 1:0� αi

i ¼ 1; 2; 3;

8<
: (15)

where Pi is the probability masses computed from the spectral, textural, and spatial
features, and αi is the trust degree of evidence to the discernment frame. Finally, by
implementing the evidence fusion with Equation (14) to calculate m Yf gð Þ, m Nf gð Þ, and
m Y;Nf gð Þ, the changed and unchanged classes can be distinguished.

A heuristic approach is used for modelling the probability masses Pi xð Þ for the
homogeneity of the three features. In this article, the task is to classify each object
into the changed class or unchanged class using the feature histogram distance; each
feature is a cue to separate the subsets of Θ in our classification scheme. Let C1 be the
changed class and C2 be the unchanged class; for the input parameters x smaller than a
threshold t1, we assume that the assignment of an object to class C1 is very unlikely,
which is modelled by a small probability mass P1. Meanwhile, if the input parameter x is
larger than a threshold t2 with t1 < t2, we assume that the assignment of an object to
class C1 is quite certain, which is then modelled by a rather larger probability mass P2
with 0 � P1 < P2 � 1. If the input parameter x is between t1 and t2, a cubic parabola
with horizontal tangents is used to avoid step edges, which is defined as follows:

Pi xð Þ ¼
P1 if x � t1

P1 þ P2 � P1ð Þ


3 x�t1

t2�t1

� �2
� 2 x�t1

t2�t1

� �3
if t1 < x< t2

P2 if x � t2

:

8><
>: (16)

Assuming the information from each feature is never 100% certain, we use P1 ¼ 0:05
and P2 ¼ 0:95, which fully considers the feature information contradiction and random
variation.

t1and t2 are, respectively, the low and high thresholds to classify each object, which
are determined by experience in most algorithms (Rottensteiner et al. 2005). However,
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the precision is not satisfying. In this article, all the values of object heterogeneity make
up a set H ¼ h1; h2; . . . hi . . . ; hNf g, N is the number of objects; and hi represents the
heterogeneity of the i-th object. The elements in the set H are divided into two classes:
changed and unchanged. The heterogeneity values of the object histogram correspond-
ing to the changed class are large, while the values of the unchanged class are small. In
this article, the elements in set H are assumed to be a Gaussian mixture distribution
composed of two Gaussian components, which are defined as follows:

p hið Þ ¼ p ωcð Þp hijωcð Þ þ p ωnð Þp hijωnð Þ i ¼ 1; 2; :::;N; (17)

p hijωð Þ ¼ 1ffiffiffiffiffiffi
2π

p
δω

exp � hi � μωð Þ2
2δ2ω

 !
ω 2 ωc;ωnf g; (18)

where ωc and ωn represent the changed objects and unchanged objects, respectively;
p ωcð Þ and p ωnð Þdenote the proportions of changed objects and unchanged objects,
respectively; p ωcð Þ þ p ωnð Þ ¼ 1; μω is the mean value of the objects; and δω is the
standard deviation of the objects.

Therefore, t1 and t2 can be calculated from μω and δω, which is defined as follows:

t1 ¼ μωn
þ kδωn

t2 ¼ μωc
þ kδωc

;

�
(19)

where μωn
and μωc

are the mean values of the unchanged objects and changed objects,
respectively; δωn and δωc are the standard deviation of the unchanged objects and
changed objects, respectively; and k is the adjustment coefficient, k 2 �2; 2½ �.

Based on the above-mentioned assumptions, the problem of determining t1 and t2 is
transformed into the process of estimating and solving the parameters of μω and δω and
therefore is a parameter-solving problemwithmissing data due to the unknown change class
of each object. In this article, the EM algorithm (Bruzzone and Prieto 2000) is employed to
estimate the parameters of the Gaussian mixture distribution because it is an effective
unsupervised estimation method that can find the local maximum likelihood value in missing
data.

3. Data set description and preprocessing

3.1. Study area and data

Our proposed method was applied to two multi-temporal remote-sensing image data
sets. The first data set contained two periods of Systeme Probatoire d’Observation de la
Terre 5 (SPOT-5) multi-spectral images comprising three bands of Red, Green, and Near-
Infrared with a spatial resolution of 2.5 m acquired over the region of Guangzhou City,
China, in October 2006 and again in October 2007. The region is a 1239� 923pixels area
containing roof, vegetation, bare land, and road objects; the remarkable changes are the
alterations of land cover. The corresponding images are shown in Figure 5(a-b). The
second data set was a pair of Gaofen 1 (GF-1) multi-spectral fusion images comprising
four bands of Red, Green, Blue, and Near-Infrared with a spatial resolution of 2 m
acquired over Huangyan Country of Zhejiang Province, China, in November 2013 and
again in January 2015. The region is a 1242� 1086pixels area containing roof,
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vegetation, bare land, field land, road, and forest objects. The main changes are the
transitions of land cover, which is illustrated in Figure 5(d-e).

For each testing data set, a reference change map was prepared for qualitative evaluation
purposes, which was manually generated according to a detailed visual interpretation as
shown in Figure 5. Four metrics were used to permit a quantitative evaluation of the change
results: (1) the false alarm (FA) rate, which is the number of unchanged pixels incorrectly
detected as changed pixels over the total number of unchanged pixels; (2) the missed alarm
(MA) rate, which is the number of changed pixels detected as unchanged pixels over the total
number of changed pixels; (3) the OA, which is the total number of correctly detected pixels
over the total number of pixels; and (4) the kappa coefficient (Foody 2004).

3.2. Preprocessing

Owing to the differences in illumination, Sun angle, and atmospheric conditions, image
registration and radiometric normalization are of great importance when performing land-
cover CD between images acquired on different dates. In this article, the multi-temporal
images were automatically co-registeredwith the algorithm developed by Zhang et al. (2011).
The root mean square error (RMSE) of registration was less than 0.5 pixels. The relative
radiometric correction was implemented by applying the pseudo-invariant feature (PIF)
method, which is more beneficial for CD compared with other relative radiometric correction
methods because it minimally influences the original spectral values (Lo and Yang 2000).

Figure 5. An illustration of two data sets for testing. (a), (b), and (c) represent the input multi-
temporal images and reference change map of the Guangzhou data set, respectively; (d), (e), and (f)
represent the input multi-temporal images and reference change map of the Huangyan data set,
respectively; the changes are marked in white for each reference change map.
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4. Experiment and analysis

To validate the effectiveness of the proposed method, three experiments for each data
set were designed and conducted.

4.1. Experiment 1

The first experiment investigated the impact of the merging scale on the CD accuracy. We
varied the merging scale from 40 to 130 and computed the OA of the CD results. Figure 6
displays the results obtained for the two data sets. The OA values increased with the
increase of merging scale at first, then decreased as the merging scale became larger. The
optimal merging scales for the Guangzhou data set and the Huangyan data set were 70 and
60, respectively, which indicated that the optimal merging scale was data-independent.

4.2. Experiment 2

In order to analyse the effectiveness of the proposed segmentation optimization strategy on
the performance of CD, we compared our proposed method with the two commonly used
remote-sensing images segmentation strategies. (1) Segmentation was implemented on one
period of image, then the generated object boundaries were simply assigned to the image
acquired during the other period (Niemeyer, Marpu, and Nussbaum 2008). This strategy is
regarded as single-temporal segmentation (STS). (2) All the bands of two periods of images
were stacked for segmentation (Desclée, Bogaert, and Defourny 2006; Li et al. 2014), which is
calledmulti-temporal combined segmentation (MTS). In this article, the optimal segmentation
scale was determined using the Global Score (GS), which considers both global intra-segment
goodness and inter-segment global goodness (Johnson and Xie 2011). In our proposed
method (object intersection and merging with D-S theory fusion, OIM_DSF), the merging
scale was set at 60, λ1 ¼ 0:35, λ2 ¼ 0:65. Then, the spectral, spatial, and texture features were
extracted, and the D-S theory and EM algorithm (DS-EM) were implemented for change
analysis, where α1 ¼ 0:95, α2 ¼ 0:90, and α3 ¼ 0:90. Figure 7 shows the change maps
produced by all of the tested methods, and Table 1 reports the quantitative results.

Figure 6. CD accuracy (overall accuracy rate values (%)) versus merging scale: (a) the Guangzhou
data set and (b) the Huangyan data set.
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As can be seen from the above results, our proposed method performed the best on
both data sets, which confirmed its superior capabilities and accuracy. The kappa
coefficient using the STS method was lower than with the MTS method, and our
proposed method achieved the highest kappa coefficient for both data sets. These
results may be due to the fact that the STS method only considers one period of
image for segmentation, and the object boundary may not be suitable for the other
period of the image, especially when the image objects had changed. In the MTS
method, two periods of images were used for segmentation, in which case the object
boundary would be more suitable for both periods of images even when changes
occurred. However, small objects were produced even at the optimal segmentation
scale, which can seriously influence the statistical stability of the segmented objects and
the calculated feature distances may not be accurate. Figure 8 shows the segmentation
results of the different methods, where the regions in yellow circles denote the changed
areas. We can see that the boundary in the area generated by the STS method was only
suitable for image T2, but the boundary was suitable for both periods of the images
utilizing the MTS method and our proposed method. In addition, as illustrated in
Figure 9, there are many objects with areas less than 60 in both data sets with MTS,

Figure 7. The CD results of the testing data sets. (a), (b), and (c) indicate the CD results obtained by
STS, MTS, and OIM_DSF, respectively, in the Guangzhou data set; (d), (e), and (f) indicate the CD
results obtained by STS, MTS, and OIM_DSF, respectively, in the Huangyan data set. The white areas
in the images are the changed areas while the black areas are the unchanged ones; the yellow areas
are the false alarms and the red areas are the missed alarms.
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while all the object areas are above 60 with our proposed method. Furthermore, the
intersection operation with our proposed method produced objects where the object
changes were fully considered. Based on the object size, the spectral difference, and the
length of the shared boundary, the refined objects were generated by merging, where
the sizes of all the segmented objects were above the defined scale. Therefore, the
proposed method achieved better CD results.

Table 1. Summary of the quantitative evaluations for different segmentation strategies on the
Guangzhou data set and the Huangyan data set (the bold numbers denote the best results).

Guangzhou data set Huangyan data set

Method STS MTS OIM_DSF STS MTS OIM_DSF

MA (%) 28.64 26.53 24.13 30.75 29.31 27.08
FA (%) 5.13 5.52 5.37 5.92 6.35 6.26
OA (%) 92.95 93.91 95.85 90.41 91.36 93.88
kappa 0.48 0.52 0.67 0.42 0.45 0.53

Figure 8. Illustration of segmentation results of the testing methods. (a), (b), and (c) indicate the
segmentation results obtained by STS, MTS, and OIM_DSF, respectively, on image T1; (d), (e), and (f)
indicate the segmentation results obtained by STS, MTS, and OIM_DSF, respectively, on image T2.
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4.3 Experiment 3

In the third experiment, we assessed the effectiveness of the proposed multi-features
fusion CD by comparing with two other forms of multi-features fusion CD methods:
(1) a fuzzy set fusion (FSF) for the CD method, where fuzzy set theory is used for
fusing different change information in multidimensional feature space in order to
reduce the inconsistency of the CD results from different features (Wang, Wang, and
Jiao 2010) and (2) a Support Vector Machine classification-based fusion (SVMF) for
the CD method, which takes advantages of Support Vector Machine (SVM) in two-
class separation in high-dimensional feature space (Mountrakis, Im, and Ogole 2011).
In FSF, the EM algorithm was used to determine the optimal segmentation threshold
in every difference feature band, and the sigmoid fuzzy membership function was
applied for probability degree calculation, then fuzzy weighted fusion was performed
according to the obtained class probability degrees. In SVMF, the Radial Basis
Function (RBF) kernel was selected, and the two parameters C and γ were adaptively
selected according to the two-dimensional grid searching strategy; then SVM classi-
fication was implemented using the selected training samples. The parameters of the
proposed method were the same as in Experiment 2. Figure 10 shows the change
maps produced by all of the methods above, and Table 2 illustrates the quantitative
results.

According to the experiments, our proposedmethod obtained satisfactory results for both
data sets. Both OA and kappa coefficient were very high with the proposed method, which
validates its effectiveness and superior capabilities. Compared with the FSF method, the
kappa coefficient was increased by 0.10 in the Guangzhou data set and 0.05 in the
Huangyan data set, which indicates the superiority of the proposed multi-features fusion
method. Our proposed method produced improved results mainly because the feature
weights in FSF are determined by classification and therefore heavily depend on classification
accuracy, whereas our proposed method does not require a complex weight calculation

Figure 9. Object size distribution of two data sets: (a) the Guangzhou data set and (b) the Huangyan
data set.
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process. However, compared to the SVMF method, the proposed method obtained a lower
kappa coefficient for the Guangzhou data set and a higher kappa coefficient for the Huangyan
data set. The reason for these results may be that the supervised SVM classifier can effectively
discriminate multiple information sources within the change class and can integrate the
descriptions of changed objects from multiple features to realize the optimization of the
output result. However, the classification process is highly dependent on the training samples,
which are quite difficult to select when the scene is complex and the process is time-

Figure 10. The CD results of the testing data sets. (a), (b), and (c) indicate the CD results obtained by
FSF, SVMF, and OIM_DSF, respectively, in the Guangzhou data set; (d), (e), and (f) indicate the CD
results obtained by FSF, SVMF, and OIM_DSF, respectively, in the Huangyan data set. The white
areas in the images are the changed areas while the black areas are the unchanged ones; the yellow
areas are the false alarms and the red areas are the missed alarms.

Table 2. Summary of the quantitative evaluations for different multi-features fusion methods on the
Guangzhou data set and the Huangyan data set (the bold numbers denote the best results).

Guangzhou data set Huangyan data set

Method FSF SVMF OIM_DSF FSF SVMF OIM_DSF

MA (%) 25.34 23.72 24.13 28.63 27.45 27.08
FA (%) 5.43 5.38 5.37 6.14 6.52 6.26
OA (%) 94.96 96.32 95.85 92.16 92.87 93.88
kappa 0.57 0.69 0.67 0.48 0.51 0.53
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consuming. This may explain why our proposed method achieved better performance than
the SVMFmethod on the Huangyan data set, which is amore complex scene. Overall, in terms
of accuracy and efficiency, our proposed method was found to be more effective and stable
than the other two methods on both data sets.

5. Conclusion

In this article, we proposed a novel OBCD method by combining segmentation optimization
and multi-features fusion using the D-S theory and EM algorithm. Objects with both an
optimized boundary and a proper size were generated by the proposed OIM process, which
reduced the influence of segmentation on the CD. The spectral, spatial, and textual histogram
features were extracted and the feature distances were measured by the nonparametric
G-statistic. The DS-EM method then was utilized for multi-features fusion, and change maps
were generated using probability masses, thereby avoiding the process of selecting the
change threshold and improving the CD accuracy. The performance of our proposedmethod
was validatedusing real-world images generatedbydifferent sensors acquired in twodifferent
areas. The effectiveness of our proposed method was confirmed by comparing it with other
reference methods qualitatively and quantitatively. The OIM method can achieve optimal
segmentation, whereas multi-features fusion, by employing the fully automatic DS-EM
method, achieves high accuracy and efficiency. From our experiments, we conclude that
OBCD accuracy can be improved by combining the two methods. Further work may include
investigating how to fuse more features (height, shape, etc.) effectively to further improve CD
accuracy.
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