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Abstract— As one of the most challenging tasks of remote1

sensing big data mining, large-scale remote sensing image2

retrieval has attracted increasing attention from researchers.3

Existing large-scale remote sensing image retrieval approaches4

are generally implemented by using hashing learning methods,5

which take handcrafted features as inputs and map the high-6

dimensional feature vector to the low-dimensional binary feature7

vector to reduce feature-searching complexity levels. As a means8

of applying the merits of deep learning, this paper proposes a9

novel large-scale remote sensing image retrieval approach based10

on deep hashing neural networks (DHNNs). More specifically,11

DHNNs are composed of deep feature learning neural networks12

and hashing learning neural networks and can be optimized13

in an end-to-end manner. Rather than requiring to dedicate14

expertise and effort to the design of feature descriptors, we can15

automatically learn good feature extraction operations and fea-16

ture hashing mapping under the supervision of labeled samples.17

To broaden the application field, DHNNs are evaluated under two18

representative remote sensing cases: scarce and sufficient labeled19

samples. To make up for a lack of labeled samples, DHNNs can20

be trained via transfer learning for the former case. For the latter21

case, DHNNs can be trained via supervised learning from scratch22

with the aid of a vast number of labeled samples. Extensive23

experiments on one public remote sensing image data set with24

a limited number of labeled samples and on another public25

data set with plenty of labeled samples show that the proposed26

remote sensing image retrieval approach based on DHNNs can27

remarkably outperform state-of-the-art methods under both of28

the examined conditions.29

Index Terms— Deep hashing neural networks (DHNNs),30

large-scale remote sensing image retrieval, remote sensing big31

data (RSBD) mining, supervised learning from scratch, transfer32

learning.33
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I. INTRODUCTION 34

W ITH the rapid development of remote sensing obser- 35

vation technologies, we have entered an era of remote 36

sensing big data (RSBD) [1]–[3]. There is no doubt that RSBD 37

contain invaluable information. Due to the large volume of 38

RSBD, manual information extraction from RSBD is time 39

consuming and prohibitive. Hence, useful information must be 40

automatically drawn from RSBD. Driven by the demand from 41

multiple fields (e.g., disaster rescue), automatic knowledge 42

discovery from RSBD has become increasingly urgent. Among 43

emerging RSBD mining efforts [1], content-based large-scale 44

remote sensing image retrieval [4]–[8] has attracted an increas- 45

ing amount of research interest due to its broad applications. 46

In earlier remote sensing image retrieval systems, remote 47

sensing image retrieval mainly relied on manual tags in terms 48

of sensor types, waveband information, and geographical loca- 49

tions of remote sensing images. As a consequence, the retrieval 50

performance of these systems was highly dependent on the 51

availability and quality of manual tags. However, the manual 52

generation of tags is often time consuming and becomes 53

especially prohibitive when the volume of remote sensing 54

images increases considerably. In fact, recent efforts show 55

that the visual contents of remote sensing images themselves 56

are more relevant than manual tags [9]. Hence, researchers 57

have begun to exploit ways to search through similar remote 58

sensing images in terms of visual content. Specifically, Wang 59

and Song [10] used the spatial relationships of classification 60

results to measure similarities between two remote sensing 61

images. With this approach, however, image retrieval perfor- 62

mance is highly dependent on classification accuracy levels. 63

To avoid this dependence, numerous feature descriptors have 64

been specifically designed for indexing remote sensing images. 65

More specifically, local invariant [11], morphological [12], 66

textural [13]–[16], and data-driven features [17]–[19] have 67

been evaluated in terms of content-based remote sensing 68

image retrieval tasks. To further improve image retrieval 69

performance levels, we have proposed a multiple feature-based 70

remote sensing image retrieval approach [20] that not only 71

considers handcrafted features but also utilizes data-driven 72

features via unsupervised feature learning [21]. In addition, 73

Wang et al. [22] proposed a multilayered graph model for 74

hierarchically refining retrieval results from coarse to fine. 75

For the aforementioned methods, the visual contents of remote 76

sensing images are often represented by thousands of dimen- 77

sional feature descriptors. Exhaustively comparing the high- 78

dimensional feature descriptor of an inquiry remote sensing 79
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image with each image in a data set is computationally80

expensive and impossible to achieve when the volume of a81

data set is oversized.82

To address the aforementioned problems with exhaustive83

high-dimensional feature searching, two strategies may be84

employed: improving search methods and reducing the dimen-85

sions of feature descriptors. The former strategy is imple-86

mented by using data partition algorithms that recursively87

split data spaces into subspaces and record these divisions88

via a tree structure. In benefiting from this data partition-89

ing strategy, the search speed of tree-based methods [4]–[6]90

is significantly improved, but retrieval performance levels91

decrease dramatically, especially when the dimension of the92

original feature descriptor is very high [23]. Unfortunately, the93

dimensions of feature descriptors of remote sensing images94

are often very high. To avoid this issue, several researchers95

have exploited feature reduction methods for large-scale96

remote sensing image retrieval. Recently, hashing learning97

methods [7], [8] have been introduced into large-scale remote98

sensing image retrieval tasks. These hashing learning methods99

take handcrafted feature descriptors with dimensions that100

are often very high as an input and map high-dimensional101

feature vectors (HDFVs) to low-dimensional binary feature102

vectors (LDBFVs). Accordingly, the complexity of exhaustive103

searches using LDBFV is dramatically reduced relative to that104

of HDFV. Although existing hashing learning methods can105

significantly increase search speeds, retrieval accuracy levels106

still fail to meet the demands of practical applications. In view107

of the great successes of deep learning methods [24]–[26]108

in recently developed applications, replacing low-level hand-109

crafted features of hashing learning methods [7], [8] with high-110

level semantic features of deep learning can further improve111

retrieval performance levels. To fully employ the respective112

merits of deep and hashing learning, deep hashing neural113

networks (DHNNs) [27]–[29] have been proposed by pioneers114

of the computer vision community, and exciting results of115

large-scale natural image retrieval tasks have been retrieved.116

Generally, remote sensing images differ considerably from117

natural images in both spectral and spatial domains. Due to118

this substantial gap, DHNNs trained in a natural image data set119

cannot be applied directly to large-scale remote sensing image120

retrieval tasks. Hence, the modeling and learning of DHNNs121

based on specific remote sensing image retrieval tasks deserve122

more exploration.123

Based on the aforementioned considerations, this paper124

proposes a novel large-scale remote sensing image retrieval125

approach based on DHNNs. More specifically, this paper126

presents a comprehensive study of DHNNs and introduces127

DHNNs into large-scale remote sensing image retrieval tasks.128

To clarify fundamental theories of DHNNs, this paper pro-129

vides a systematic review of existing DHNNs. Different from130

existing DHNNs studies [27]–[29], this paper for the first131

time illustrates the importance of the similarity weight and132

quantization loss function of DHNNs. To cover as many133

cases as possible, DHNNs are utilized in two remote sensing134

situations: remote sensing data sets with limited and sufficient135

quantities of labeled samples. For the former case, the deep136

feature learning module of DHNNs can be derived from137

suitable pretrained neural networks, and the hashing learning 138

module of DHNNs is randomly initialized; then, DHNNs can 139

be incrementally trained using the limited number of labeled 140

samples available. For the latter case, DHNNs can be randomly 141

constructed based on the specific data characteristics of remote 142

sensing images and then trained from scratch using a sufficient 143

number of labeled samples. Compared to existing hashing 144

learning methods [7], [8] that have been applied to large- 145

scale remote sensing image retrieval, some recently presented 146

hashing learning methods [30], [31], and three existing DHNN 147

methods [27]–[29], the DHNNs proposed in this paper can 148

achieve significant performance improvements when applied to 149

two public remote sensing image data sets, where one includes 150

a limited number of labeled samples and the other contains a 151

sufficient number of labeled samples. As a whole, the main 152

contributions of this paper are twofold. 153

1) From a methodological perspective, this paper pro- 154

vides a systematic review of DHNNs and illustrates the 155

importance of critical components of DHNNs that are 156

disregarded in existing DHNNs. 157

2) In terms of applications, for the first time, DHNNs are 158

employed for large-scale remote sensing image retrieval. 159

To cover as many remote sensing applications as pos- 160

sible, this paper illustrates ways to design and train 161

DHNNs for large-scale remote sensing image retrieval 162

when labeled samples are scarce and sufficient. 163

This paper is organized as follows. A comprehensive review 164

of DHNNs is given in Section II, where we also list key para- 165

meters of DHNNs that can significantly affect performance 166

outcomes. In Section III, we introduce solutions for designing 167

and training DHNNs for large-scale remote sensing image 168

retrieval in cases involving scarce and sufficient numbers of 169

labeled samples. Using two public remote sensing image data 170

sets, the overall performance of the proposed approach based 171

on DHNNs and comparisons with state-of-the-art approaches 172

are reported in Section IV. Finally, Section V presents the 173

conclusion. 174

II. DEEP HASHING NEURAL NETWORKS 175

In the last decade, deep learning [24]–[26] has achieved 176

considerable success when applied to nearly all computer 177

vision tasks due to its superiority in terms of feature repre- 178

sentation. In the remote sensing community, deep learning 179

methods have been successively utilized for remote sensing 180

image scene classification [32]–[35], hyper-spectral image 181

classification [36]–[38], SAR image classification [39], [40], 182

remote sensing image object recognition [41], [42], and so 183

forth. Generally, the dimension of the feature vector output 184

generated by these deep learning methods [32]–[42] is often 185

very high and may be acceptable for these processing tasks. 186

However, large-scale image retrieval based on HDFVs is 187

impossible, as noted above. 188

In tailoring deep learning techniques to large-scale image 189

retrieval, DHNNs have been proposed in [27]–[29]. More 190

specifically, DHNNs are composed of deep feature learn- 191

ing neural networks (DFLNNs) for high-level semantic 192

feature representation and of hashing learning neural net- 193

works (HLNNs) for compact feature representation, and can 194
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Fig. 1. Visualization of DHNNs and corresponding learning constraints.
Subcomponents of DHNNs, including DFLNNs and HLNNs, are also shown.

be jointly optimized in an end-to-end manner. We note that195

joint optimization benefits render the feature representation196

and hashing mapping modules simultaneously optimal for a197

specific task.198

To clearly describe the features of DHNNs, model formu-199

lations and learning paradigms for DHNNs are introduced200

in Sections II-A and II-B.201

A. Modeling of DHNNs202

Based on existing approaches [27]–[29], DHNNs can be203

represented by the integration of DFLNNs and HLNNs. More204

specifically, DFLNNs are composed of multiple convolutional205

and fully connected layers and pursue the high-level semantic206

feature representation of an input image scene. In addi-207

tion, HLNNs can be constructed from one fully connected208

layer and aim at mapping the high-dimensional feature rep-209

resentation of DFLNNs for compact feature representation210

(i.e., the LDBFV). Unlike the high-dimensional feature rep-211

resentation of DFLNNs, the feature representation of DHNNs212

is extremely compact and can be applied to large-scale image213

retrieval tasks.214

As depicted in Fig. 1, each image shares the same neural215

networks (i.e., DHNNs) throughout the compact feature rep-216

resentation process, and DHNNs can be optimized under con-217

straints such as binary quantization loss and pairwise similarity218

constraints. More specifically, the binary quantization loss can219

render each element of the final feature representation of the220

DHNNs approach as −1 or 1, and the pairwise similarity con-221

straint can cause similarities between feature representations222

of DHNNs to agree with real similarities based on manual223

labels of image scenes.224

For an image data set {(Ii , yi )|i = 1, 2, . . . , N}, where Ii225

denotes the image and yi denotes its label, the similarity matrix226

� ∈ R2×N×N for the given image data set is specifically227

defined as �1
i, j + �2

i, j = 1, where �1
i, j = 1, if yi = y j and228

�1
i, j = 0, if yi �= y j .229

Fig. 2. Visual comparison of different sigmoid functions. In the visual
comparison, the length of the binary feature is set to 64, and the similarity
factor is set to 0.25. In addition, the identical ratio is calculated by dividing
the number of identical bits between two binary features by the length of the
binary feature.

Assuming that low-dimensional binary vectors of the image 230

data set I = {Ii }N
i=1 can be represented by B = {bi }N

i=1, where 231

bi = {−1, 1}l and l denotes the length of the binary feature 232

vector, the likelihood function of the pairwise similarity � can 233

be defined as 234{
P

(
�1

i, j = 1|B) = σ(�i, j )

P
(
�2

i, j = 1|B) = 1 − σ(�i, j )
(1) 235

where �i, j = bT
i b j and σ(�i, j ) = 1/(1+e−�i, j ) is the classic 236

sigmoid function that easily leads to a large saturation zone 237

where its gradient is close to 0. 238

In the literature, the classic sigmoid function 239

σ(�i, j ) = 1/(1 + e−�i, j ) is adopted in [27], and the 240

improved sigmoid function σ(�i, j ) = 1/(1 + e−�i, j /2) is 241

utilized in [29]. However, both sigmoid functions adopted 242

in [27] and [29] would result in the generation of large 243

saturation zone, which hinders the updating of network 244

parameters through backpropagation. To avoid this result, 245

this paper proposes the use of a weighted sigmoid function 246

σ(�i, j ) = 1/(1 + e−�i, j /w), where w = s · l is the similarity 247

weight, s is the similarity factor, and l is the length of the 248

binary feature b. Fig. 2 intuitively shows why the proposed 249

weighted sigmoid function can effectively decrease the 250

saturation zone relative to the classic sigmoid function used 251

in [27] and the improved sigmoid function used in [29]. 252

For the case illustrated in Fig. 2, the classic and improved 253

sigmoid functions should cause the objective optimization 254

function used in (2) to enter the saturation zone when the 255

identical ratio exceeds 0.6 or falls below 0.4. In contrast, 256

the weighted sigmoid function can cause the objective 257

optimization function to pursue a higher identical ratio when 258

two remote sensing images share the same visual content and 259

vice versa. 260

The ideal binary feature representations B = {bi }N
i=1 are 261

unknown in advance. Under the similarity matrix constraint �, 262

we can determine binary representations by minimizing the 263
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following cross-entropy function:264

min
B

E =
∑

�i, j ∈�

2∑
k=1

( − �k
i, j log P

(
�k

i, j = 1
∣∣B))

265

=
∑

�i, j ∈�

(
�1

i, j �i, j + log(1 + e�i, j )
)
. (2)266

To draw a link between deep feature learning and hashing267

learning, we give the parameter formulation of DFLNNs and268

HLNNs in the following. Let � denote all parameters of269

multilayers of DFLNNs, and let {W, v} denote the weights270

of HLNNs. For a given input image Ii , the high-dimensional271

semantic feature representation of DFLNNs can be represented272

by di = ϕ(Ii ; �), where di ∈ Rd , and the continuous273

low-dimensional feature representation of HLNNs can be274

represented by fi = WT di + v = WT ϕ(Ii ; �) + v, where275

fi ∈ Rl , W ∈ Rd×l , and v ∈ Rl .276

To simultaneously optimize the DFLNNs and HLNNs,277

the optimization function shown in (2) can be converted into278

min
B,�,W,v

E1 =
∑

�i, j ∈�

(
�1

i, j ϒi, j + log(1 + eϒi, j )
)

279

+ η

N∑
i=1

‖fi − bi‖1 (3)280

where ϒi, j = fT
i f j/P , P is the similarity penalty, and η281

is the regularization coefficient. Using formula derivation, it282

is not difficult to see that P varies with the selection of283

sigmoid functions. The similarity penalty P is equal to 1, 2,284

and w = s · l when the classic sigmoid function in [27],285

the improved sigmoid function in [29], and the weighted286

sigmoid function are, respectively, adopted.287

We note that the optimization function used in (3) takes288

the pairwise similarity constraint and the binary quantization289

loss function into consideration. Intuitively, the optimization290

function shown in (3) is equivalent to that used in (4). As the291

optimization function used in (3) and (4) uses the L1 norm292

to define the quantization loss, the corresponding DHNNs293

optimized by (3) or (4) are referred to as DHNNs-L1 in the294

following. In the proposed DHNNs-L1, the weighted sigmoid295

function is adopted and ϒi, j in (4) is equal to fT
i f j/w, where296

w = s · l is the similarity weight. In contrast, the existing297

deep hashing method used in [27] employs the classic sigmoid298

function, which renders ϒi, j used in (4) equal to fT
i f j . The299

binary quantization loss from the L1 norm is also adopted300

in [28]301

min
�,W,v

E1 =
∑

�i, j ∈�

(
�1

i, j + ϒi, j + log(1 + eϒi, j )
)

302

+ η

N∑
i=1

‖‖|fi | − 1‖‖1. (4)303

Unlike the function used in (3) and (4), the optimization304

function used in (5) employs the square of the L2 norm to305

define the quantization loss. In the following, the DHNNs306

optimized by (5) are referred to as DHNNs-L2. Unlike the307

proposed DHNNs-L2, the existing deep hashing approach used308

in [29] adopts the improved sigmoid function, rendering ϒi, j 309

in (5) equal to fT
i f j /2 310

min
B,�,W,v

E2 =
∑

�i, j ∈�

(
�1

i, j ϒi, j + log(1 + eϒi, j )
)

311

+ η

N∑
i=1

‖fi − bi‖2
2. (5) 312

As noted above, we comprehensively review DHNN 313

methods [27]–[29] employed in the literature under the cross- 314

entropy optimization framework employed in (2). In diverging 315

from prior efforts, the importance of the similarity weight w 316

is revealed for the first time. In addition, we evaluate the 317

final performance of DHNNs when applied under different 318

quantization loss functions. 319

In Section II-B, ways to learn DHNNs-L1 and DHNNs-L2 320

from (3) and (5) are demonstrated in detail. 321

B. DHNN Learning 322

Given that the volume of training samples is generally very 323

large, we adopt a batch-based learning strategy widely adopted 324

in deep learning to optimize DHNNs-L1 used in (3) and 325

DHNNs-L2 used in (5). More specifically, for each iteration, 326

we sample a batch of data to learn parameters until all data are 327

processed. As B and {�, W, v} are dependent on one another 328

in (3) or (5), we adopt an alternative way to learn them. 329

Therefore, one parameter is updated while other parameters 330

remain fixed. 331

Regardless of whether we optimize DHNNs-L1 or 332

DHNNs-L2, binary feature vectors B = {bi }N
i=1 should be 333

first estimated based on neural network parameters {�, W, v} 334

bi = sign(fi ) = sign(WT ϕ(Ii ; �) + v) (6) 335

where sign(·) maps each element of the feature vector to 336

−1 or 1 based on the sign of the given element. 337

To learn neural network parameters via the backpropagation 338

algorithm, we must compute derivatives of the optimization 339

function. In the following, we, respectively, give the derivatives 340

of optimization functions used in (3) and (5). 341

To learn the parameters employed in DHNNs-L1, the deriv- 342

ative of the optimization function used in (3) with respect to fi 343

should be computed as illustrated in (7). The optimization 344

function used in (3) with respect to fi is nondifferentiable 345

due to its use of the L1 norm. As noted in [28], (7) gives 346

derivatives on multiple intervals that can be written as 347

∂ E1

∂fm
i

348

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
j :�i, j ∈�

(
σ
(
fT
i fi/(s · l)

) − �1
i, j

)
fm

j + η, fm
i ≥ 1

∑
j :�i, j ∈�

(
σ
(
fT
i fi/(s · l)

) − �1
i, j

)
fm

j + η, −1 ≤ fm
i ≤ 0

∑
j :�i, j ∈�

(
σ
(
fT
i fi/(s · l)

) − �1
i, j

)
fm

j − η, otherwise

349

(7) 350

where l is the length of fi and m = 1 : l. 351
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Algorithm 1 Optimization Process for DHNNs-L1

Input: Training images I = {Ii }N
i=1 with the pairwise

similarity matrix �;
Output: Weights for DHNNs-L1 {�, W, v} and by-product
binary features B;
Repeat
Randomly sample a batch of images from the training
images. For each image Ii in the sampled batch, execute
the following operations:

• Compute the high-dimensional feature from
di = ϕ(Ii ; �) by forward propagation;

• Calculate the low-dimensional binary feature from
bi = sign(WT di + v) using Eq. (6);

• Calculate derivatives of the optimization function using
Eq. (7) - Eq. (10);

• Update weights {�, W, v} based on the derivatives via
back propagation;

Continue until all images are processed over a fixed number
of iterations

Furthermore, we can calculate derivatives of (3) with respect352

to {�, W, v}, which can refer to the following:353

∂ E1

∂ϕ(Ii ; �)
= W

∂ E1

∂fi
(8)354

∂ E1

∂W
= ϕ(Ii ; �)

(
∂ E1

∂fi

)T

(9)355

∂ E1

∂v
= ∂ E1

∂fi
. (10)356

To illustrate, we summarize the optimization process357

employed for DHNNs-L1 as Algorithm 1.358

In the following, we give the optimization solution for359

DHNNs-L2. As for the optimization process for DHNNs-L1,360

we must determine the derivative of the optimization function361

used in (5) with respect to fi . In benefiting from the L2 norm,362

the optimization function used in (5) with respect to fi is363

differentiable. More specifically, the closed-form gradient is364

as follows:365

∂ E2

∂fi
=

∑
j :�i, j ∈�

(
σ
(
fT
i f j/(s · l)

) − �1
i, j

)
fm

j + 2η(fi − bi ).366

(11)367

Based on the gradient result shown in (11), derivatives of the368

optimization function shown in (5) with respect to {�, W, v}369

can be computed from370

∂ E2

∂ϕ(Ii ; �)
= W

∂ E2

∂fi
(12)371

∂ E2

∂W
= ϕ(Ii ; �)

(
∂ E2

∂fi

)T

(13)372

∂ E2

∂v
= ∂ E2

∂fi
. (14)373

To avoid confusing this process with the optimization374

process employed for the DHNNs-L1, we summarize the375

optimization process of DHNNs-L2 as Algorithm 2.376

Algorithm 2 Optimization Process for DHNNs-L2

Input: Training images I = {Ii }N
i=1 with the pairwise

similarity matrix �;
Output: Weights for DHNNs-L2 {�, W, v} and by-product
binary features B;
Repeat
Randomly sample a batch of images from the training
images. For each image Ii in the sampled batch, execute
the following operations:

• Compute the high-dimensional feature by di = ϕ(Ii ; �)
by forward propagation;

• Calculate the low-dimensional binary feature
bi = sign(WT di + v) from Eq. (6);

• Calculate derivatives of the optimization function from
Eq. (11) - Eq. (14);

• Update weights {�, W, v}
• based on the derivatives by back propagation;

Continue until all images are processed with a fixed number
of iterations

III. LARGE-SCALE REMOTE SENSING IMAGE RETRIEVAL 377

VIA DEEP HASHING NEURAL NETWORKS 378

In this section, we propose a novel large-scale remote 379

sensing image retrieval approach based on the aforementioned 380

DHNNs composed of DFLNNs and HLNNs. 381

As illustrated in Fig. 3, the proposed large-scale remote 382

sensing image retrieval approach based on the DHNNs 383

involves two stages: a training stage and a testing stage. In the 384

training stage, the DHNNs should be trained offline using 385

labeled remote sensing images. In the testing stage, based on 386

the DHNNs learned from the training stage, low-dimensional 387

binary features of the given remote sensing images can be 388

computed based on (6). As illustrated by the testing stage 389

presented in Fig. 3, the large-scale remote sensing image 390

retrieval task is transformed into a feature-searching problem. 391

As noted above, the final feature representation of the DHNNs 392

is very compact. In benefiting from this characteristic, the 393

large-scale remote sensing image retrieval task can be easily 394

implemented via exhaustive feature similarity comparisons, 395

where similarities between binary features can be efficiently 396

computed from the hamming distance [27]–[31]. As final 397

features of the remote sensing image generated from the 398

DHNNs are very compact, features of remote sensing images 399

in the large-scale remote sensing image data set can be 400

computed in advance and then saved as the feature data set 401

without incurring considerable storage costs. Hence, in the 402

retrieval stage, feature extraction time dedicated to the large- 403

scale remote sensing image data set can be saved, and it is 404

only necessary to compute the feature representation of the 405

inquiry image based on the DHNNs. 406

It is well known that deep learning-based methods are 407

often dependent on the use of millions of labeled samples 408

to learn complex neural network parameters [24]–[26]. The 409

DHNNs discussed in this paper also suffer from this problem. 410

Hence, the performance of DHNNs depends heavily on the 411

volume of labeled samples. To broader DHNNs applications, 412
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Fig. 3. Flowchart of the proposed large-scale remote sensing image retrieval approach based on DHNNs. The proposed approach involves training and
testing stages. More specifically, the training stage involves learning DHNNs, and the testing stage addresses large-scale remote sensing image retrieval based
on the DHNNs learned in the training stage.

Sections III-A and III-B present ways to design and train413

DHNNs under two typical cases for which the number414

of labeled remote sensing samples available is limited or415

sufficient.416

A. Large-Scale Remote Sensing Image Retrieval by Virtue417

of Limited Number of Labeled Samples418

In the majority of remote sensing applications, large num-419

bers of remote sensing images are available, but labeled images420

are very rare. In such cases, fully learning convolutional421

neural networks (CNNs) from scratch is impossible. In the422

literature, several efforts have been made to transfer CNNs423

that have been pretrained in a large-scale natural image data424

set (e.g., ImageNet) [43] to remote sensing image tasks of425

scene classification [34], object recognition [39], and so on.426

Inspired by such successful experiences [34], [39], we train427

DHNNs via transfer learning when the number of labeled428

remote sensing images available is very limited. More specif-429

ically, we expect to transfer CNNs pretrained on the source430

domain (e.g., the natural image object recognition task) to the431

target domain (i.e., the remote sensing image retrieval task).432

To this end, the DFLNNs of DHNNs can inherit from suitable433

pretrained CNNs (e.g., the one pretrained on ImageNet), and434

the HLNNs of DHNNs can be randomly initialized based435

on the size of the adopted DFLNNs. Furthermore, the con-436

structed DHNNs can be incrementally trained by applying437

Algorithm 1 or Algorithm 2 under the supervision of a limited 438

number of labeled remote sensing images. As the weights of 439

DHNNs mainly concentrate on DFLNNs, a relatively strong 440

DFLNNs initialization can decrease the optimization difficulty 441

of DHNNs. In benefiting from the reuse of CNNs, the advo- 442

cated DHNNs can be trained to achieve strong levels of 443

generalization performance, even when the number of labeled 444

remote sensing images available is very limited. 445

As a precondition to the success of this transfer learning 446

strategy, the remote sensing image in the target domain rel- 447

atively resembles the image in the source domain in terms 448

of spectral ranges and spatial resolutions. In the training and 449

testing stages, the remote sensing image in the target domain 450

must be projected to the size of the image in the source 451

domain to reuse CNNs trained in the source domain. Although 452

the projection may lose some information on remote sensing 453

images, this approach is still very cost effective when the 454

remote sensing image adopted is similar to natural images. 455

This strategy is verified for a public aerial image data set [44], 456

and corresponding results are shown in Section IV-B. 457

B. Large-Scale Remote Sensing Image Retrieval With the Aid 458

of a Sufficient Number of Labeled Samples 459

We note that the aforementioned transfer learning strategy 460

for DHNNs may decline in efficacy when the remote sensing 461

image used is significantly different from the image in the 462
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Fig. 4. Illustration of the UCMD. The UCMD covers 21 land cover categories, and four images of each category randomly selected from the UCMD
are shown.

source domain. As is well known, remote sensing images463

include much more spectral channels than natural images464

do. Hence, remote sensing images include even more cues465

that can be used in image analyses than natural ones do.466

When transferring CNNs pretrained on a natural image data467

set to construct the DFLNNs of DHNNs, only three RGB468

spectral channels of remote sensing images are used for feature469

representation, while the rich spectral information of remote470

sensing images is disregarded.471

Along with the great successes of deep learning, more472

and more researchers have realized the importance of labeled473

samples. Accordingly, the remote sensing image data set with474

large volumes of labeled samples [45] has been released.475

In particular, a large-scale remote sensing image data set476

with manual labels is available. However, to our knowledge,477

no report has illustrated the feasibility of joint deep fea-478

ture and hashing learning for remote sensing image data479

sets. To allow rich annotation information of remote sensing480

images to generate good yields, we attempt to specifically481

design and train DHNNs for remote sensing images from482

scratch. The solution proposed is verified based on one public483

satellite image data set [45], where each image contains four484

RGB–near infrared (NIR) spectral channels, and correspond-485

ing results are presented in Section IV.486

IV. EXPERIMENTAL RESULTS 487

Section IV-A introduces widely adopted evaluation cri- 488

teria used for large-scale remote sensing image retrieval. 489

Section IV-B provides an example that shows how DHNNs 490

are designed and trained when the number of labeled samples 491

available is very limited. In reference to such conditions, 492

the overall performance of DHNNs and its performance rel- 493

ative to other approaches are reported. With the support of 494

plenty of labeled samples, Section IV-C illustrates the means 495

of designing and training DHNNs and reports on the overall 496

performance of DHNNs and compares this performance with 497

those of state-of-the-art approaches. Finally, Section IV-D 498

provides a brief discussion of the experimental results and 499

describes our future work related to DHNNs. 500

A. Evaluation Criteria 501

In this paper, large-scale remote sensing image retrieval 502

performance is quantitatively evaluated using the following 503

two widely adopted metrics [7], [27]–[31]: the mean average 504

precision (MAP) and the precision-recall curve. More specif- 505

ically, the MAP score can be computed from 506

MAP = 1

|Q|
|Q|∑
i=1

1

ni

ni∑
j=1

precision
(

R j
i

)
(15) 507
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TABLE I

CONFIGURATION OF DFLNN ON UCMD

where qi ∈ Q is the inquiry image, |Q| denotes the volume508

of the inquiry image data set, and ni is the number of images509

relevant to qi in the searching image data set. Assuming that510

relevant images are ordered as {r1, r2, . . . rni } across images511

in the searching image data set, R j
i is the set of ranked results512

from the 1-st result to the r j -th result.513

B. Experiments on the Data Set With a Limited Number514

of Labeled Samples515

1) Evaluation Data Set: In this paper, we take the publicly516

available University of California, Merced remote sensing517

image data set (UCMD) [44] to demonstrate how to design518

and train DHNNs from a limited number of labeled sam-519

ples. The UCMD is generated by manually labeling aerial520

image scenes, and it covers 21 land cover categories. More521

specifically, each land cover category includes 100 images of522

256×256 pixels, the spatial resolution of each pixel is 30 cm,523

and each pixel is measured in the RGB spectral space. Four524

representative images of each category of the UCMD are525

visually shown in Fig. 4. We note that the UCMD has been526

widely used for the performance evaluation of remote sensing527

image retrieval [11], [12], [20] and remote sensing image scene528

classification [21], [32]–[35] efforts. Hence, the UCMD is a529

representative remote sensing image data set that includes a530

limited number of labeled samples.531

2) Experimental Setup: To slightly augment the volume of532

the UCMD, each image from the UCMD is rotated by 90°,533

180, and 270°. This strategy has been widely adopted to534

enlarge data sets without any manual labor [34] and can535

increase the size of a UCMD by a factor of 4. In the following,536

we describe experiments conducted on the augmented UCMD537

containing 8400 images. Furthermore, the inquiry image data538

set is composed of 1000 images randomly sampled from the539

augmented UCMD, and the others are taken as searching and540

training image data sets with a volume of 7400.541

In this experiment, the DFLNNs of DHNNs are constructed542

by transferring the CNNs pretrained on ImageNet [46] based543

on the fact that the aerial image of the UCMD resembles544

the natural image included in ImageNet in terms of spectral545

ranges and spatial resolutions, and the HLNNs of DHNNs are546

randomly initialized based on the output size of the DFLNNs.547

The specific configuration of the transferred DFLNNs is shown548

in Table I, and the DFLNNs can process an input image549

of 224 × 224 × 3. In Table I, “filter” specifies the number of550

TABLE II

MAP VALUES OF DHNNS-L1 UNDER DIFFERENT
PARAMETERS ON UCMD

TABLE III

MAP VALUES OF DHNNS-L2 UNDER DIFFERENT

PARAMETERS ON UCMD

filters, the size of a field, and the dimensions of input data, and 551

it can be formulated as num × size × size × dim. “stride1” 552

denotes the sliding step of the convolution operation. “pool” 553

denotes the down sampling factor. “stride2” denotes the sliding 554

step of the local pooling operation. 555

Furthermore, the constructed DHNNs are incrementally 556

optimized by Algorithm 1 or Algorithm 2 from the training 557

aerial image data set. To distinguish between optimization 558

algorithms, DHNNs-L1 denotes the DHNNs optimized by 559

Algorithm 1, and DHNNs-L2 denotes the DHNNs optimized 560

by Algorithm 2. In the incremental optimization process, 561

the DFLNNs and HLNNs of DHNNs can be jointly updated 562

under the supervision of the training aerial image data set. 563

3) Overall Performance of the DHNNs: In this section, 564

we explore the performance of DHNNs-L1 and DHNNs- 565

L2 and the sensitivity of key parameters, including the simi- 566

larity factor and regularization coefficient. In this experiment, 567

the length of the final hashing feature is set to 64. The inquiry 568

aerial image data set contains 1000 images, and the searching 569

aerial image data set includes 7400 images. Based on this 570

experimental setting, Table II reports the image retrieval per- 571

formance of DHNNs-L1, and the retrieval performance is mea- 572

sured based on the MAP value. In addition, Table II presents 573

sensitivity analysis results for key parameters, including the 574

similarity factor s and the regularization coefficient η. In addi- 575

tion, Table III illustrates the image retrieval performance of 576

DHNNs-L2 based on two critical parameters. 577

As illustrated in Tables II and III, DHNN-L2 performs better 578

than DHNNs-L1. More specifically, DHNNs-L2 achieves the 579
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TABLE IV

MAP VALUES OF DHNNS-L2 AND OTHER APPROACHES ON UCMD

Fig. 5. Performance of DHNNs-L2 and other methods when applied with different hashing feature lengths on UCMD. (a) Performance when l = 32.
(b) Performance when l = 64. (c) Performance when l = 96.

best remote sensing image retrieval outcomes when the simi-580

larity factor is set to 0.50 and the regularization coefficient is581

equal to 5.0e1.582

4) Comparisons With State-of-the-Art Approaches: With583

the similarity factor and regularization coefficient in584

DHNNs-L2 fixed, we report MAP values of our proposed585

DHNNs-L2 for different hashing feature lengths in Table IV.586

To show the superiority of the adopted DHNNs-L2, we com-587

pare it with state-of-the-art approaches, including two existing588

large-scale remote sensing image retrieval approaches [7], [8],589

two recently developed hashing learning methods [30], [31],590

and three existing DHNNs methods [27]–[29]. More specif-591

ically, the large-scale remote sensing image retrieval method592

based on partial randomness hashing (PRH) [7], the large-scale593

remote sensing image retrieval method based on kernel-based594

supervised hashing (KSH) [8], [47], the potential method595

based on supervised discrete hashing (SDH) [30], and the596

candidate method based on column sampling-based discrete597

supervised hashing (COSDISH) [31] are reimplemented or598

provided by the authors. These approaches [7], [8], [30], [31]599

take the 512-D GIST feature [48] as an input for hashing600

learning methods. To illustrate the benefits of the proposed601

DHNNs-L2, we also compare it with existing DHNNs mod-602

els, including the deep hashing network (DHN) [27], deep603

supervised hashing (DSH) [28], and deep pairwise-supervised604

hashing (DPSH) [29]. Experimental parameters are set accord-605

ing to suggestions made in corresponding papers. To illustrate606

the superiority of the optimization function of the proposed607

DHNNs-L2, the DHN [27], DSH [28], and DPSH [29]608

are based on the same deep network architecture of the609

proposed DHNNs-L2. As shown in Table IV, we can easily 610

conclude that the proposed DHNNs-L2 can clearly outperform 611

other state-of-the-art approaches. 612

To further illustrate aerial image retrieval performance out- 613

comes, we present precision-recall curves of DHNNs-L2 and 614

of other approaches. Fig. 5 shows the precision-recall curves of 615

methods based on different hashing feature lengths. As illus- 616

trated in Fig. 5, DHNNs-L2 significantly outperforms the other 617

approaches. 618

In addition to the above quantitative comparison with state- 619

of-the-art approaches, we draw intuitive comparisons, as illus- 620

trated in Fig. 6. For this visual comparison, the hashing feature 621

length of all methods is set to 96, and all methods use the same 622

inquiry image and the same search image data set. In Fig. 6, 623

the aerial scene containing storage tanks is taken as the inquiry 624

image, and retrieval results of different methods are shown. 625

As shown in Fig. 6, DHNNs-L2 clearly outperforms other 626

methods and retrieves true aerial images, even in the midst 627

of considerable appearance variations. Due to space limita- 628

tions, we only provide one visual retrieval example, though 629

DHNNs-L2 applies to other cases as reflected in the compre- 630

hensive results shown in Table IV and Fig. 5. 631

C. Experiments on the Data Set With Oversized 632

Labeled Samples 633

1) Evaluation Data Set: In this section, we use a pub- 634

lic satellite image data set based on four land cover cate- 635

gories (SAT4) [45] as a case to explore the feasibility of jointly 636

learning deep feature representation and hashing mapping 637



IEE
E P

ro
of

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 6. Visual image retrieval results of different methods examined. (a) Inquiry aerial image of the storage tanks category. (b) PRH retrieval results presented
in [7]. (c) KSH retrieval results presented in [8]. (d) SDH retrieval results presented in [30]. (e) COSDISH retrieval results presented in [31]. (f) DHN retrieval
results presented in [27]. (g) DSH retrieval results presented in [28]. (h) DPSH retrieval results presented in [29]. (i) Retrieval results of our DHNNs-L2.
The 1st, 5th, 10th, 15th, 20th, 30th, 40th, and 50th retrieval results of each method are shown. In addition, false retrieval results are marked with red rectangles.

functions from scratch. Images in the SAT4 were drawn from638

the National Agriculture Imagery Program. Each image in the639

SAT4 includes 28 × 28 pixels, the spatial resolution of each640

pixel is 1 m, and each pixel is measured in the RGB–NIR 641

spectral space. In addition, the SAT4 includes 500 000 images 642

covering four land cover categories (barren land, trees, 643
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TABLE V

CONFIGURATION OF DFLNN ON SAT4

TABLE VI

MAP VALUES OF DHNNS-L1 UNDER DIFFERENT PARAMETERS ON SAT4

grassland, and all land cover types other than the former three644

classes). Visual samples drawn from the SAT4 are shown645

in Fig. 7.646

2) Experimental Setup: From this experiment, we randomly647

selected 1000 images from the SAT4 as an inquiry image648

data set, and others were used as a searching and training649

image data sets with a volume of 499 000. Hence, it was650

sufficient to learn a specific deep neural network aiming at651

given types of satellite images under the supervision of this652

training satellite image data set. In addition, the inquiry and653

searching image data sets were further used to evaluate image654

retrieval performance outcomes.655

As the satellite image was measured in the RGB–NIR656

spectral space and the size of the image is relatively small,657

Table V presents the architecture of the DFLNN specifically658

designed for such satellite images. As shown in Table V,659

the architecture contains three convolutional layers and two660

fully connected layers and is relatively compact compared to661

the ImageNet network. We note that the architecture given662

in Table V is just one of the many candidates. This paper663

merely introduces a general solution for designing DFLNNs664

and for further constructing DHNNs. More DFLNNs architec-665

tures can be explored and evaluated in future works. Under the666

applied experimental setting, both the DFLNNs and HLNNs667

of the DHNNs were randomly initialized. Furthermore, we can668

use Algorithm 1 or Algorithm 2 to train it from scratch using669

the training satellite image data set.670

3) Overall Performance of the DHNNs: In this experiment,671

we used a training image data set of 499 000 images to672

train the DHNNs from scratch using different optimization673

algorithms. In the following, DHNNs-L1 is the constructed674

DHNNs optimized by Algorithm 1, and DHNNs-L2 is the675

TABLE VII

MAP VALUES OF DHNNS-L2 UNDER DIFFERENT PARAMETERS ON SAT4

constructed DHNNs optimized by Algorithm 2. With the hash- 676

ing feature length set to 64, Table VI illustrates the satellite 677

image retrieval accuracy of DHNNs-L1 equipped with two 678

parameters, including the similarity factor s and regularization 679

coefficient η. Table VII reports the satellite image retrieval 680

accuracy of DHNNs-L2 under two key parameters. 681

As shown in Tables VI and VII, DHNNs-L2 performs better 682

than DHNNs-L1. DHNNs-L2 can achieve the best satellite 683

image retrieval performance outcomes when the similarity 684

factor s is set to 0.75 and the regularization coefficient η is 685

equal to 1.0e2. 686

4) Comparisons With State-of-the-Art Approaches: Accord- 687

ing to the sensitivity analysis of the similarity factor 688

and the regularization coefficient shown in Section IV-C-3, 689

the similarity factor s and regularization coefficient η 690

of the DHNNs-L2 are set as 0.75 and 1.0e2, respectively. 691

Furthermore, Table VIII reports the accuracy of DHNNs-L2 692

when a different hashing feature length l is adopted. 693

To illustrate the superiority of DHNNs-L2, we also 694

present the accuracy of the following seven state-of-the-art 695

approaches: PRH [7], KSH [8], SDH [30], COSDISH [31], 696

DHN [27], DSH [28], and DPSH [29]. These shallow hashing 697

methods [7], [8], [30], [31] used the 512-D GIST feature [48] 698

as an input. In addition, these deep hashing methods [27]–[29] 699

use the same deep network architecture as that employed for 700

the proposed DHNNs-L2. For the comparisons, all methods 701

employ the same inquiry and searching data sets. As shown 702

in Table VIII, the proposed DHNNs-L2 achieves significant 703

satellite image retrieval performance improvements relative to 704

other existing methods. 705

To clearly show image retrieval performance variations of 706

the different methods, we report the precision-recall curves 707

of DHNNs-L2 and of other approaches. More specifically, 708

Fig. 8 reports the precision-recall curves of the different meth- 709

ods for different hashing feature lengths. As shown in Fig. 8, 710

the proposed DHNNs-L2 significantly outperforms the other 711

approaches. 712

For the same hashing feature length l = 96, we report the 713

visual retrieval results of DHNNs-L2 and other approaches 714

in Fig. 9. As a whole, the quantitative and qualitative results 715

illustrate the superiority of the proposed DHNNs-L2. 716

There is no doubt that the feature-searching module can 717

be efficiently applied through the utilization of hashing 718
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Fig. 7. RGB channel visualization of the adopted SAT4. More specifically, SAT4 covers four land cover categories, and 24 images of each category, randomly
selected from the SAT4, are shown.

TABLE VIII

MAP VALUES OF DHNNS-L2 AND OTHER APPROACHES ON SAT4

features [7], [8]. In practice, the efficient extraction of hash-719

ing features from images is very challenging. Fortunately,720

the proposed DHNNs can be easily applied with the use of721

parallel hardware. In this paper, the proposed DHNNs-L2 is722

implemented via GPU. The proposed DHNNs can extract723

hashing features of dozens of aerial images of the UCMD724

per second and can output hashing features of hundreds725

of satellite images of the SAT4 each second. As a whole,726

the proposed DHNNs-L2 is accurate and efficient.727

D. Discussion and Avenues for Future Research728

In the aforementioned experiments, the two remote sensing729

image data sets used (i.e., the UCMD and SAT4) represent730

two typical remote sensing image retrieval task conditions. 731

Under these two different conditions, DHNNs can be designed 732

and learned under a unified framework. Our two represen- 733

tative experiments fully show the generalization of the pro- 734

posed DHNNs-L2. In addition, the experiments show that 735

the proposed DHNNs-L2 can achieve significant performance 736

improvements relative to the outcomes of two existing large- 737

scale remote sensing image retrieval approaches [6], [7], 738

two potential approaches based on recent hashing learn- 739

ing methods [30], [31], and three existing deep hashing 740

methods [27]–[29]. 741

In future work, we will explore ways to train DHNNs from 742

scratch using large-scale labeled data with noisy, possibly 743
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Fig. 8. Performance of DHNNs-L2 and other methods when applied with different hashing feature lengths on SAT4. (a) Performance when l = 32. (b)
Performance when l = 64. (c) Performance when l = 96.

Fig. 9. Visual image retrieval results for different methods. (a) Inquiry satellite image of the tree category. (b) PRH retrieval results presented in [7].
(c) KSH retrieval results presented in [8]. (d) SDH retrieval results presented in [30]. (e) COSDISH retrieval results presented in [31]. (f) DHN retrieval
results presented in [27]. (g) DSH retrieval results presented in [28]. (h) DPSH retrieval results presented in [29]. (i) Retrieval results of our DHNNs-L2.
The 1st, 5th, 10th, 15th, 20th, 25th, 30th, 35th, 40th, 45th, and 50th retrieval results of each method are shown. In addition, false retrieval results are marked
with red rectangles.

incorrect labels. These data are often generated at a relatively744

low cost. For example, remote sensing images can be effi-745

ciently labeled through crowd-sourcing [49], but labeled data746

can contain a certain number of incorrect labels [50]. Guided 747

by the geography information system, remote sensing images 748

can also be labeled automatically with the cost of a certain 749
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number of alignment errors [51]. Hence, DHNNs training from750

noisy labeled data should be very cost effective.751

As noted above, DHNNs can output the compact semantic752

feature representation of an input remote sensing image in753

urgent need of remote sensing image interpretation. Hence,754

we plan to explore more applications of DHNNs such as755

hyper-spectral image classification [52], image matching and756

registration [53], [54], information fusion [55], built-up area757

detection [56], urban village detection [57], [58], and land758

cover recognition [59].759

V. CONCLUSION760

Due to an urgent need for RSBD mining, large-scale remote761

sensing image retrieval has attracted increasing attention.762

Although several efforts have been made to address issues of763

large-scale remote sensing image retrieval, this task remains a764

very challenging problem. This paper is the first to advocate765

the use of DHNNs to address this problem.766

We conduct a comprehensive study of DHNN systems.767

Based on the general cross-entropy theory, we provide a768

systematic review of existing DHNN methods. This paper is769

the first to highlight the importance of the similarity weight,770

which is set to a constant and disregarded in existing works.771

To broaden the applications of DHNNs, we adapt DHNNs772

to two representative remote sensing cases where the remote773

sensing data set includes either a limited number of labeled774

samples or plenty of labeled samples. For these two conditions,775

we present the means to design and train DHNNs. Extensive776

experiments conducted on one public aerial image data set777

and one public satellite image data set demonstrate that the778

proposed large-scale remote image retrieval approach based779

on the adjusted DHNNs can remarkably outperform state-of-780

the-art approaches.781

Large-scale remote sensing image retrieval methods and782

DHNNs should be increasingly adapted to address the require-783

ments of more and more practical applications. To facilitate784

this, we present potential avenues for future research on785

DHNNs from method optimization and application perspec-786

tives. In future work, we plan to explore ways to train DHNNs787

using labeled data containing a certain number of errors from788

scratch, as such data can often be generated at a low cost.789

In addition, we plan to exploit the feasibility of applying790

DHNNs to more remote sensing image interpretation applica-791

tions. Broadly speaking, DHNNs and their future extensions792

could realize new solutions for a broad range of remote sensing793

applications.794
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