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A Simple and Efficient Method for
Radial Distortion Estimation

by Relative Orientation
Yansong Duan, Xiao Ling, Yongjun Zhang, Zuxun Zhang, Xinyi Liu, and Kun Hu

Abstract— In order to solve the accuracy problem caused by
lens distortions of nonmetric digital cameras mounted on an
unmanned aerial vehicle, the estimation for initial values of lens
distortion must be studied. Based on the fact that radial lens dis-
tortions are the most significant of lens distortions, a simple and
efficient method for radial lens distortion estimation is proposed
in this paper. Starting from the coplanar equation, the geometric
characteristics of the relative orientation equations are explored.
This paper further proves that the radial lens distortion can be
linearly estimated in a continuous relative orientation model. The
proposed procedure only requires a sufficient number of point
correspondences between two or more images obtained by the
same camera; thus it is suitable for a natural scene where the lack
of straight lines and calibration objects precludes most previous
techniques. Both computer simulation and real data have been
used to test the proposed method; the experimental results show
that the proposed method is easy to use and flexible.

Index Terms— Continuous relative orientation, linear esti-
mation, radial lens distortion, relative flight height, vertical
photography.

I. INTRODUCTION

NOWADAYS, the nonmetric digital camera tends to
replace the traditional photogrammetric camera in a

variety of low-altitude photogrammetry system due to its
economy and convenience. Since lens distortions of the non-
metric digital camera have a decisive effect on the accuracy of
photogrammetric process, it is an essential work to calibrate
the nonmetric digital camera. The pragmatic approach is to
obtain the lens distortion parameters of the camera through
calibration in laboratory before mounting it on an unmanned
aerial vehicle (UAV). These parameters from calibration are
then used in the photogrammetric process after imagery data
collection. However, this approach may fail when strong shake
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happens, especially when an UAV takesoff or lands, which
causes numerical variation in the lens distortion parameters of
the camera. Moreover, in order to meet the needs of different
application requirements, it is common to change the focal
length (FL), even the camera lens. All these practical problems
challenge the traditional approach and force us to seek a simple
and efficient lens distortion estimation method.

Over the last 20 years, domestic and overseas scholars have
carried out extensive research in camera calibration. Generally
speaking, those works can be summarized into the following
three categories.

1) Calibration in Laboratory: Tsai [1], and Hekkila and
Silven [2] proposed simultaneous nonlinear optimization
of camera orientation parameters and lens distortion
parameters by observing a calibration object whose
geometry in the 3-D space is known with very good pre-
cision. These techniques can achieve high geometrical
accuracy, but require an expensive calibration apparatus
and an elaborate setup.

2) Calibration by Specific Scene Pattern: Techniques in this
category do not need any calibration object; instead they
use the rigidity of the scene [3] or plumb lines [4]–[6]
to provide constraints on the lens distortion parameters.
However, these approaches are not applicable when the
scene is in lack of straight lines and planar patterns. This
is often the case for UAV imagery.

3) Self-Calibration by Bundle Block Adjustment: These
techniques use neither calibration objects nor specific
scene pattern, but only point correspondences between
images [7]–[9]. Since the algebraic constraints on the
lens distortion parameters provided by the correspon-
dences are nonlinear, these techniques have high require-
ment on the quality of initial values of lens distortion
parameters. As mentioned before, the initial values are
usually not reliable for the cameras on UAV due to the
significant shaking or device modification.

In conclusion, the first and second categories have specific
requirements for site or scene pattern, and are not suitable
for emergency situations, and the third one is unstable and its
convergence is not guaranteed.

Our research is focused on a low-altitude photogramme-
try system, particularly an unmanned aerial system (UAS),
since the potential for using UASs is large. More and more
nonmetric cameras are used in UASs to reduce costs, and
UASs are gradually becoming accessible to the general public
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who are not experts in photogrammetry. Therefore, flexibility,
efficiency, and convenience are important. The radial lens
distortion estimation method described in this paper was
developed with these considerations in mind.

The proposed method only uses point correspondences
from a few (at least two) images to estimate the radial lens
distortion and the entire solution process is linear. There are
two assumptions throughout this paper.

1) The distortion center is known. As pointed out in [10]
and [11], the precise positioning of the distortion center
does not strongly affect the correction, and has no
effect on the geometry (i.e., relative orientation model)
between a camera pair. Therefore, fixing the distortion
center is a reasonable approximation.

2) At least a pair of images are acquired by the way
of vertical photography (the banking angle is very
small). A high level of redundancy (over 70% overlap)
often occurs in an UAV mission [12]–[14], and
nowadays, UAVs are equipped with global posi-
tioning systems (GPSs) and inertial measurement
units (IMUs) [14], so it is easy to select a pair of stereo
images satisfying the vertical photography condition.

It is important to point out that our goal in this paper is
not to accurately estimate the lens distortion but to propose a
method that provides a good initial estimation of radial lens
distortion parameters. These initial values of lens distortion
parameters can be further used as an input for bundle adjust-
ment (BA) [7], [9] to obtain an accurate lens distortion.

Note that Fitzgibbon [11] developed a simultaneous linear
estimation of multiple view geometry and lens distortion. His
technique is more flexible than ours, but there are at most ten
solutions that need to be checked, and only the radial lens
distortion equation of two-view geometry was derived.

This paper is organized as follows. Section II includes
three parts, which are a general radial lens distortion model,
the basic theory about relative orientation, and a six-point
algorithm, which is often applied to solve the variables of
relative orientation. Section III describes the details about how
to solve the radial lens distortion. Section IV provides the
experimental results. Both the computer simulation and real
data are used to validate the proposed method. Section V
concludes the main contributions of this paper.

II. BACKGROUND KNOWLEDGE

Our proposed method is based on the relative orientation,
which is commonly used in photogrammetry to recover the
relative geometry between multiple views (two or more).
In this section, we introduce the radial lens distortion model,
which we adopt, the coplanar equation of relative orientation,
and a well-known six-point algorithm, which is often applied
to solve the variables of relative orientation.

A. Radial Lens Distortion Model

A complete analytic model of lens distortions usually
consists of radial lens distortions, tangential lens distortions,
and decentering lens distortions. Out of these three types
of distortions, radial lens distortion contributes the most in

magnitude [1]. The radial distortion models use low-order
polynomials [15], for example

x = x̌(1 + κ1ř2 + κ2ř4)

y = y̌(1 + κ1ř2 + κ2ř4)

ř2 = x̌2 + y̌2 (1)

where
(x, y) ideal (distortion-free) image coordinates;
(x̌, y̌) real (distorted) image coordinates;
κ1,κ2 coefficients for radial lens distortion.
Note that throughout this paper, all points are expressed in a

2-D coordinate system with the origin at the distortion center.
Generally speaking, the term κ1 alone will usually suffice

in medium-accuracy applications of digital cameras to account
for the commonly encountered third-order barrel distortion
[3], [16]. In this respect, we can conclude (2) from (1) by
omitting term κ2

δx = x − x̌ = x̌ř2κ1

δy = y − y̌ = y̌ř2κ1. (2)

The symbols (δx, δy) are called the distortion corrections
to (x, y).

B. Relative Orientation

The parameters for the transformation from the 3-D object
world coordinate system to the camera 3-D coordinate system
centered at the optical center are called the extrinsic parame-
ters. There are six extrinsic parameters: three components for
the location of optical center, and three Euler angles ϕ,ω, and
κ that define a sequence of three elementary rotations around
y-, x-, and z-axes, respectively. The angle ϕ is performed
clockwise, while the others are anticlockwise.

Relative orientation can be defined as a method to compute
the extrinsic parameters of the right image, given that the
left image is fixed (the extrinsic parameters of the left image
are known). To further simplify the computation, we usually
assume that the position parameters and Euler angles of the
left image are all zero, and thus the rotation matrix of left
image is an identity matrix. Namely, the coordinate system
for relative orientation is defined at the projective center of the
left camera, XY plane is parallel to focal plane, and Z -axis is
vertical to XY plane, pointing to the sky. As shown in Fig. 1,
Bx , By, Bz, ϕ

′, ω′, and κ ′ denote the extrinsic parameters of
the right image, the pair a ↔ a′ denotes the correspondence,
(u, v,w) denotes the vector �Sa, and (u′, v ′, w′) denotes the
vector �S′a′. The coplanar equation (3) is established for a
certain correspondence

F =
∣∣∣∣∣∣

Bx By Bz

u v w
u′ v ′ w′

∣∣∣∣∣∣
= 0 (3)
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Fig. 1. Schematic of the relative orientation problem and the coplanar
condition. S–XY Z is the 3-D coordinate system centered at the projec-
tive center of left image. S and S′ are the projective centers of left
and right camera, respectively. (x, y) and (x ′, y′) are the 2-D coordi-
nate systems of the ideal left and right images, respectively. B is the
baseline between these two projective centers. The pair a(u, v, w) ↔
a′(u′, v ′, w′) is the correspondence. Bx , By, Bz, ϕ

′, ω′, and κ ′ denote the
extrinsic parameters of the right image. Three vectors �B, �Sa, and �S′a′ are
coplanar.

where

Rleft rotation matrix of the left image; here, it is
the identity matrix;

Rright rotation matrix of the right image, determined
by ϕ′, ω′, κ ′;

(x, y) ideal left image coordinates of
the correspondence;

(x ′, y ′) ideal right image coordinates of
the correspondence;

f FL of the camera.

Here, By, Bz, ϕ
′, ω′, and κ ′ are the variables to be solved with

respect to the scale factor Bx , so the coplanar equation is
approximated by a Taylor expansion to the first order

F = F0 + ∂ F

∂ By
�By + ∂ F

∂ Bz
�Bz

+ ∂ F

∂ϕ′ �ϕ′ + ∂ F

∂ω′ �ω′ + ∂ F

∂κ ′ �κ ′ = 0. (4)

Considering that By, Bz, ϕ
′, ω′, andκ ′ are very small in

vertical photography, the basic relationship formula among the
variables of relative orientation can be further obtained after
converting By and Bz to their corresponding values by and bz

in the image scale

Vq = �by + y ′

f
�bz + x ′y ′

f
�ϕ′ + (x + y ′2

f
)�ω′+x ′�κ ′−q

q ≈ y − (y ′ + by). (5)

The symbol q is known as vertical parallax. The derivation of
coefficients in (5) can be found in [16].

C. Six-Point Algorithm

The six-point algorithm is widely adopted to solve the
variables of relative orientation [16]. The spatial distribution of
point correspondences on the overlap of two images is shown
in Fig. 2.

Fig. 2. Spatial distribution of point correspondences in the six-point algo-
rithm. All six-point correspondences are numbered from 1 to 6, the distance
between points 1 and 2 is denoted by symbol b, which is approximately
equal to the baseline between two camera stations in the image scale, and the
distance between points 1 and 3 is denoted by symbol d.

The spatial distribution of these six-point correspondences
has the following properties [we denote the distortion correc-
tions of the i th point in the j th image by (δxi j , δyi j ), and
its y-axis coordinate by yi j ; here i = 1, 2, . . . , 6 is the point
number and j = 1, 2 is the image number].

1) Point 1 is very close to the center of image 1, while point
2 is close to the center of image 2, so y11, y12, y21, and
y22 are approximately 0, and δy11 = δy12 = δy21 =
δy22 ≈ 0.

2) Points 3 and 5 are located symmetrically to point 1 and
closed to the image boundaries, that is, y31 = −y51 and
y32 = −y52; thus, δy31 = −δy51 and δy32 = −δy52.
Points 4 and 6 share the similar relationship as
points 3 and 5.

Each point correspondence can generate (5); there are six
equations to solve five variables by, bz, ϕ

′, ω′, and κ ′. The
solution is listed here

by = 1

12d2

[
q1

(
6 f 2 + 4d2) + q2

(
6 f 2 + 8d2)

−(q3 + q5)
(
3 f 2 + 2d2)−(q4 +q6)

(
3 f 2−2d2)]

bz = f

2d
(q4 − q6)

ϕ′ = f

2bd
(−q3 + q4 + q5 − q6)

ω′ = f

4d2 (−2q1 − 2q2 + q3 + q4 + q5 + q6)

κ ′ = 1

3b
[−q1 + q2 − q3 + q4 − q5 + q6] (6)

where qi is the vertical parallax of point i , which is defined
by (5), and the symbols b and d are defined in Fig. 2.

III. LINEAR ESTIMATION OF RADIAL LENS DISTORTION

This section provides the details on how to effectively solve
the radial lens distortion. We start with the linear solution from
the two-view geometry, then show the geometric interpretation
of it, and expand it to N-view geometry.

A. Linear Estimation of κ1 From Relative Orientation Model

As mentioned in Section I, we assume that all input images
are acquired by the way of vertical photography, so every
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term of (6) is expected to be close to zero after the relative
orientation process has been completed. However, that is not
true if there exists radial lens distortion. The term qi is appre-
ciably influenced by radial lens distortion, and the relationship
between these two quantities is expressed as follows:

qi ≈ y̌i1 − (y̌i2 + by)

= (yi1 − δyi1) − (yi2 − δyi2 + by)

= [yi1 − (yi2 + by)] − (δyi1 − δyi2)

= −δyi1 + δyi2 (7)

where yi1 and yi2 are the ideal y-axis coordinates of point i ,
which obeys the coplanar equation, that is, yi1−(yi2+by) = 0.

We can further obtain the following array when applying
the properties of the six-point algorithm:

q1 = q2 = 0

q3 = −q5 = −δy31 + δy32

= −d(d2)κ1 + d(d2 + b2)κ1 = db2κ1

q4 = −q6 = −δy41 + δy42

= −d(d2 + b2)κ1 + d(d2)κ1 = −db2κ1. (8)

Equation 6 is simplified to (9) after these constraints as
described earlier are plugged into it

by = 0

bz = f

d
q4 = − f b2κ1

ϕ′ = f

bd
(−q3 + q4) = −2 f bκ1

ω′ = 0

κ ′ = 0. (9)

Equation 9 shows that the terms bz and ϕ′ are more
significantly affected by the radial lens distortion than other
terms. From this observation stems the idea to use bz or ϕ′ to
estimate κ1. That is, after the relative orientation process has
been completed, the radial lens distortion κ1 can be calculated
from

κ1 = − ϕ′

2 f b

and

κ1 = − bz

f b2 . (10)

B. Geometric Interpretation

Equation 9 shows that, if κ1 is positive, the term bz will be
negative, that is, the flight strip will bend downward; other-
wise, it will bend upward after the initial relative orientation
process has been completed. The relationship between bz and
ϕ′ can be comprehended from Fig. 3.

The details marked in blue circle in Fig. 3 show that

bz = b/2 × sin(ϕ′) ≈ b/2 × ϕ′

= b/2 × −2 f bκ1 = − f b2κ1

thus (9), bz = − f b2κ1, and ϕ′ = −2 f bκ1 provide a self-
consistent description (when A is small, sinA ≈ A).

Fig. 3. Illustration of the influence of positive κ1 on the terms bz and ϕ′ after
the initial relative orientation process has been completed. S–XY Z is the 3-D
coordinate system centered at the projective center of the first image. O1 and
O2 are two image centers, respectively. The symbol b represents the distance
between these two image centers in the image scale as before. Point M is
the middle point between two image centers. Blue circle: geometric relation
between bz and ϕ′.

Fig. 4. Illustration of bzj and ϕ j between image j − 1 and image j
( j = 2, 3, . . . , n). Red dots: image centers. Blue dots: middle point between
adjacent images. The term ϕ j is a constant value, which is just the same as
the value ϕ2 between images 1 and 2, while the term bzj is complex and
made up of two parts.

C. Linear Estimation of κ1 From Continuous Relative
Orientation Model

In practical applications, we should adopt multiple continu-
ous images, all adjacent images of which have similar overlap
ratio, to enhance the reliability of estimation.

Assuming the total number of images is n, the camera 3-D
coordinate system of image 1 is taken as a reference coordinate
system, the symbols bzj and ϕ j denote the relative flight height
and relative banking angle between images j − 1 and j , and
the symbols (bz) j and (ϕ) j denote the relative flight height
and relative banking angle between images 1 and j . After
continuous relative orientation process has been completed,
as shown in Fig. 4, (bz)n and (ϕ)n can be computed as follows.

1) From (9)

(bz)1 = 0 (bz)2 = − f b2κ1

(ϕ)1 = 0 (ϕ)2 = −2 f bκ1.

2) ϕ j is a constant value for all j = 2, 3, . . . , n, and thus

(ϕ)n = (n − 1) × (ϕ)2 = −2(n − 1) f bκ1.

3) bzj can be computed from two parts (Fig. 4):

a) Part 1

(bz)2

sin[(ϕ)2] × sin[(ϕ) j−1]

= (bz)2 × sin[( j − 2) × (ϕ)2]
sin[(ϕ)2] ≈ ( j − 2)(bz)2.

b) Part 2

(bz)2

sin[(ϕ)2] × sin[(ϕ) j ] ≈ ( j − 1)(bz)2.
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Thus

bzj = ( j − 2)(bz)2 + ( j − 1)(bz)2 = (2 j − 3)(bz)2.

Finally

(bz)n =
n∑

j=2

bzj

=
n∑

j=2

(2 j − 3)(bz)2

= (bz)2 + (2 ∗ 3 − 3)(bz)2 + · · · + (2n − 3)(bz)2

= (n − 1)2(bz)2

= −(n − 1)2 f b2κ1.

In summary, the term κ1 can be calculated from the contin-
uous relative orientation model as

κ1 = − (ϕ)n

2(n − 1) f b

and

κ1 = − (bz)n

(n − 1)2 f b2 . (11)

There are two conclusions from (11).
1) If there exists radial lens distortion, the relative angle

ϕ will increase or decrease with an image number n
linearly, while the relative height bz will act like a part
of a parabola.

2) Although κ1 can be obtained from both (ϕ)n and (bz)n ,
there is a difference in the stability of those results. Since
the formula from (ϕ)n is simpler than the formula from
(bz)n , the result from (ϕ)n will have smaller standard
deviation.

We will return back to this point later.

D. Summary

The recommended estimation procedure is as follows.
1) Choose a few (at least two) continuous images, which

satisfy a vertical photographic condition and have a
similar overlap ratio. It is not a hard work for UAV
images with the help of GPSs and IMUs data.

2) Obtain at least six standard point correspondences
between each pair of consecutive images by auto-
matching or manual selection.

3) Use the six-point algorithm to compute the parameters
of relative orientation.

4) Estimate the term κ1 by (11). Here, estimating by the
relative banking angle ϕ is recommended.

5) Apply radial distortion correction with κ1 to each point
in every image according to (2).

If an accurate camera information is required, BA, ini-
tialized with reasonable estimation of κ1 using the method
proposed in this paper, should be applied to achieve the final
result.

IV. EXPERIMENTS

The proposed method has been tested on both computer
simulated data and real data. The experimental procedures and
results will be discussed in detail in this section.

Fig. 5. Tests on computer simulated data. Simulated image size is 640×480.
The graphs show the computed radial lens distortion κ1 as a function
of noise level on the 2-D points. (a) and (c) Results obtained from ϕ′.
(b) and (d) Results obtained from bz . Standard deviations increase with the
increase of noise, and are more pronounced on images with less distortion.
The results from ϕ′ have smaller standard deviations than those from bz as
expected.

A. Tests on Computer Simulated Data

In order to gain a feeling for the performance of the
distortion estimation algorithm with two views under typical
image noise conditions, an investigation with simulated data
was conducted. A realistic scene was generated using two
camera positions, both of which have over 60% overlap and
satisfy the vertical photographic condition, and six 3-D points.
These points and cameras were used to generate perfect 2-D
points close to the six standard positions, and then Gaussian
noise was added to record the behavior of the estimate κ1. The
testing procedure was as follows.

1) Given six 3-D points {Xi }6
i=1 and two camera positions,

generate point correspondences close to the six standard
positions. Distort the perfect correspondences to gener-
ate noiseless correspondences x̄i ↔ x̄ ′

i .
2) Repeat 100 times.

a) Draw noise from a Gaussian distribution of stan-
dard deviation σ , and add to x̄i ↔ x̄ ′

i to generate
noisy correspondences xi ↔ x ′

i .
b) Use (6) to recover the relative orientation model,

mainly the terms ϕ′ and bz .
c) Use (10) to compute two results of κ1 from ϕ′ and

bz , respectively.

3) From the list of computed κ1 values, compute the
median and the 10th and 90th percentile points. These
are shown in Fig. 5.

The noise levels used had σ between 0 and 2 pixels, which
represents a typical range in video and film imagery [11].

There are some conclusions about the proposed method
from Fig. 5. For the distortion of about 20 pixels at the image
corner, the estimation results have good accuracy (within 10%
of the veridical value) even when the noise level is two pixels.
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TABLE I

ORIGINAL CONTINUOUS RELATIVE ORIENTATION RESULT. FL: FOCAL LENGTH

Fig. 6. Nine continuous images for experiment. The flight height range is from 819 to 822 m, the overlap between adjacent images is about 75%, and the
covered land is an urban fringe.

TABLE II

ESTIMATION RESULTS OF κ1 ACCORDING TO OUR PROPOSED METHOD

But, if the distortion at the image corner is two pixels, which
is in the same magnitude with noise, the estimation results
will be unreliable. Thus, this technique cannot give reliable
estimates of κ1, when the amount of distortion is not one
magnitude higher than the noise level. Moreover, the estimates
computed from ϕ′ have smaller standard deviation than those
computed from bz as expected in Section III-C, so it is better
to use ϕ′ to compute κ1.

B. Tests on Real Data

Multiple images from an UAV mission are further used
to evaluate the performance of the proposed method on the
real data. The nonmetric camera is Cannon EOS 5D Mark II,
whose image size is 5616 pixel × 3744 pixel, pixel size is
6.41 μm, and FL is 24.5724 mm. Nine continuous images
from a strip are selected according to their Positioning and
Orientation System data: the flight height range is from 819 to
822 m, the overlap between adjacent images is about 75%, and
the covered land is an urban fringe, as shown in Fig. 6.

To obtain some correspondences (at least six) from each
image with its next image, this paper employed an auto
image match method to achieve a certain amount of corre-
spondences, then checked the match result to exclude the

outliers by manual inspection, and at last there remained
totally 95 reliable correspondences, the distribution of which
are shown in Fig. 7, with a localization accuracy of better than
0.3 pixels.

All the 95 correspondences have been used to process the
continuous relative orientation, and the scale factor bx between
the first-image center and the second-image center is set to be
100 FL to simplify the calculation, that is, b ≈ 100 FL. The
results are shown in Table I, and Fig. 8 shows the trend of the
relative flight height bz and relative angle ϕ.

The records of Table I and the trend charts in Fig. 8
show the relative angle decreases linearly and the flight strip
significantly bends downward close to a part of parabola; both
these phenomena indicate that radial distortion exists in the
camera. Thus, our proposed method was applied to estimate
the distortion κ1. The estimation results from only two images
to all nine images are listed in Table II.

Table II shows that all estimation results of κ1 obtained by
either (bz)n or (ϕ)n are in the same magnitude and tend to
be stable. The radial lens distortion was then removed for
all point correspondences in all images using the value of
κ1 = 6.1853 × 10−5 computed from (ϕ)9 and (2). Continuous
relative orientation was carried out based on the distortion-free
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Fig. 7. Distribution of correspondences in continuous images. (a) Distribution diagram of correspondences. Red rectangles: nine images.
Black crosses: correspondences, and it shows that all six standard position are covered. (b) Correspondences in nine images. White crosses: correspondences.

TABLE III

RESULTS FOR CONTINUOUS RELATIVE ORIENTATION USING DISTORTION PARAMETERS COMPUTED BY THE PROPOSED METHOD

Fig. 8. Trend charts of relative angle ϕ and relative flight height bz , both
of which indicate there exists the radial lens distortion. (a) Trend chart of
relative angle, the shape of which is approximately a straight line. (b) Trend
chart of flight height, the shape of which is approximately a part of parabola.

point correspondences. Table III shows the result of this
continuous relative orientation, and Fig. 9 shows both the trend
of corrected relative flight height and the relative angle.

Fig. 9. Variations of relative angle and relative flight height after the radial
distortion has been removed by the proposed method. (a) There is no obvious
tendency found in relative angle. (b) There is no obvious tendency found in
relative flight height.

The comparison of Figs. 8 and 9 shows that the distortion
correction effectively eliminates the obvious tendencies of
relative angle and relative flight height, which may affect the
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TABLE IV

CONTINUOUS RELATIVE ORIENTATION RESULT FROM STRICT CALIBRATION COMPARED WITH THE PROPOSED METHOD

convergence property and convergence efficiency of subse-
quent processing (e.g., BA).

The nonmetric camera was calibrated in a professional
institution to get the accurate values of the lens distortion
parameters for further comparative analysis. The calibration
result shows κ1 = 5.5475×10−5 and κ2 = −2.80 963×10−8,
which indicates that the two values of κ1 are in the same
magnitude and quite close. A continuous relative orientation
was then implemented from point correspondences corrected
for radial distortion via κ1 and κ2 values determined from
laboratory calibration. These two results for the continuous
relative orientation parameters from our method and the lab-
oratory calibration are displayed in Table IV.

Table IV shows that the differences in relative flight height
and relative angle between these two results are not pro-
nounced, and in practice, these differences can easily be com-
pensated in self-calibration BA by applying the estimation of
κ1 as an initial value. Therefore, the experimental results show
that our method can estimate the radial lens distortion κ1 with
a high precision and improve the accuracy of the continuous
relative orientation.

V. CONCLUSION

In this paper, we have developed a simple and efficient
method for estimating the radial lens distortion coefficient.
The method uses a few-point correspondences from at least
two images, which satisfy the vertical photographic condition,
to recover the relative orientation model, and then employs
a linear algorithm to estimate the radial distortion. Since:
1) there are no specific requirements for site or scene pat-
tern (e.g., plumb lines); 2) the estimation algorithm is linear
and has a good precision; and 3) selecting a few images
acquired by the way of vertical photography is easy for UAV,
the proposed method is suitable for UAV to estimate its radial
lens distortion, especially during an emergency.

This paper has two main contributions:
1) Detection of the Radial Lens Distortion: The mathemat-

ical relationships between the radial lens distortion and
relative flight height and relative angle were deduced.
If there exists radial lens distortion, the relative angle
will increase or decrease with image number linearly,
while the relative height will act as a parabola, after
relative orientation process completes. These interesting
relationships can be used in turn to detect whether there
exists radial lens distortion. That is, we first process

the continuous relative orientation among a few (better
more than six) images, then draw the trend charts of
relative angle and relative flight height with the image
number (or relative baseline) as variable, and finally
check whether the relative angle has an obvious linear
change (increase or decrease) and the trend curve of
relative flight height is close to a part of a parabola.
If both the trends are observed, there exists a significant
radial distortion in the camera.

2) Linear Estimation of the Radial Lens Distortion: The
radial lens distortion detected on the camera can be
linearly estimated by our method. All the experimental
results show that the estimates by our method have
good accuracy (within 20% of the veridical value).
These estimates can be further applied to improve the
accuracy of the continuous relative orientation, even the
convergence property, and the convergence efficiency
of BA.

Although the proposed method cannot meet the requirement
of high accuracy, it is quite effective and simple as a kind of
method to estimate the initial value of the radial distortion.
Therefore, the proposed method is very helpful for UAS if the
camera has not been strictly calibrated.
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