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A Mixed Radiometric Normalization Method for
Mosaicking of High-Resolution Satellite Imagery
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Abstract— A new mixed radiometric normalization (MRN)
method is introduced in this paper which aims to eliminate
the radiometric difference in image mosaicking. The radiometric
normalization methods can be classified as the absolute and
relative approaches in traditional solutions. Though the absolute
methods could get the precise surface reflectance values of
the images, rigorous conditions required for them are usually
difficult to obtain, which makes the absolute methods impractical
in many cases. The relative methods, which are simple and
practicable, are more widely applied. However, the standard
for designating the reference image needed for these methods
is not unified. Moreover, the color error propagation and the
two-body problems are common obstacles for the relative meth-
ods. The proposed MRN approach combines absolute and relative
radiometric normalization methods, by which the advantages of
both can be fully used and the limitations can be effectively
avoided. First, suitable image after absolute radiometric cali-
bration is selected as the reference image. Then, the invariant
feature probability between the pixels of the target image and
that of the reference image is obtained. Afterward, an adaptive
local approach is adopted to obtain a suitable linear regression
model for each block. Finally, a bilinear interpolation method
is employed to obtain the radiometric calibration parameters
for each pixel. Moreover, the CIELAB color space is adopted
to evaluate the results quantitatively. Experimental results of
ZY-3, GF-1, and GF-2 data indicate that the proposed method
can eliminate the radiometric differences between images from
the same or even different sensors.

Index Terms— Adaptive local approach, high-resolution
satellite imagery, image mosaicking, mixed radiometric normal-
ization (MRN), multisources imagery, radiometric difference.

I. INTRODUCTION

IN THE application of earth observation, high-resolution
satellite imagery (relative to medium-resolution imagery

with 10–100 m resolution [1]) as well as its wide-range
analysis have become increasingly important [2]–[4]. Due
to the limitations of sensor design, the coverage of a sin-
gle image is limited. To obtain images with large cov-
erage, image mosaicking is usually adopted using images
obtained at a different time and even from different
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sensors. Due to several factors, such as solar incident angle,
atmosphere, and illumination condition [5], [6], radiometric
difference exists between different images, thereby posing a
large problem for image processing and analysis [3], [5]–[7].
In order to eliminate the differences between images, radio-
metric calibration is necessary, which can be categorized
as absolute radiometric calibration and relative radiometric
normalization [6], [8]–[11].

Absolute radiometric calibration aims to convert the dig-
ital number (DN) value to the surface reflectance using
an atmosphere correction model, a radiometric calibration
coefficient, and other related atmospheric correction para-
meters [12]. Studies have shown that absolute radiometric
calibration has the ability to convert the DN values of satellite
images to surface reflectance precisely [13]. However, most
absolute radiometric calibration methods require the properties
of atmosphere at the image acquisition time, which are usually
difficult to obtain [14]. Therefore, it is impractical to conduct
absolute radiometric calibration in many cases [7], [14]–[17].

Relative radiometric normalization adjusts the radiometric
information of the target image to that of the reference
image [7], [10], [18], [19]. There exist numerous related
approaches, most of which aim for change detection. How-
ever, relative radiometric normalization with the intent of
image mosaicking only is discussed in this paper, which
can be divided into nonlinear correction and linear cor-
rection. The linear correction methods are more widely
used [5]–[7], [10], [14]. Most linear correction approaches
based on the hypothesis that the pseudoinvariant features in
the target image are linearly related to the corresponding ones
at the same location in the reference image [20], [21]. For these
approaches, precise invariant feature extraction is the research
hotspot, including the manual selection method, principal
component analysis (PCA) method [10], multivariate alteration
detection (MAD) method [14], iteratively reweighted MAD
(IR-MAD) method [22], and iterative slow feature analysis
(I-SFA) method [18].

The absolute and relative radiometric normalization
approaches are two common solutions between which the
latter is more widely applied because the former requires
rigorous conditions. Despite the advantage of simplicity and
practicability, relative radiometric normalization methods have
disadvantages as well. First, the standard for determining the
reference image is not unified. As illustrated in [22] and [23],
the reference image was considered to be the clearest target
image, while in [4], it was in the middle with the minimum
distance to the other images. Therefore, for the same group of
test data, the reference images selected by different criteria
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may vary, thus yielding different calibration results. Also,
in conditions where great changes occurred to most of the
objects in the overlapped area, or the overlapped area was
too small, it may be difficult to obtain the regression cal-
ibration parameters. In addition, the two-body problem [4],
which means only one image is processed at a time and the
calibration relationship between the images is not independent,
is a common problem for relative radiometric calibration with
the aim of image mosaicking. Although solutions have been
proposed [4], they are rather complicated.

According to the above-mentioned analysis, it can be
inferred that both absolute and relative radiometric calibration
methods have their advantages and limitations. Therefore, it is
imperative to combine the advantages and avoid the limita-
tions. In [24], the aerial hyperspectral images after atmospheric
correction by fast line-of-sight atmospheric analysis of spec-
tral hypercubes (FLAASH) were considered as the reference
images. HJ-1A/B images were calibrated with the reflectivity
products of Landsat TM, and the linear transformation rela-
tionship between the DN value of the image and the surface
reflectance under certain conditions was obtained in [25]. The
reflectivity products of SPOT VGT were used as reference
images to calibrate Landsat ETM+ images in [2], which
yielded results similar to the results produced by the relative
radiometric calibration approach based on invariant features
in the overlapped area. In [1], the surface reflectivity products
of MODIS were selected as reference images to calibrate
medium-resolution images, such as Landsat, Advanced Wide
Field Sensor, and ASTER, whereby the DN values of the
images were transformed into a surface reflectance similar to
MODIS. The above-mentioned methods adopt middle or low-
resolution images as test data, the majority of which are
usually applied in bitemporal image analysis and change
detection, thus leading to insufficient research in mosaicking-
aimed radiometric calibration of high-resolution images.

The proposed novel solution, which combines both the
absolute and relative radiometric normalization approaches,
is defined as mixed radiometric normalization (MRN) in
this paper. Considering the characteristics in high-resolution
images, corresponding improvements are made to enhance
the performance effectively. The proposed method contains
four steps. First, the suitable image meeting certain criteria
is selected as the candidate reference image. Then, the can-
didate reference image after absolute radiometric calibration
is chosen as the reference image. Next, the invariant feature
probability of pixels in both target and reference image is
extracted by the linear invariant IR-MAD method. Afterward,
the target and reference images are separated into tiles by
certain rules, which then enable building a relative normal-
ization regression model block by block. Finally, the radio-
metric correction parameters of each pixel are obtained by
bilinear interpolation, from which the calibrated images can
be generated. In the proposed method, the surface reflectance
products after the absolute radiometric correction are selected
as the reference to avoid the problem of choosing suitable
reference image in traditional relative normalization methods.
Moreover, the reference data selected in the proposed method
have the same geographic coverage with the target images.

Therefore, the target images can be corrected independently
and simultaneously, thus avoiding the color error propagation,
and the two-body problems in traditional relative normal-
ization methods. In addition, the selection of the surface
reflectance products as the reference could also reduce the
influences caused by the atmosphere and other factors in
the target images, i.e., the target images, which do not meet
the criteria of absolute normalization, can also be corrected
to get the analogous effect of the absolute normalization
methods, which extends the range of application of the
absolute normalization methods to a certain degree. In general,
the proposed MRN approach makes full use of the advan-
tages of both absolute and relative radiometric normalization
methods. Meanwhile, the limitations of absolute and relative
radiometric normalization methods are effectively avoided in
the proposed approach. Experimental results indicate that the
proposed approach is able to provide an effective solution
for the radiometric normalization of high-resolution images
in image mosaicking applications.

II. BACKGROUND KNOWLEDGE

As mentioned earlier, absolute and relative radiometric
normalization are two common calibration solutions. Some
existing methods of them are employed in this paper.

A. FLAASH

There are two general procedures in absolute radiometric
calibration: 1) the DN value of the original image is first
transformed into irradiance and then to the atmospheric top
reflectance by radiometric calibration and 2) atmospheric
correction is adopted to convert atmospheric top reflectance to
surface reflectance [15]. The principle of absolute radiometric
calibration will not be discussed further in this paper since
algorithms, such as QUAC, FLAASH, and ATCOR2/3, are
mature [25], [26], [27], among which the FLAASH approach
is adopted in our experiments. FLAASH is a physics-based
correction method built on MODTRAN4 atmospheric correc-
tion software developed by the Air Force Phillips Laboratory,
Hanscom AFB, and Spectral Sciences Inc [27]. The main
goals of this software are to provide: 1) accurate, physics-
based derivation of surface and atmospheric properties;
2) minimal computation time requirements; and 3) an interac-
tive, user-friendly interface for running arbitrary MODTRAN
calculations [25], [27], [28].

B. IR-MAD

MAD was first applied in change detection, where invari-
ant features of sequential images were extracted and used
in radiometric calibration in [15]. The IR-MAD approach,
the improvement of MAD, was proposed in [22]. IR-MAD is
able to automatically extract invariant features from adjacent
images with a different acquisition time, which is applicable in
recognizing significant changes, especially when the invariant
pixel has a small range. The basic principle of MAD is as
follows.

Assuming that two images of N-bands with a different
acquisition time cover the same area, and then, the pixels
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representing the same geographical location can
be expressed as T 1 = (T 11 . . . T 1i . . . T 1N )T and
T 2 = (T 21 . . . T 2i . . . T 2N )T , where T 1i and T 2i represent
the gray value of the first and second image in band i ,
respectively. Random variables U and V can be obtained by
any linear transformation, such as aT = (a1 . . . ai . . . aN ) and
bT = (b1 . . . bi . . . bN )

U = aT T 1 = a1T 11 + . . . + ai T 1i + . . . + aN T 1N (1)

V = bT T 2 = b1T 21 + . . . + bi T 2i + . . . + bN T 2N . (2)

The linear transformation parameters that generate the max-
imum correlation coefficient between U and V can be obtained
by canonical correlation analysis [29]. The MAD variable is
the difference between U and V

MADi = UN−i+1 − VN−i+1, i = 1 . . . N. (3)

The sum of the squares of the standardized MAD can be
obtained by

Z =
N∑

i=1

(
MADi

σMADi

)2

(4)

σMADi = √
Var(M ADi ) = √

2(1 − ρN−i+1) (5)

where σM ADi is the standard deviation of the MADi ,
Var(MADi ) is the variance of the M ADi , and ρN−i+1 is the
corresponding canonical variable.

Since the value of Z meets with N degrees of freedom of
chi-square distribution, the probability of Z as an invariant
point can be described as

P(no-change) = P{χ2(N) > Z}. (6)

IR-MAD is the iterative result of MAD. In the process of
the first iteration, the weight of all the pixels is initialized to 1,
and the invariant feature probability of each pixel is obtained.
During the next iteration, the invariant feature probability
of each pixel is considered as its weight and is calculated
again by MAD. The iteration continues until it reaches the
stopping condition, where the mobility scale of the canonical
variable is below a certain threshold, or the iteration time
reaches a certain value. After iteration, the invariable pixels
have a high weight, while the variable ones do not. The pixels
whose invariant feature probability is greater than a certain
threshold are selected as the invariant pixels for radiometric
normalization purposes.

III. METHODS

A. Overview of the Proposed MRN Method

The overall process of the proposed MRN approach,
as shown in Fig. 1, can be described as follows.

1) Selection of candidate reference image. The factors
of geographical coverage, acquisition time, and spatial
resolution were considered to select the suitable image
as the candidate reference image.

2) Absolute radiometric calibration. The candidate refer-
ence image was processed by radiometric calibration and
FLAASH atmospheric radiometric correction to obtain
the surface reflectance image as the reference image.

Fig. 1. Flowchart of the MRN approach.

3) Invariant probability of features calculation. The target
image was resampled so that its resolution is consistent
with that of the reference image. Then, the IR-MAD
approach was adopted to calculate the invariant feature
probability of each pixel of the target image.

4) Image blocking and calculation of the correction model
parameters in each block. The target image was divided
into blocks according to the distribution of the ground
objects, and the regression coefficients were calculated
by a linear regression model.

5) Radiometric normalization. According to the geographic
positions of the pixels in the target image, the result
image was generated by calibrating each pixel with the
calibration parameters using bilinear interpolation.

B. Selection of Candidate Reference Image

As mentioned earlier, the reference image plays an impor-
tant role in radiometric normalization approaches [30].
Generally, the reference image is selected from the target
images in traditional methods. However, the standard for deter-
mining the reference image is not unified. In the procedure
of aerial triangulation, the control points are employed to
restrict the geographic coordinates of the image points [31].
Inspired by this view, the image with right radiometric infor-
mation can also be employed as the control information for
radiometric normalization methods. Therefore, we selected the
image which contains the right radiometric information as the
reference image.

The surface reflectance products are the real reflection of
the surface objects. In other words, the surface reflectance
products contain the right radiometric information, which
means that they can be selected as the reference images for
radiometric normalization methods. In fact, most of the surface
reflectance products come from the images after the absolute
radiometric normalization. Hence, the images which meet
the requirement of absolute radiometric normalization method
can be selected as the candidate reference data sets. Then,
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TABLE I

IMAGING CHARACTERISTIC OF MULTISPECTRAL SENSOR

the factors of geographical coverage, acquisition time, and
spatial resolution of the target images were extracted. Next,
the image in the candidate reference data sets with the same
geographic coverage, acquisition season, and the closest spatial
resolution compared with the target images, was selected as
the final candidate reference image.

In this paper, Operational Land Imager (OLI) images of
Landsat 8 were employed as candidate reference images
in the experiments. The reasons are as follows: 1) since
the image product of Landsat 8 satellite is open source,
it is convenient to obtain the data covering the same area
with the target image; 2) research and processing techniques
based on Landsat 8 images are mature, and image process-
ing software such as ENVI 5.1 (Exelis-Visual Information
Solutions) software has developed an absolute radiomet-
ric calibration module for Landsat 8 images; and 3) the
OLI images of Landsat 8 are widely covered and have a similar
spectral range with many satellite images (such as ZY-1,
GF-1, and GF-2 images, see Table I).

C. Absolute Radiometric Calibration for Reference Image

The radiometric calibration as well as the FLAASH cali-
bration module in ENVI 5.1 was adopted in our experiments.
First, with the help of radiometric calibration module in
ENVI 5.1, the DN value of the Landsat-8 OLI image was
transformed into the atmospheric top reflectance value. Then,
the FLAASH calibration module in ENVI 5.1 was imple-
mented by fitting to the sensor specifications and some other
characteristics (such as area, season, and ground elevation) of
the Landsat-8 OLI image, which can convert the atmospheric
top reflectance value to surface reflectance.

In order to verify the accuracy of the absolute calibration
results, accuracy verification of the calibration result was
performed referencing the MODIS surface reflectance product
MOD09GA [32], [33]. The MOD09GA product, which is
performed with a greater degree of robustness than Land-
sat images and is easily available [12], [32], is used for
the accuracy assessment of the Landsat TM/ETM+ surface
reflectance data after absolute atmospheric correction in The
Landsat Ecosystem Disturbance Adaptive Processing System
team [32], [33]. Since approaches evaluating absolute radio-
metric calibration results using the reference of MODIS data

TABLE II

SIX MULTISPECTRAL BANDS OF THE LANDSAT-8 OLI
AND THE CORRESPONDING MODIS BANDS

have been discussed in [32], a simple introduction is made
here only.

1) For the Landsat-8 OLI image to be verified, the
MOD09GA product, acquired on the same date and
encompass or intersect with the Landsat image, needs
to be identified. The MOD09GA data with sinusoidal
projection were reprojected onto the Landsat-8 OLI
data’s Universal Transverse Mercator Projection by
using the nearest neighbor sampling method.

2) For each Landsat-8 OLI image and its simultaneously
acquired MOD09GA image, the comparison is
performed based on samples. Each sample is a surface
reflectance value pair collected from both Landsat
and MOD09GA images at the same coordinate and is
located in the homogeneous regions in both images.

3) The samples are filtered to exclude nonhomogeneous
pixels, pixels contaminated by cloud and shadow, and
MOD09GA pixels with view zenith different from
Landsat.

4) The accuracy verification is performed by a scatter
point display composed of the samples.

Scatter plots provide graphic views of similarity. Since
there exist six corresponding bands with similar spectral range
between Landsat 8 and MODIS (Table II), the experiment
was conducted with six bands. An overall plot was generated
by combining all the six spectral bands together. Bands 2–7
represent the corresponding bands in Landsat-8 OLI. In Fig. 2,
the x-axis represents the point values of MOD09GA, while
the y-axis corresponds to the point values of Landsat-8 OLI
data. If the absolute calibration accuracy of Landsat 8 is
improved, the scatter plots are linearly distributed and mostly
concentrated near the liney = x . As shown in Fig. 2,
the distribution of scatter plots was linear and close to the line
y = x , indicating that the calibration results of Landsat-8 OLI
were highly consistent with MODIS data.

D. Invariant Probability of Features Calculation
With IR-MAD

After obtaining the reference image, the radiometric calibra-
tion transformation relationship between the reference image
and the target image was established. Among the transforma-
tion approaches, a method introducing invariant features into
calculation is widely adopted. Generally, the invariant feature
extraction method processes data with the same unit, such as
two images of DN value or two surface reflectance images.
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Fig. 2. (a) Scatter plots of overall plot for six spectral bands and (b)–(g) scatter plot of each individual Landsat8 band, where the x-axis represents the
point values of MOD09GA, while the y-axis corresponds to the point values of Landsat-8 OLI data. Band2–band7 represent the corresponding bands in
Landsat-8 OLI.

However, in the proposed method, the invariant feature was
extracted from the surface reflectance image and the DN value
image, which means that the test data have different units.

Strictly speaking, the relationship between the DN value
and its corresponding surface reflectance is not linear, though
the relationship may become linear under certain assumptions.
In many cases, when the visibility is high, a linear relationship
does exist between the DN value and the surface reflectance,
as illustrated in [25]. Since the reference images in the
experiments have a good imaging quality and visibility, which
meets the above-mentioned requirements, here, we assume that
the relationship between the DN value and its corresponding
surface reflectance is linear.

Under this assumption, an invariant feature extraction
method, which is linear invariant, can be adopted in the process
of both the surface reflectance image and the DN value image.
Different from the other invariant feature extraction methods,
such as the PCA method and the I-SFA method, the MAD
approach is invariant to linear and affine scaling [15]. In other
words, conducting MAD transformation on images both before
and after linear transformation will yield the same result.
IR-MAD is the iterative result of MAD, which means that
IR-MAD is also invariant to linear and affine scaling. There-
fore, the IR-MAD was applied in this paper, where the
invariant probability of the corresponding pixel of both the
target DN value image and the reference surface reflectance
image is extracted.

The invariant feature probability of the pixel extracted by
IR-MAD method indicates the probability of no change. In tra-
ditional radiometric normalization method, the pixel whose
probability of no change is higher than a given threshold (such
as 0.85 or 0.95) is selected as an invariant feature point for
the radiometric normalization purpose. However, the threshold
is empirical, which will affect the results of radiometric cal-
ibration [18]. In order to make the radiometric normalization
automatically, the invariant feature points were not extracted
by setting a threshold in this paper. Instead, all the pixels,
whose invariant probability was considered as the weight

in further calibration model calculations, were kept in the
image.

E. Adaptive Local Approach

Images are generally considered as a whole in the cal-
culation of radiometric calibration in traditional approaches.
In other words, only one transformation model exists in an
image, leading to neglecting the locality and inhomogeneity
of the ground objects distribution. To solve this problem,
images were divided into blocks based on the distribution of
ground objects in this paper, and the transformation model
parameters were calculated in blocks. The block size of an
image was relevant to its feature richness, which could be
described by the coefficient of variation. The coefficient of
variation, meaning the ratio of the standard deviation and
average, reflects the discrete degree of data. Unlike the stan-
dard deviation, the coefficient of variation is resistant to scale
and unit changes. The ratio of the variation coefficient and
the reference variation coefficient was then calculated, and
the block number was obtained according to the reference
variation coefficient. If the mean value and standard devia-
tion corresponding to the reference variation coefficient are
128 and 45, then the reference variation coefficient is 0.352,
namely, 45/128. Assuming that the image corresponding to
the reference coefficient was divided into m × n blocks, and
then, the target image could be divided into M × N blocks,
calculated by formulas in the following:

M = r × m, N = r × n (7)

r = C A

C Aref
, C A = σ

μ
(8)

where C A is the coefficient of variation, σ is the standard
deviation, μ is the mean value, r is the ratio of the variation
coefficient, CAref is the reference variation coefficient, m and n
are blocking the number of rows and columns that correspond
to the reference variation coefficient, and M and N are the
blocking number of the row and column of the target image.
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F. Linear Regression

Relative radiometric normalization tends to assume that
the radiometric difference between the target image and the
reference image can be described by linear difference of the
invariant features, as follows:

T 1i
j = a j T 2i

j + b j (9)

where T 1i
j is the gray value of the i th pixel of band j in the

image obtained at time 1, T 2i
j is the corresponding gray value

in the image obtained at time 2, and a j and b j are the linear
regression coefficients of band j .

The time 2 image is calibrated based on the time 1 image
according to the linear regression coefficients, where T 2Newi

j
is

the calibrated gray value of T 2i
j

T 2Newi
j
= a j T 2i

j + b j . (10)

Linear regression coefficients can be calculated by regres-
sion models, such as the orthogonal regression (OR) model and
the least squares regression (LSR) model. Canty et al. [14]
considered that the OR model was more applicable than
the LSR model in the calculation of radiometric correction
regression coefficient. However, Zhang et al. [18] found that
the LSR model performed better than the OR model. In other
words, different researchers get different conclusions in the
selection of linear regression model. Therefore, the two models
were both tested in this paper to obtain the more suitable model
for the proposed method.

The relationship in the LSR model can be described as

T 2Newi
j
=

σ 2
T 1 j T 2 j

σ 2
T 2 j

× T 2i
j + μT 1 j −

σ 2
T 1 j T 2 j

σ 2
T 2 j

× μT 2 j (11)

where σ 2
T 1 j T 2 j

is the covariance between images, σ 2
T 2 j

is the

variance of the time 2 image, μT 1 j is the mean value of the
time 1 image, and μT 2 j is the mean value of the time 2 image.

The relationship in the OR model can be described as

T 2Newi
j

=
(σ 2

T 1 j
− σ 2

T 2 j
) +

√
(σ 2

T 1 j
− σ 2

T 2 j
)2 + 4(σ 2

T 1 j T 2 j
)2

2σ 2
T 1 j T 2 j

× T 2i
j

+ μT 1 j −
(σ 2

T 1 j
−σ 2

T 2 j
)+

√
(σ 2

T 1 j
−σ 2

T 2 j
)2+4(σ 2

T 1 j T 2 j
)2

2σ 2
T 1 j T 2 j

× μT 2 j . (12)

G. Bilinear Interpolation for Correction Parameters

Our regression models were built by considering the invari-
ant probability as the weight for each pixel in the block
according to the blocking result (Fig. 3). In this way, the radio-
metric calibration parameters could be obtained. For an image
divided into M × N blocks, M × N groups of radiometric
calibration parameters were obtained. To avoid the blocking
effect, weighted bilinear interpolation was adopted to calculate

Fig. 3. Bilinear interpolation schemes.

TABLE III

BASIC INFORMATION OF EXPERIMENT DATA SETS

the calibration parameters of each pixel. Then, each pixel was
calibrated to generate the normalization result

C(i, j) = −→
CB · −→P (13)−→

CB = (CB(w, v), CB(w ± 1, v), CB(w, v ± 1),

CB(w ± 1, v ± 1)) (14)−→
P = (P(w, v), P(w ± 1, v), P(w, v ± 1),

P(w ± 1, v ± 1)) (15)

where C(i, j) is the radiometric calibration parameter of
pixel (i, j); (w, v) is the block of pixel (i, j), w ∈ M, v ∈ N ;−→
CB is the radiometric correction coefficient vector; CB(w, v)
is the calibration parameter of block (w, v); the same goes for
CB(w ± 1, v), CB(w, v ± 1), and CB(w ± 1, v ± 1), where ±
is relevant to the position of the pixel in the block,

−→
P is the

weight vector corresponding to
−→
CB , and the weight is inversely

proportional to the distance.
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Fig. 4. Comparison between the images before and after radiometric normalization in the first data set. (a) Overlaid image before normalization.
(a1) and (a2) Detail areas marked by red box in (a). (b) Overlaid image after normalization. (b1) and (b2) Corresponding detail areas of (a1) and (a2) in (b).
(c) Mosaic image of the target images before normalization. (c1) and (c2) Detail areas marked by red box in (c). (d) Mosaic image of the target images after
normalization. (d1) and (d2) Corresponding detail areas of (c1) and (c2) in (d). Green lines in the above images are the boundaries of the target images.

Fig. 5. Comparison between the images before and after radiometric normalization in the second data set. (a) Overlaid image before normalization.
(a1) and (a2) Detail areas marked by red box in (a). (b) Overlaid image after normalization. (b1) and (b2) Corresponding detail areas of (a1) and (a2) in (b).
(c) Mosaic image of the target images before normalization. (c1) and (c2) Detail areas marked by red box in (c). (d) Mosaic image of the target images after
normalization. (d1) and (d2) Corresponding detail areas of (c1) and (c2) in (d). Green lines in above images are the boundaries of the target images.

IV. RESULTS AND ANALYSIS

A. Study Data

Multispectral images from ZY-3, GF-1 satellites, and the
fused images (the adopted fusion approach effectively com-
bines the spatial and spectral characteristics of the origi-
nal images) from the GF-2 satellite of China were used
as experimental data. The spatial resolutions are 6, 8, and
1 m, respectively. ZY-3, launched on January 9, 2012, is the
first civilian high-resolution stereo mapping satellite in China;
GF-1 is the first satellite of the high-resolution land-
observation system of China, launched on April 26, 2013;
GF-2 is the first civilian satellite with the resolution better than
1 m in China launched on August 19, 2014. As mentioned
earlier, the OLI images of Landsat 8 were employed as
reference images in the experiments of this paper.

Four data sets shown in Table III and Figs. 4–7 were
selected for experimentation and analysis. Each experiment
data set was orthorectified to the same resolution with control
points and digital elevation model, and the root-mean-square
error (RMSE) was less than 0.5 pixels. The World Geodetic

System 84 datum with the longitude and latitude coordinates
was used in all images [14], [15], [28]. Then, the reference
images were matched to the target images with an RMSE
less than 15 m (0.5 pixels of the reference image). Geometric
corrections have been developed for both coarse and fine
resolution satellite data [10], which will not be discussed
further here. Though the proposed method can deal with
images with any number of bands, three bands of the image
were selected for the experiments, as display devices can only
show three bands. And the R-, G-, and B-bands are selected
since a true color image consistent with human cognition can
be formed by combining corresponding bands.

B. Visual Assessments

The above-mentioned four data sets were normalized by the
proposed method, and each image was divided in 6 × 6 blocks
and processed by the LSR model; the results are shown
in Figs. 4–7. It is worth noting that although the 16-b images
were used in the experiment, they were compressed to
8 b for the purpose of display. The experimental results were
displayed in true color and each data set is stretched to an
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Fig. 6. Comparison between the images before and after radiometric normalization in the third data set. (a) Overlaid image before normalization.
(a1) and (a2) Detail areas marked by red box in (a). (b) Overlaid image after normalization. (b1) and (b2) Corresponding detail areas of (a1) and (a2) in (b).
(c) Mosaic image of the target images before normalization. (c1) and (c2) Detail areas marked by red box in (c). (d) Mosaic image of the target images after
normalization. (d1) and (d2) Corresponding detail areas of (c1) and (c2) in (d). Green lines in above images are the boundaries of the target images.

Fig. 7. Comparison between the images before and after radiometric normalization in the fourth data set. (a) Overlaid image before normalization.
(a1) and (a2) Detail areas marked by red box in (a). (b) Overlaid image after normalization. (b1) and (b2) Corresponding detail areas of (a1) and (a2) in (b).
(c) Mosaic image of the target images before normalization. (c1) and (c2) Detail areas marked by red box in (c). (d) Mosaic image of the target images after
normalization. (d1) and (d2) Corresponding detail areas of (c1) and (c2) in (d). Green lines in above images are the boundaries of the target images.

8-b image according to the same threshold of its corresponding
reference image.

Four data sets before and after radiometric normalization
were overlaid with the reference images for comparison,
as shown in Figs. 4(a) and (b)–7(a) and (b). Figs. 4(a)–7(a) are
the overlaid images of the target images before normalization
and the reference images. The areas marked by green lines
are the images to be corrected and the base images are the
reference images. It can be seen that obvious radiometric
differences exist between the target and the reference images.
In contrast, Figs. 4(b)–7(b) are the overlaid images of the
corrected images and the reference images, from which no
obvious radiometric differences can be seen. The detailed
comparison between (a1) and (b1) and (a2) and (b2) from
corresponding areas in the red box in (a) and (b) is shown
in Figs. 4–7. These details further indicate that no obvious
radiometric differences exist between the corrected images and
the reference images.

The four data sets before and after radiometric correction
were compared in Figs. 4(c) and (d)–7(c) and (d), from
which it can be inferred that radiometric differences exist
between these images in varying degrees. However, there
are no obvious differences between the mosaic images after
normalization in Figs. 4(d)–7(d). (c1), (c2), (d1), and (d2) of
Figs. 4–7 compared the details corresponding to the areas in
the red box in (c) and (d). These details further indicate that
there are no obvious radiometric differences between the target
images after correction.

In the four data sets, the reference image and the image to be
corrected shared the same geographical coverage and the over-
lapping area is the target image itself, which is independent
of the overlapping relationship between the target images. The
third set of images is heterologous, which makes radiometric
correction more difficult than for homologous images. From
Fig. 6, it can be seen that after correcting by the proposed
method, the radiometric differences between the experiment
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TABLE IV

EVALUATION COMPARISON OF THE NORMALIZATION RESULT OF THE FIRST EXPERIMENT DATA SET UNDER DIFFERENT METHODS

TABLE V

EVALUATION COMPARISON OF THE NORMALIZATION RESULT OF THE SECOND EXPERIMENT DATA SET UNDER DIFFERENT METHODS

image and the reference image are basically eliminated, and
subsequently, there are no radiometric differences among the
target images. Located in Beijing, China with the spatial
resolution of 1 m, the fourth data set is a complex area of
high-rise buildings. However, the proposed can still yield good
results. All the above-mentioned results demonstrate that the
proposed method not only applies to homologous images, but
also works well for heterologous images.

C. Statistical Analysis

Visual assessment is usually conducted on display devices
which rely on RGB color space. However, the RGB color
space is not uniform and is nonlinear, which does not conform
to the human visual system. For example, four digital color
values exist in a channel in RGB color space, namely, v1 = 30,
v2 = 40, v3 = 200, and v4 =210. Although the difference
between the values are the same (v2 − v1 = 10 = v4 − v3),
the difference in color perceived by humans may vary because
of the nonlinear RGB color space. Therefore, it is very likely
that the results of subjective assessment are inconsistent with
that of objective assessment in RGB color space.

Given that RGB color space is not uniform, CIELAB
color space was adopted to evaluate the results quantitatively.
CIELAB color space, one of the most comprehensive color
models describing colors in human vision, is an approximately
uniform color space independent of display devices [34]. The
objective metrics of Euclidean distance (ED) and RMSE are
used to evaluate the results quantitatively.

1) ED: The relative perception difference between any
two colors in CIELAB color space can be calculated by the
ED between the three-color components (L∗, a∗, b∗) of each

color. Therefore, ED was adopted to measure the difference
between images. A small value indicates a close relationship
in information between images

�Eab =
∑n

i=1

√
(L∗

2 − L∗
1)

2 + (a∗
2 − a∗

1)2 + (b∗
2 − b∗

1)
2

n
(16)

where (L∗
1, a∗

1 , b∗
1) and (L∗

2, a∗
2 , b∗

2) are two colors in CIELAB
space.

2) RMSE: RMSE is a commonly applied evaluation index
in describing the difference between the reference image and
the target image. A small value indicates a close relationship
between them [35]

RMSE =
√∑n

i=1(ValRi − ValTi )
2

n
(17)

where n is the pixel number, ValRi is the gray value of the
i th pixel in the reference image, and ValTi is the corresponding
calibrated value.

The proposed approach was evaluated by quantitatively
analyzing and contrasting it with other methods. In order to
analyze the influence of the blocking size in the proposed
method, three cases were considered. First, every target image
was divided into one block (i.e., M = 1 and N = 1), and
the proposed method under this situation is called MRN_A1.
Second, every target image was divided into 3 × 3
blocks (i.e.,M = 3 and N = 3), and the proposed method
under this situation is called MRN_A3. Third, every target
image was divided into 6 × 6 blocks (i.e.,M = 6 and
N = 6), and the proposed method under this situation is called
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TABLE VI

EVALUATION COMPARISON OF THE NORMALIZATION RESULT OF THE THIRD EXPERIMENT DATA SET UNDER DIFFERENT METHODS

TABLE VII

EVALUATION COMPARISON OF THE NORMALIZATION RESULT OF THE FOURTH EXPERIMENT DATA SET UNDER DIFFERENT METHODS

MRN_A6. Moreover, the conventional IR-MAD with 0.95 as
the threshold, or IR-MAD_0.95, was used as the contrast
method. In order to analyze the influence of the linear regres-
sion models on the normalization results, the LSR and OR
models were both tested. Four sets of data were processed by
the above-mentioned four methods and statistical analysis was
conducted. The statistical results are shown in Tables IV–VII.
The column corresponding to LSR and OR in the table IV-
VII represents the evaluation of the image processed by the
LSR and OR models, respectively; the column of Origin rep-
resents the evaluation of the original images; and the method
row represents the adopted method. In addition, the numbers
marked as bold and underline are the minimum value in each
row.

Tables IV–VII show that the RMSE and ED of MRN_A6
are the smallest in most cases, which indicates that
MRN_A6 works well for normalization and that the LSR
regression model performed better. The evaluation values
of both the LSR model and OR model presented a gradu-
ally decreasing trend from left to right, revealing that their
correction results improve gradually from left to right. In other
words, the results of MRN_A1 are better than those of
IR-MAD_0.95, the results of MRN_A3 are better than those of
MRN_A1, and the results of MRN_A6 are better than those
of MRN_A3. All the results demonstrate that the proposed
method (MRN), when all the pixels in the image are given
weights according to their constant probabilities to participate
in the subsequent correction model, produced better results
than the method of extracting invariable features by specifying
the threshold artificially. The results also indicate that the
proposed block correction method is more applicable to high-

resolution images. It is also shown that both the LSR and
OR correction models can be applied to the proposed method,
but the LSR model is more effective in general.

V. DISCUSSION

The novel MRN method proposed in this paper combines
the absolute and relative radiometric normalization methods to
eliminate the radiometric difference in high-resolution image
mosaicking. The differences as well as improvements of the
proposed approach compared with the traditional approaches
are specified as follows.

First, the types of study objects are different. Most of
the existing methods [1], [2], [3], [10], [14], [18], [23],
take medium-resolution images, such as Landsat TM or
HJ-1A images as the test data. The objects of study in this
paper consist of medium- and high-resolution data, by which
the characteristics of both images are taken into consideration.
High-resolution imagery plays an increasingly important role
in remote sensing application. However, the research of
high-resolution satellite imagery in radiometric normalization
method for mosaicking is not mature enough to match its
significant role in land use and other applications. Therefore,
the research about high-resolution imagery in this paper is
necessary.

Second, the way of selecting reference image is different.
The reference image, needed in most radiometric normal-
ization methods, provides the radiometric information for
the target images to be adjusted. For most of the existing
radiometric calibration approaches, the standard to determine
reference image is not unified, thus yielding different calibra-
tion results. However, the proposed approach regards surface
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reflectance products after absolute radiometric correction as
the reference image. The surface reflectance products present
the true reflectance characteristics of features which are almost
equivalent to the true reference values. Hence, the problem of
choosing the reference image in traditional methods is solved.
Besides, to a certain degree, choosing the surface reflectance
product as the reference to correct other images reduces the
influences caused by the atmosphere and other factors which
make up for the limitation of absolute calibration of high-
resolution images.

Third, the processing workflow is different. Most of the
existing methods can process only a single pair of test images
at a time, namely, one image in the pair is set as the
reference for the other one to match to. The matched image
will be the reference in the next pair and the rest can be
processed in the same manner. So in most cases, the test
data will be corrected sequentially which will slow down the
process and bring the risk of color error propagation. Besides,
Guindon’s investigation [36] shows that different sequential
paths may generate different results. However, for the pro-
posed method, the selected reference data have the same
geographic coverage with the target images, which means
each target image has its own geography-related reference
data [as shown in Figs. 4(a) and (b)–7(a) and (b)]. Therefore,
the target images can be corrected independently and no
sequential relationship exists among the processing proce-
dures, thus avoiding the two-body problem effectively and
contributing to parallel processing. As mentioned earlier,
the number and quality of the pseudoinvariant features in
overlapping areas play an important role in generating calibra-
tion results. Generally speaking, a larger scale of overlapping
area and a great number of pseudoinvariant features indicate a
high precision of pseudoinvariant feature extraction, and vice
versa. In conventional methods, a single pair of adjacent test
images is processed at a time. When the overlapping rate
of the image pair is low or great changes in features have
taken place, the extraction results of pseudoinvariant features
in the overlapping areas may be incorrect and may lead to
the wrong normalization results. However, in the proposed
method, the geographical coverage of the reference image
completely covers that of the target image; that is, the overlap-
ping area is the target image itself, bringing great advantages
in extracting invariable features. The images to be corrected
are independent so that color transfer is unnecessary among
neighboring target images. Correction based on geographical
position fully considers the spatial distribution of features.
Hence, the correction results are more consistent with the
actual conditions. In addition, no sequential relationship exists
among the processing procedures, thus avoiding the two-body
problem effectively and contributing to parallel processing.

Fourth, the number of regression model is different. Images
are generally considered as a whole in the process of radio-
metric normalization in traditional approaches. In other words,
only one transformation model exists in an image, which may
result in the neglect of locality and inhomogeneity of the
ground object distributions especially for the high-resolution
images. High-resolution images could present the ground
features more clearly, and the disparity between features is

more obvious. Because of the uneven distribution of features,
the different regions of image may have different radiometric
characteristics, such as the farmland and the city. The adap-
tive local correction strategy processes the image block by
block and builds the regression model in conformity with its
feature characteristics, by which the correction results can be
generated. The blocking strategy is able to take the feature
distribution into account, which is beneficial to the correction
of high-resolution images. Besides, the IR-MAD algorithm
used in traditional methods extracts pseudoinvariant features
with a certain empirical threshold which may result in different
results with different values. In contrast, all pixels with their
weights which are extracted by the IR-MAD algorithm are
used to participate in building the regression model in the
proposed method. In this way, not only is it unnecessary
to specify the threshold to increase the level of automation,
but the characteristics of the feature distribution are also
better reflected, contributing to eliminating the radiometric
differences among the images.

The experimental results demonstrate that the proposed
method can correct both homologous and heterologous high-
resolution images. The radiometric differences are not only
eliminated between the target image and the reference image,
but also eliminated between the target images, which brings
great contribution to image mosaicking. The quantitative
analysis, which is quantitatively evaluated in CIELAB color
space, shows that the proposed method achieved better results
than the conventional IR-MAD method; the comparison of
different parameters indicates that all the improvements in the
proposed method are effective.

It is worth to note that the reference image plays an impor-
tant role in the proposed MRN method. In our experiment,
we have proved that for images with 8, 6, and 1 m reso-
lution, satisfactory results can be yielded by referencing the
30-m-resolution image. However, the performance of the pro-
posed approach remains uncertain for a higher resolution target
image such as 0.1 m by referencing a 30-m-resolution image.
The impact of resolution differences between the reference and
target images is twofold. On the one hand, due to the limitation
of the charge-coupled device frame, the coverage of the image
will decrease as the resolution increases. A small geographical
coverage indicates that the number of corresponding pixels
between the high-resolution target image and the medium-
resolution reference image becomes small, which is adverse
to the extraction of pseudoinvariant features relatively. On the
other hand, the transformation relationship in radiometric
information between the target image and the reference image
is the reflection of the difference of pseudoinvariant features
which is extracted pixel-to-pixel. A pixel in the medium-
resolution image is the generalization of several pixels of
the same area in the high-resolution target image. When the
resolution difference between the two images exceeds a certain
range, the down-sampled pixels of the high-resolution target
image cannot represent the corresponding pixel after image
generalization. Therefore, it can be concluded that the accu-
racy of the calibration result tends to reduce as the difference
between the target image and the reference image becomes
bigger. In order to verify the assumption, the fourth experi-
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Fig. 8. Accuracy trend of the normalization results generated by different target images of different resolutions with the same reference image. The x-axis
represents the resolution of target images, while the y-axis corresponds to the values of RMSE or ED. The accuracy increases as the value of RMSE or ED
becomes smaller.

mental data were used for simulation. The 1-m-resolution data
were resampled to 2, 4, 6, 8, 10, 15, 20, 25, and 30 m, respec-
tively. The resampled images were normalized by the proposed
method with the same 30-m-resolution reference image. Each
image was divided into blocks and processed by the LSR
model. The statistical results are shown in Fig. 8. It can
be inferred that the accuracy of the calibration results will
increase as the resolution difference between the target and ref-
erence images reduces and vice versa, which is consistent with
the above-mentioned assumption. Therefore, the resolution
difference between the reference and target images should be
restricted in a reasonable range to get a good calibration result.
In this paper, it is proved that the reference image with the
resolution of 30 m can be applied to calibrate the target image
with the maximum resolution of 1 m. Further experiment is
needed to verify whether the target image with very high-
resolution (< 1 m) can still be normalized well with the
30-m-resolution reference image. However, it could be pre-
dicted that a good normalization result will be generated when
the resolution difference between the reference and target
images is suitable.

VI. CONCLUSION

Radiometric differences always exist among high-resolution
images with a different time lapse in image mosaicking.
The combined radiometric correction method proposed in
this paper aims to eliminate the influence of the radiometric
differences on the mosaic results. In order to provide an
improved approach to radiometric correction for the image
mosaicking purpose, the proposed method combines both
the accuracy of the absolute radiometric correction and the
flexibility of the relative radiometric correction, while avoiding
their disadvantages at the same time. Interferences brought
by the atmosphere and other factors are eliminated in the
reference image after absolute radiometric correction, from
which the real reflectance characteristics of features can
be references when correcting high-resolution images, thus
giving the relative radiometric correction physical meaning
and guaranteeing the uniqueness of the reference image.
In addition, the medium-resolution images and the high-
resolution images to be corrected share the same geographical
coverage. On the one hand, in the correction of high-resolution
images, the entire information of the image can be taken
into consideration, thus avoiding the limitation of determining
correction factors by the overlapping area only in conventional
relative radiation correction approaches. On the other hand,

the images to be corrected are independent so that they can
be processed in parallel, by which the two-body problem can
be effectively avoided. Given the complex features and their
uneven distribution in high-resolution images, the adaptive
local correction strategy processes the image block-by-block,
improving the results effectively.

The experiments conducted using four data sets demon-
strated that the proposed method can correct both the homol-
ogous and heterologous images. The radiometric information
of the corrected images is similar to that of the reference
image, which shows that the influences of the atmosphere and
other factors were also reduced in the correction. The quanti-
tative analysis indicates that the proposed method remarkably
improved the results of the original IR-MAD method, and that
all the improvements were effective. Moreover, the experi-
ments demonstrated that both the LSR and OR models are
applicable to the proposed method, between which the former
performed better.
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