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ARTICLE

3D building roof reconstruction from airborne LiDAR point
clouds: a framework based on a spatial database
Rujun Caoa, Yongjun Zhanga*, Xinyi Liu a and Zongze Zhao b

aSchool of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China; bSchool of
Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, China

ABSTRACT
Three-dimensional (3D) building models are essential for 3D
Geographic Information Systems and play an important role in
various urban management applications. Although several light
detection and ranging (LiDAR) data-based reconstruction
approaches have made significant advances toward the fully auto-
matic generation of 3D building models, the process is still tedious
and time-consuming, especially for massive point clouds. This
paper introduces a new framework that utilizes a spatial database
to achieve high performance via parallel computation for fully
automatic 3D building roof reconstruction from airborne LiDAR
data. The framework integrates data-driven and model-driven
methods to produce building roof models of the primary structure
with detailed features. The framework is composed of five major
components: (1) a density-based clustering algorithm to segment
individual buildings, (2) an improved boundary-tracing algorithm,
(3) a hybrid method for segmenting planar patches that selects
seed points in parameter space and grows the regions in spatial
space, (4) a boundary regularization approach that considers out-
liers and (5) a method for reconstructing the topological and
geometrical information of building roofs using the intersections
of planar patches. The entire process is based on a spatial data-
base, which has the following advantages: (a) managing and
querying data efficiently, especially for millions of LiDAR points,
(b) utilizing the spatial analysis functions provided by the system,
reducing tedious and time-consuming computation, and (c) using
parallel computing while reconstructing 3D building roof models,
improving performance.
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1. Introduction

Three-dimensional (3D) building models are essential for 3D Geographic Information
Systems (GIS) and play an important role in numerous urban management applications.
Since the data acquired by Light Detection and Ranging (LiDAR) systems are dense,
accurate and geo-referenced in 3D (Leberl et al. 2010, Toth and Jóźków 2016), they are
often used to reconstruct building models (Haala and Kada 2010, Rottensteiner et al.
2014). Polyhedral buildings are common in urban areas, and polyhedral models, which
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represent buildings with simple planar patches, are sufficient for such applications
(Sampath and Shan 2010, Xu et al. 2014). These buildings can be reconstructed in a
fully automatic manner. However, the process for automatically reconstructing building
models from point clouds remains challenging. The major difficulties include the
absence of local data and noisy data or data that are inefficient for the reconstruction
of sophisticated building structures. The accuracy of building boundaries and detailed
roof features is also greatly influenced by outliers.

The development of laser scanning technologies has permitted the gathering of large
volumes of LiDAR point clouds at high frequencies and densities, allowing for the
derivation of more detailed 3D models. In addition, the demands for robust data
management, efficient spatial data retrieval and high reconstruction performance are
also desirable. Although several reconstruction approaches have provided significant
progress toward the automatic and efficient generation of 3D building models, this
process is still tedious and time-consuming, especially for massive point clouds, and
economical and reliable techniques that fully exploit the advantages of spatial databases
are lacking.

1.1. Objectives of this work

This paper proposes a novel spatial database-based solution framework for reconstruct-
ing 3D building roofs with high quality and performance. To improve performance, the
framework maximizes the parallel computation capabilities offered by spatial databases.
To obtain robust results, outliers are removed during the reconstruction steps, and the
primary roof structures are determined from large numbers of planar points, while the
roof details are fitted with primitives. The framework works in a fully automatic manner
by integrating data-driven and model-driven methods to model building roofs with
primary structures and detailed features.

The general strategy for the building roof reconstruction framework implemented in
this paper is given in Figure 1. The LiDAR data used in this framework have been
classified as building regions (Zhao et al. 2016). The building roof modeling begins
with individual building segmentation and approximate boundary determination. The
individual building segmentation process is based on a density-based spatial clustering
technique using a spatial index to improve performance (Section 2.1). After tracing the
approximate boundaries (Section 2.2), Delaunay triangulation with boundary constraints
is applied, and the normalized vector of each triangle is computed and quantified in
parameter space. The histogram of normal vectors is accumulated to detect the local
peaks, with each peak representing similar attributes (parallel or coplanar planes).
Starting from a triangle with these attributes, a spatial connectivity analysis is performed
in object space, iteratively growing to obtain an initial roof plane and thus separating
coplanar or parallel planes (Section 2.3). Boundaries are regularized based on a least
squares method (Section 2.4) and are adjusted according to the directions of the long
ridges. Roof details are fitted with primitives by analyzing the remainder of the non-
planar points with parallel, orthogonal, horizontal or vertical hypotheses. Lastly, topolo-
gical and geometrical information of 3D roof models are derived from these primary
planes and details (Section 2.5). Using a spatial database, multiple building roof models
are simultaneously reconstructed.
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1.2. Related work

The automatic reconstruction of 3D building models from airborne LiDAR point clouds has
progressed significantly over the past few decades (Axelsson 1999, Haala and Kada 2010,
Rottensteiner et al. 2014). In general, reconstruction approaches can be categorized as data
driven or model driven. Data-driven reconstruction techniques (Verma et al. 2006, Sampath
and Shan 2010) can produce more accurate and robust models and details from denser
point clouds. Using predefined primitives, model-driven methods (Henn et al. 2013, Huang
et al. 2013, Xiong et al. 2015) can flexibly reconstruct building models from sparser data but
are still challenged by highly sophisticated shapes. A combination of the two approaches
(Kwak and Habib 2014) can make improvements, such as by obtaining more data hints to
combine various primitives or filling data gaps with model knowledge.

When classified from raw LiDAR data, a dataset of building regions usually contains
numerous buildings. To produce 3D models, individual buildings need to be segmented,
for which the commonly used segmentation techniques are based on clustering. A wide
range of cluster models (e.g. connectivity, centroid and distribution models) and cluster-
ing algorithms (e.g. hierarchical clustering, k-means and expectation maximization) are
commonly used (Estivill-Castro 2002). Sampath and Shan (2007) proposed a region-
growing approach to group similar points into the same building by iteratively collect-
ing points within a moving window (MW). Kwak and Habib (2014) and Lari and Habib
(2014) derived individual building hypotheses with traced boundaries using the mod-
ified convex hull algorithm (Sampath and Shan 2007). However, the above methods are
sensitive to noise and computationally expensive.

Figure 1. Flowchart of 3D building roof reconstruction: (a) the framework and (b) the reconstruction
process for an individual building.
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To trace building boundaries, convex-hull-like algorithms or modifications are com-
monly used, as well as α-shape-like algorithms (Edelsbrunner et al. 1983). The efficient
computation of convex hulls has been a topic of much research (Graham 1972, Jarvis
1973, Eddy 1977, Preparata and Hong 1977, Andrew 1979, Barber et al. 1996). To extract
concave outlines, Sampath and Shan (2007) presented a modified convex-hull method
that limits the candidates in a local rectangular neighborhood, while Moreira and Santos
(2007) restricted the neighborhood within the k-nearest neighbors. In contrast to the
convex or concave methods, the α-shape-like algorithms (Edelsbrunner et al. 1983,
Edelsbrunner and Mücke 1994, Melkemi and Djebali 2001, Cazals et al. 2005) can extract
inner boundaries but are limited by the determination of a proper α value. Mandal and
Murthy (1997) proposed techniques for estimating the best α to determine the bound-
ary. Dorninger and Pfeifer (2008) used an α value of twice the average point space of the
point clouds. However, a prerequisite for these approaches is very few outliers in the
dataset.

When being traced, zigzagged boundaries need to be regularized to represent the
real outlines. The Ramer–Douglas–Peucker algorithm (RDP) (Ramer 1972, Douglas and
Peucker 1973) is commonly used to simplify bounding lines; however, it may erro-
neously discard critical boundary points (Zhang et al. 2006). To improve the results,
constraints with parallel, orthogonal or dominant directions were introduced to adjust
the building boundaries (Zhang et al. 2006, Sampath and Shan 2007, Dorninger and
Pfeifer 2008, Kwak and Habib 2014).

As important primitives, planar patches are of particular interest for building recon-
struction. Generally, they are segmented in spatial space or in parameter space based on
similarity and proximity. Region growing with seed points is one of the most commonly
utilized spatial domain methods to extract planar facets (Vosselman and Gorte 2004,
Rabbani et al. 2006, Lari and Habib 2014) but is sensitive to the selection of seed points
and not robust enough (Wang and Shan 2009). Random sample consensus (Fischler and
Bolles 1981) is a relatively robust but time-consuming approach used to estimate planar
parameters (Verma et al. 2006). In contrast to spatial domain segmentation approaches,
the selection of seed points is not necessary for methods that segment planes in the
parameter domain, yet the results depend heavily on the estimated attributes that are
usually derived within a local neighborhood. The most common attributes of a plane are
the normal vector and the position vector, which are computed for a particular point
from different neighborhoods (Axelsson 1999, Vosselman and Gorte 2004, Filin and
Pfeifer 2006, Lari and Habib 2014, Kim et al. 2016). As a result, the classical Hough
transformation (Duda and Hart 1972, Ballard 1981) has been extended to detect planes
(Vosselman and Dijkman 2001). However, parameter domain segmentation approaches
are still inefficient, especially for large numbers of points (Lari and Habib 2014).

Boundary representation (B-rep) is widely used to represent 3D building models
(Stroud 2006). There are two types of information in a B-rep, topological and geometric.
The topological and geometrical items, such as faces (surfaces), edges (curves) and
vertices (points), can be determined by the intersection of planar patches. With the
help of the introduced auxiliary vertical planes, inner and outer roof corners are derived
from the intersection of the adjacent roof planes (Sampath and Shan 2010, Xiong et al.
2014). However, the determination of step edges is still challenging as well as the
reconstruction of detailed roof features (Haala and Kada 2010, Rottensteiner et al. 2014).
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GIS or spatial databases are commonly used to robustly and efficiently manage
massive spatial datasets. van Oosterom et al. (2015) conducted some benchmark tests
on various spatial databases to evaluate their performance in loading and retrieving
point clouds, which may help establish performance improvements. For example, a full
exploitation of multi-process architectures may provide faster data retrieval when
reconstructing building models from large quantities of raw LiDAR data. However,
there have been no comprehensive tests of the performance of 3D building reconstruc-
tion from very large datasets.

2. Methodology

In this section, the spatial database-based framework for building roof reconstruction from
airborne LiDAR points is addressed. To trace building boundaries, the framework starts by
partitioning the building regions dataset into individual building subsets using a density-
based clustering approach. Then, a hybrid method that selects seed points in the parameter
domain and grows the regions in the spatial domain is used to extract the planar patches.
Boundary regularization is applied after removing noise and 3D models are obtained from
faces, edges and vertices which are determined by the intersection of planar patches.

2.1. Individual building segmentation

The goal of individual building segmentation is to cluster building points into different
groups, whereby each group represents only one building and each point belongs to
only one building. In this paper, the density-based spatial clustering of applications with
noise (DBSCAN) (Ester et al. 1996) is applied to segment the building point sets into
individual buildings with arbitrary shapes (Estivill-Castro 2002). As a density-based
clustering method, DBSCAN characterizes a well-defined ‘density-reachability’ cluster
model by connecting the points that satisfy a density criterion defined as a minimum
number of objects within certain distance thresholds. The algorithm is implemented as

(1) Begin with an arbitrary unvisited point P0 that has at least minPts adjacent points
within its ε-neighborhood, otherwise, the point is labeled as noise.

(2) Add P0’s ε-neighborhood points, if their ε-neighborhoods are also dense.
(3) Repeat until the density-connected cluster is completely found.
(4) Retrieve and process a new unvisited point as above.

In the above procedure, the spatial index based on the Generalized Search Tree
(Hellerstein et al. 1995) for point datasets offers improvements on ε-neighborhood
retrieval, and the spatial database provides capabilities for parallel computation of
clustering points. After the above operations, all isolated noise points are removed,
and all building points are assigned to specific buildings. Figure 2 shows an example of
the segmentation of individual buildings.
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2.2. Boundary tracing

There are two major categories of methods used to trace building boundaries, raster
based and vector based. In the raster-based methods, the point clouds are converted to
regular grid data, and image processing techniques are applied to identify, trace and
regularize the boundary edges (for more details, see Zhang et al. 2006, Zhou and
Neumann 2008, Awrangjeb et al. 2010, Grigillo and Kanjir 2012). In the vector-based
approaches, a simple, closed-line string (Linear-Ring) defines the exterior boundary, and
zero or more interior Linear-Rings (OGC 2006) representing the inner boundaries are
extracted from the input point clouds.

In this paper, the modified convex hull boundary detection algorithm (Sampath and
Shan 2007) is redesigned and refined using a spatial database to determine the bound-
aries of the individual buildings. The first modification is the introduction of a minimum
number of neighbors (minPts) for a border point. If the number of points in the
rectangular neighborhood is less than the threshold, the k-nearest neighbors are sup-
plied. The reason for this modification is that the determination of an appropriate
distance threshold is difficult (especially for a nonuniformly distributed point set), and
insufficient neighbors may result in failure when using the modified convex hull
approach. The second modification is that the point spacing in along and across scan
directions is replaced by the average point spacing because the latter is more easily
computed from the average point density. The boundary tracing (BT) process is

(1) Find the start boundary point P0 that has the lowest y-coordinate. If more than
one point has the lowest y-coordinate, the point with the largest x-coordinate is
chosen.

(2) Find the next boundary point P1 from the neighborhood point set of P0 that has
at least minPts points where the rotation angle from the sweep line vector (0, −1)T

or negative y-axis to the candidate point is the minimum in the counter-clockwise
direction. If collinear points exist, the point with the shortest distance to P0 is
selected.

(3) Repeat step (2) until point Pk+1 is equal to P0, where the sweep line is replaced
with the vector PkPk−1 within the neighborhood of Pk.

Figure 3 illustrates the above procedure. The algorithm selects the lowest point [red
dot in Figure 3(a)] as the start point. The rotation angle from the initial ray, vector (0,

Figure 2. Individual building segmentation: (a) input building regions, (b) segmentation results and
(c) reference image.
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−1)T [red line in Figure 3(b)], to each adjacent point of P0 (counter-clockwise direction) is
computed. As shown in Figure 3(b), the purple points have the same minimum rotation
angle (collinear points), but only the point with a shorter distance to P0 is selected as the
next boundary vertex [P1 in Figure 3(b)]. Figure 3(c) presents an example of insufficient

Figure 3. Building boundary tracing: (a) the red dot has the lowest y-coordinate that is selected as
the start point P0; (b) using convex hull algorithm to find the next boundary point in P0’s neighbors
(yellow and purple points inside the box), and P1 with a shorter distance to P0 is selected from
collinear points (purple colored); (c) the neighbors of P14 within the box neighborhood are
insufficient and the k-nearest neighbors (yellow dots outside the green box) are supplied; and (d)
traced boundary (green vertices ordered in the counter-clockwise direction).

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 7



points within the rectangular neighborhood of P14. In this case, the circular adjacent
points sorted by their distance to P14 (yellow dots outside the green box) are supplied
with the rectangular neighbor points (yellow dots within the green box). Figure 3(d)
shows the traced building boundary (purple lines sequentially connecting the green
points).

2.3. Roof planar segments

High-quality extraction of planar surfaces is a critical issue in reconstructing 3D building
models since planar surfaces serve as important primitives. Generally, there are two
categories of techniques for segmenting planar features from LiDAR data, that is,
segmentation in spatial (object) space and segmentation in parameter (attribute) space.

A hybrid spatial database-based approach is introduced in this paper to segment
planar patches on rooftops. In the first step of the approach, after tracing approximate
boundaries, boundary constrained Delaunay triangulation (Shewchuk 2002) is applied to
the individual building point set, and the normal vector of each triangle is computed.
Then, the unit normal vector v of each triangle is quantified in attribute space, where
each component of v is within the range of [−1, 1]. The histogram of the unit vectors is
accumulated to detect peaks, and every local peak represents similar attributes of planar
normals (parallel or coplanar planes). Starting from a triangle with these attributes, a
spatial connectivity analysis is performed in the object space, iteratively growing to
obtain an initial plane, thereby separating coplanar or parallel planes. Then, the same
grouped triangles are merged to form a polygon in 3D space, and the parameters of the
least squares plane are estimated by analyzing the vertices associated with these
triangles. The method presented in this paper offers the following advantages: (1) the
seed points selected are robust as they are local peaks accumulated in parameter space,
and (2) region growing in the spatial domain is limited to the subset with similar
attributes, not the universal set.

2.4. Boundary regularization

Generally, a set of LiDAR points next to building border areas is susceptible to contain-
ing outliers (vegetation, power line or wall points). After some of the outliers are
removed during the density-based clustering process (Section 2.1), the process con-
tinues by analyzing the residuals of the boundary candidates to their nearest plane. If
the residual is larger than a given threshold, it is excluded as noise. Therefore, bound-
aries are regularized after the planar patch extraction process.

The boundary regularization method is based on a least squares technique, and the
processing flow is illustrated in Figure 4. Before fitting a line segment from a subset of
homogeneous boundary points in the vicinity, the points are grouped by calculating the
slope angle of each line segment with the end points of two immediate adjacent
boundary vertices and iteratively verified within two consecutive ones. If the two
neighbors of a short line segment are almost parallel, they are merged into one group
and the line parameters are recomputed using the least squares method. Otherwise, if
the two adjacencies are nearly perpendicular, they are elongated to their intersection
point, and the end points of the short line are merged. Due to the nature of laser
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scanner data acquisition, buffers are applied to every border line segment, that is, a
parallel line going through the outermost boundary vertex.

2.5. Building roof reconstruction

A spatial model of a 3D building roof is described in the form of B-rep in this paper. B-
rep models are composed of two parts (Stroud 2006), geometry (surfaces, curves and
points) and topology (the main items include faces, edges and vertices). Edges and
vertices can be determined by their intersecting adjacent planes. After the planar
patches are derived, roof models can be reconstructed by intersecting these segments
to determine break lines and vertices. For each pair of adjacent planar segments, an
intersection line can be deduced. For every boundary line segment, a vertical plane is
assumed to intersect with a corresponding roof planar segment. All roof vertices (interior
and exterior points) are determined by the intersection of the adjacent roof planes,
including the assumed vertical planes through the boundary.

Figure 4. Flowchart of the boundary regularization.
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Typically, step edges exist in the adjacent regions between pairs of neighboring
parallel planar segments. When planar patches are clustered within connected triangles
with homogeneity in a Delaunay triangulation of airborne LiDAR points, step edges can
barely be detected, as the triangles constructed from the points near the step-edge area
tend to form an inclined plane; thus, a pseudo-ridge is intersected. The step edges are
recovered by assuming that the planar roof polygon, which connects two parallel
planes, has a particular area and shape factor, that is, a small area and a narrow
shape. If so, a vertical plane through the midline of the polygon (parallel to the adjacent
edges of the parallel planes) is introduced, and the intersection lines lying between the
corresponding parallel planes are determined. Additionally, the parallel planar patches
are extended to their respective intersection lines.

When the primary structure of a building roof has been constructed from planar
patches and their intersection lines and vertices, some detailed features may still exist on
the roof that are difficult to model directly due to sparse LiDAR points. Hence, model
primitives are applied to reconstruct these details. They are obtained by analyzing the
remaining nonplanar points, and parallel, orthogonal, rectangular, horizontal or vertical
hypotheses are used to fit them. If a horizontal plane can be fitted with a set of
connected nonplanar points near the intersection region of a pair or more of planar
segments, a minimum horizontal rectangle containing all fitted points is regularized with
the property that one of its sides is parallel to the nearest long ridge. Correspondingly,
vertical planes containing the rectangle’s edges are inserted to create the water-tight
part of the roof, the intersection lines and vertices are calculated and the planar roof
patches are updated. Similarly, if a nonplanar point set is bounded within a single planar
segment and the fitted plane is parallel to the segment, one edge of the adjusted
rectangle is parallelized to the nearest long edge of the segment; but whether vertical or
orthogonal planes are inserted depends on the distance between the parallel pair. Then,
a 3D building roof model is reconstructed from these patches, lines and vertices, with
which every triangle face of the model is derived in a triangulation with the constraints
of the edges. To reconstruct numerous roof models efficiently, the spatial database is
used to process multiple individual buildings simultaneously. Additionally, the recon-
struction of 3D building roof models is fully automatic.

3. Experiments

The Vaihingen dataset (Cramer 2010) was selected to fully test the new building roof
reconstruction method. The airborne LiDAR point cloud was acquired using a Leica
ALS50 laser scanning system. The accuracy is 10 cm in planarity and vertical and the
average point density varies from 4 to 6.7 points/m2 (Rottensteiner et al. 2014). The
selected test site is characterized by detached residential buildings with various struc-
tures (Figure 2), and the input point cloud has been classified as building points (Zhao
et al. 2016). The framework is implemented in PostGIS, which extends PostgreSQL with
robust spatial database management capabilities and offers various spatial analysis
functions.

To evaluate the effectiveness of the proposed individual building segmentation
method, we compared it with the MW algorithm (Sampath and Shan 2007) and the
new BT method (Awrangjeb 2016). In the following sample dataset (Figure 5(a)), there
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are six gable-roofed houses with differing shapes and the two buildings on the right are
very close to each other (the distance between the two nearest points is 0.85 m in 2D
and 0.86 m in 3D). All three methods used the 2D Euclidean distance. As seen in Figure 5
(b), the proposed method correctly segmented all six buildings (colored differently),
while the MW method could not differentiate the right two buildings (Figure 5(c), circled
in red), and the BT method grouped the right two buildings and the bottom-left two
buildings into the same clusters [Figure 5(d), circled in red].

Figure 6 presents an example of the segmentation of planar roof patches. In principle,
the triangulation of a planar point set results in a convex hull. The convex border does
not always fit well with the real building boundary. Correspondingly, some of the
derived triangles outgrow the building regions (Figure 6(d)). To improve the quality,
the point set was triangulated with the constraints of the traced boundaries (Figure 6(c)).
Due to the accuracy of data acquisition, quantization errors or computation errors,
coplanar triangles may have differences in their normal attributes and thus result in
holes or gaps when clustering coplanar triangles using the region growing approach
(Figure 6(h)). It is known that if a set of points lie in the same plane, the triangles
triangulated from them must be coplanar and vice versa. Therefore, when a triangle has
dissimilar attributes with its two or three ‘side’ adjacent triangles that have the same
properties, its attributes are updated. In Figure 6(h), the blue circled triangles (marked as
A) differ from their three neighbors, while the dashed cyan circled triangles (marked as
B) differ from the twos, but are all segmented in the same group within their vicinities.
After the clustered triangles were merged into planar polygons (Figure 6(g)), plane
parameters were computed using a least squares method, using a form of
‘z = Ax + By + D’ (for building roof planar patches derived from airborne LiDAR data,
the vz component of the normal vector is not equal to zero).

The results of boundary regularization illustrate that the proposed method is capable
of deriving high-quality building boundaries. Figure 7 illustrates some implementation
details of the boundary regularization method. Boundary points are grouped by their
spatial connectivity and the homogeneity of the slope angles, thereby avoiding the
drawbacks of least squares methods (susceptible to outliers) and the drawbacks of the
RDP (missing critical corners). For the two neighbors of a short boundary line segment,

Figure 5. Individual building segmentation: (a) input point cloud (building regions), (b) segmenta-
tion results of the proposed method w.r.t. ε = 1.0, minPts = 5, 2D Euclidean distance (colored
differently), (c) segmentation results of the moving window method w.r.t. ε = 1.0, 2D Euclidean
distance (the red circled two buildings are erroneously grouped in one cluster), (d) segmentation
results of the new boundary tracing method (the two buildings on bottom-left and the two
buildings on the right are erroneously grouped in same clusters) and (e) reference image.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 11



the relative location relationship is analyzed. If the segment tends to be orthogonal or
parallel, the line segments are intersected or refitted, respectively (Figure 7(c)). The fitted
line equation is a form of Equation (1) or Equation (2), depending on the line segment’s
tendency to be horizontal or vertical.

y � �y ¼ A x � �xð Þ; (1)

x � �x ¼ A y � �yð Þ; (2)

where �x and �y denote the average of
P

xi and
P

yi, respectively.
The linear equations fitted in the horizontal plane are applied to vertical planar equa-

tions in 3D to determine the intersection lines (Section 2.5). In general, the least squares
results indicate minimized fitting errors, but when fitting building borders, it will exclude
some roof parts (Figure 7(d)). To solve this problem, buffered lines going through the
outmost boundary points are used to improve the least squares results (Figure 7(e,f)).

The reconstructed roof models are composed of geometrical and topological infor-
mation (faces, edges and vertices). After some nonplanar point sets within a planar

Figure 6. Planar segmentation: (a) an individual building point set with traced boundary (green
colored), (b) reference image, (c) Delaunay triangulation with boundary constraint, (d) Delaunay
triangulation without constraint, (e) triangles grouped by similar normal vectors, (f) planar patches
clustered in the spatial domain, (g) planar polygons derived from planar segments and (h) coplanar
triangles not clustered due to quantization errors or computation errors.
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segment are discarded due to counts that are insufficient to support a robust plane (at
least four noncollinear points within a connected region) and the corresponding isolated
triangles are merged, reconstruction starts with the intersection of the pairs of adjacent
planes (Figure 8(a)). Roof break lines and corners are determined by the intersection of
planar patches (Figure 8(b)), and auxiliary vertical planes are introduced to locate the
step edges and boundaries. As some triangles are not grouped into planar segments,
which mainly lie near intersection lines, an area threshold of 1 m2 is used to filter small
polygons to avoid intersecting them with others. In general, intersection lines of pairs of
planar patches are not coincident with their boundaries, and it is necessary to recon-
struct the faces with the intersection lines and vertices, that is, the planar patches are
extended to or clipped by the intersection lines.

Detection and determination of step edges are still challenging. When a narrow and
small polygon is adjacent to two parallel planar patches, there is almost a step edge. In
this case, the two intersection lines are almost parallel [Figure 8(b), purple-circled
groups], and a vertical plane through the midline of the parallel lines that intersects
with each of the particular planar patches is used to determine the step edge (Figure 8
(d)). Furthermore, another type of pseudo-ridge is incorrectly deduced from two adja-
cent planar segments [Figure 8(b), red line segment], that is, the planes intersect, but
they share few common parts, and when crossed by planar boundaries, the most part
lies within the respective patch, and thus, this line segment is clipped (Figure 8(c)). Once
a ridge line is determined, it serves as a reference to orthogonalize or parallelize the
other sides of the patch if it satisfies an angle condition. Again, intersection points are
determined by extending or intersecting two consecutive line segments, and the planar
roof patches are updated with these vertices (Figure 8(e)).

Figure 7. Boundary regularization: (a) point cloud with traced boundary vertices, (b) least squares
lines fitted with the point sets with similar slope angle and spatial proximity, (c) nearly orthogonal
pairs of line segments intersecting (circled with A) and parallel pairs refitting (circled with B), (d)
fitting results, (e) buffered lines (green colored) through the outmost points and (f) regularization
results.
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To recover the roof details, parallel, orthogonal, horizontal, vertical or rectangular
hypotheses are used to analyze the remaining nonplanar points. If can fit a parallel plane
with a point set within a particular planar segment, a minimum rectangle containing
these points is adjusted that one side is parallel to the nearest long edge of the segment
(Figure 8(f)). The vertical or orthogonal planes through the sides of the rectangle are
inserted depending on the distance of the parallel pair to create the water-tight part of
the roof (Figure 8(h)). Similarly, when fitting a horizontal plane near the intersection
regions of a pair or more of planar patches, one edge of the rectangle is regularized
parallel to the nearest long ridge (Figure 9). Then, a 3D building roof model containing
faces, edges and vertices is reconstructed from the primary structure and details
(Figure 8(g)).

Figure 9 shows an example where detailed features satisfy a horizontal plane condi-
tion, and the rectangles are regularized to align with the nearest long intersection line of
planar segments. Note that these details are enclosed with vertical planes intersecting
particular roof segments [cf. Figure 8(h), auxiliary planes orthogonal to the planar patch],
and the nonplanar points that cannot robustly fit a plane are discarded (Figure 9(b)).
Figure 10 is an illustration of the reconstruction of a flat roof with parapet walls

Figure 8. Building roof reconstruction with step edges: (a) planar patch extraction results, (b)
intersection lines of adjacent pair of planes, (c) result of pseudo-ridge clipping, (d) determination
of step edges, (e) boundary regularization (adjusting the other sides of a planar polygon referring to
the long intersection line), (f) fitting details, (g) 3D roof model and (h) detailed roof feature in 3D
perspective view.
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(Figure 10(d)). As can be seen, dozens of nonplanar points near the border (Figure 10(b))
are removed, and the corresponding regions are merged into the primary planar patch
since they cannot fit robust planes. Boundary noises are removed by the fitting residual
on the nearest plane, which has a threshold of 0.75 m (Figure 10(a)). Figure 11 shows
other examples of building roof reconstruction.

We also conducted experiments on the performance evaluation for parallel computa-
tion based on the spatial database (Table 1). Although more comprehensive and
detailed tests should be conducted, the preliminary results show that the time spent
on the reconstruction of multiple building roofs using parallel computation is similar to
that spent on the reconstruction of a single roof but far less than the time spent in serial
mode. Furthermore, the segmentation of individual buildings can be parallelized by
partitioning the dataset into subsets. As a result, the robust spatial data management
capabilities and effective spatial analysis functions offered by the spatial database
greatly improved the automatic reconstruction of 3D building models, especially given
the increasingly large volumes of data acquired by laser scanning systems due to their
high frequencies and increasing point densities.

Figure 9. Gable roof reconstruction with details: (a) planar segmentation results, (b) reconstruction
result in 2D view, (c) reconstruction result in 3D view, (d) reference image, (e) 3D perspective view
(with raw LiDAR points) and (f) detailed 3D roof model (in perspective).
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4. Discussion

The settings of the thresholds, such as the distance and the point count, and some
implementation details of the aforementioned steps are presented in this section.

The first issue is the calculation of the average point spacing of airborne LiDAR point
clouds. The flight height, flying pattern, scanning pattern, platform movements, strip
overlap and object properties all contribute to the variations in the point distribution in
along or across-track directions and result in a nonuniformly distributed point set. The
average point spacing, d, derived from the mean point density, m (points/m2), was
adopted in this paper, namely, d = m−1/2, where m is given by the dataset or calculated
by the total number of points divided by the area.

When separating individual building point sets using the density-based spatial clus-
tering algorithm DBSCAN (Ester et al. 1996), the distance ε and the minimum number of
points minPts are required. Whether a point is a valid candidate depends on if its ε-
neighborhood contains a sufficient number of minPts points. The smaller ε, the fewer
points in the dataset will be clustered, whereas for a too high value of ε, clusters tend to
merge the majority of the points into the same cluster. In general, a small value of ε is

Figure 10. Reconstruction for a flat roof: (a) planar segmentation (gray and red dots are inner and
boundary points, respectively), (b) nonplanar points (purple colored), (c) de-noise and boundary
regularization, (d) reference image, (e) 3D roof model (with raw points) and (f) geometrical faces,
edges and vertices.
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Figure 11. Examples of roof reconstruction (from left to right): individual building point sets (with
traced boundary points in purple color), geometrical elements (in 2D), roof models (in 3D) and
reference images. Some missing parts of the buildings (circled in red) recovered successfully (dashed
red circled).

Table 1. Performance evaluation for building roof reconstruction.

Building number Number of points Number of triangles
Runtime (s)
(serial mode)

Runtime (s)
(parallel mode 1)

Runtime (s)
(parallel mode 2)

1 346 634 4.961 16.864 23.695
2 2228 4336 54.117 86.440 141.556
3 394 727 4.539 14.368 22.307
4 3290 6322 74.475 105.394 144.550
5 2459 4770 55.740 90.418 141.510
6 340 625 3.915 13.774 18.297
7 1100 2064 15.694 29.219 43.071
8 266 488 4.352 12.604 13.620
9 1780 3437 26.067 51.184 106.565
10 1905 3674 26.739 65.519 125.253
11 2616 5018 45.069 69.265 133.505
12 1304 2490 17.440 41.776 53.399
13 3438 6710 86.657 105.551 169.401
14 1737 3346 30.202 67.362 128.794
Total 23,203 44,641 450.609 211.304 169.557

(1) All tests run on the same platform, a LenovoⓇ T4900d-00 PC with 4 GB RAM, IntelⓇ Core(TM)-i7-3770 CPU
@3.4 GHz, ATA ST1000DM003 disk, Windows7 64 bit, PostgreSQL 9.4 and PostGIS 2.2; (2) parallel mode 1 is 8-channel
and mode 2 is 16-channel.
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preferable, and a value of twice the average point spacing is selected in this paper. As a
rule of thumb, minPts can be derived from the dimensions D of the dataset, that is,
minPts ≥ D + 1. A larger value of minPts will yield a better result for a dataset with noise.
Considering that the point clouds have been filtered and contain only building regions,
we use a value of 4 for minPts. When implemented in a spatial database, the spatial
index can provide ε-neighborhood retrieval with an O(log n) time complexity, and an
overall average runtime complexity of O(n log n) can be expected. This is a better result,
but the time to process massive LiDAR point clouds it still very long. In practice, the
spatial database can be feasibly used to partition the dataset into subsets for parallel
processing. While the runtime complexity remains unchanged, the processing time is
reduced. This work is planned for the near future.

The third issue is related to the parameter settings, the neighborhood distance ε

and the neighbor count minPts, used in the BT process. The larger ε, the more
points within a neighborhood will be swept, and the traced boundary tends to be
more ‘convex’, as does the value of minPts. To retain as many boundary vertices as
possible to fit a robust line segment, a small value of ε is preferred. However, an
inappropriate value of ε may result in a failure (converging to a local loop,
especially when points are not uniformly distributed) due to an insufficient number
of neighbor points. Therefore, we introduced k-nearest neighbor points to fix this
error (Section 2.2). Considering the nature of airborne LiDAR point clouds, the value
of ε is set to twice the average point distance, and minPts is set as 9 to obtain
robust results.

When segmenting planar patches, we select seed regions by detecting extremes in
the histogram accumulated with triangle normals. In contrast to the normal of a point,
the normal of a triangle is more intuitive and easily obtained. The parameter space of
the unit vector (vx, vy, vz)

T forms a cube, and each component has a continuous range of
[−1, 1]. If the vz component is limited within [0, 1], the space shrinks to half. To construct
the histogram of unit vectors, we quantify the continuous space by an interval of 0.05,
namely, the histogram has 40, 40 and 20 bins for vx, vy and vz components, respectively.
When converted to angles, the distribution of the bins of the histogram is a nonuniform
quantization, but it needs no further calculation and satisfies the selection of seed points
for planar growth. Additionally, we define ‘adjacent’ as two triangles with at least one
common vertex.

5. Unsolved problems

The first unsolved problem is the determination of step edges. In this paper, we
assume that a step edge exists near a pair of adjacent parallel planar patches, but
this is not always true as step edges may also reside between nonparallel but
discontinuous pairs. Additionally, the accuracy of the assumption that a step edge
goes through the midline (or the midpoint) needs to be improved. A similar problem is
the reconstruction of detailed roof features. The hypothesized primitives need to be
verified and improved [Figure 9(f), an erroneously fitted dormer]. A dataset with higher
point density or the incorporation of images or other data can improve the quality.
Another problem is the polyhedral hypothesis, which cannot recover nonplanar
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surfaces. Although nonplanar surfaces can be approximated from a set of planar
patches, the point density is a limitation, which is also work planned for the future.

6. Conclusions

This paper proposed a novel spatial database-based framework for the reconstruction of
3D building roof models from airborne LiDAR point datasets. The framework contains
five major components: (1) a density-based clustering algorithm for segmenting indivi-
dual buildings and detecting noise, (2) an improved BT algorithm that is robust to
outliers, (3) a robust planar extraction method that selects seed points in the parameter
domain and grows the regions in the spatial domain, (4) boundary regularization based
on a least squares fit and (5) a method of intersecting planar patches and fitting
primitives to reconstruct topological and geometrical information of building roofs
with primary structures and detailed features. The entire reconstruction process is fully
automatic and is implemented in a spatial database, which offers the advantages of
efficiently managing and retrieving large volumes of spatial data and obtaining high
performance via parallel computation.

Experimental results show that the proposed methods can properly and effectively
model the detailed features of simple or complex polyhedral building roofs, as well as
the primary structures. However, the reconstruction results for step edges and details
were restricted by the density of the raw LiDAR points, which has been an ongoing
challenge. Future work could improve the results by incorporating images and planning
maps, as well as utilizing a denser point set.
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