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ABSTRACT
The location of building boundary is a crucial prerequisite for
geographical condition monitoring, urban management, and
building reconstruction. This paper presents a framework that
employs a series of algorithms to automatically extract building
footprints from airborne (light detection and ranging (lidar)) data
and image. Connected operators are utilized to extract building
regions from lidar data, which would not produce new contours
nor change their position and have very good contour-preserva-
tion properties. First, the building candidate regions are separated
from lidar-derived digital surface model (DSM) based on a new
method proposed within this paper using connected operators,
and trees are removed based on the normalized difference vege-
tation index (NDVI) value of image. Then, building boundaries are
identified and building boundary lines are traced by ‘sleeve’ line
simplification method. Finally, the principal directions of buildings
are used to regularize the directions of building boundary lines.
International Society for Photogrammetry and Remote Sensing
(ISPRS) data sets in Vaihingen whose point spacing is about
0.4 m from urbanized areas were employed to test the proposed
framework, and three test areas were selected. A quantitative
analysis showed that the method proposed within this paper
was effective and the average offset values of simple and complex
building boundaries were 0.2–0.4 m and 0.3–0.6 m, respectively.
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1. Introduction

Airborne light detection and ranging (lidar) technology provides georeferenced 3D dense
point measurements over reflective surfaces on the ground (Baltsavias 1999; Wehr and
Lohr 1999; Sampath and Shan 2007; Zhang and Shen 2013). Usually, as a premise for many
building extraction approaches, the ground points need to be separated from non-ground
points, for which a number of filtering methods have been developed. For the moment,
the main filtering methods include morphological filtering (Kilian, Haala, and Englich 1996;
Zhang et al. 2003; Chen et al. 2007), triangulated irregular network (TIN) filtering (Axelsson
2000), and slope-based filtering (Vosselman 2000).

Currently, numerous methods have been developed to extract building areas from
lidar data. Morgan and Tempfli (2000) utilized morphological filtering to distinguish

CONTACT Yongjun Zhang zhangyj@whu.edu.cn

INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016
VOL. 37, NO. 4, 889–912
http://dx.doi.org/10.1080/01431161.2015.1137647

© 2016 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [1

23
.1

4.
18

1.
25

3]
 a

t 2
2:

05
 1

0 
Fe

br
ua

ry
 2

01
6 



ground and non-ground points, and applied Laplacian and Sobel operators to height
surfaces to distinguish between building and tree measurements. Kwak and Habib
(2014), and Shan and Sampath (2008) managed to separate ground, building, and
tree regions using region growing algorithms. Zhang, Yan, and Chen (2006) employed
morphological filtering to separate ground and non-ground regions, and separated
building and tree regions using a region growing method. Rottensteiner and Jansa
(2002) used the difference between digital surface model (DSM) and digital terrain
model to determine the building areas. Sohn and Dowman (2007) differentiated on-
terrain and off-terrain features according to recursive terrain fragmentation filtering
and high-rise features were separated from off-terrain features by a pre-defined
threshold. Chen et al. (2014) detected and reconstructed building roofs from airborne
lidar data using a multi-scale grid method. Mongus, Lukač, and Žalik (2014) estimated
the geometric attributes of the contained features by mapping characteristic values
from differential morphological profiles (DMPs), while their surface and regional
attributes were additionally considered for building detection. Chen et al. (2012)
employed progressive morphological filter to separate ground and non-ground points
and separated building points from vegetation points by a plane-fitting technique.
Niemeyer, Rottensteiner, and Soergel (2014) addressed the task of the contextual
classification of an airborne lidar point cloud and detected building objects based on
the classified point cloud. For a comprehensive literature review, readers may refer to
Rottensteiner et al. (2014) who presented several techniques for extracting urban
objects from International Society for Photogrammetry and Remote Sensing (ISPRS)
benchmarking data.

Connected operators are applied to building extraction from lidar data in this paper.
Since connected operators would not produce new contours nor change their position,
they have very good contour-preservation properties and are capable of both low-level
filtering and high-level object recognition (Salembier and Wilkinson 2009). For this
reason, connected operators can be utilized to the operation of lidar data availably
(Mongus and Žalik 2014). Besides, max-tree structure, attribute-space connectivity, and
area-based filtering criterion are introduced to extract building regions straightforwardly
and effectively.

Building boundary determination is a crucial and difficult step in the building
reconstruction task (Rottensteiner and Briese 2002). Morgan and Habib (2002) used a
TIN model to determine the building boundary from lidar data. Sampath and Shan
(2007) extracted building boundaries using a modified convex hull approach. After
identifying building boundaries, a raw footprint polygon will consist of some bound-
ary lines. However, the raw footprint is often rough because of the irregularly spaced
lidar measurements. It is difficult to acquire an accurate footprint from an irregular
and complex polygon. Sampath and Shan (2007) used the least squares model to
regularize the boundary lines. However, this assumption is not strict and cannot be
applied to buildings whose edges are not perpendicular to the dominant directions
(Zhang, Yan, and Chen 2006). Zhang, Yan, and Chen (2006) have proposed a new
method to estimate the dominant directions of a building footprint based on
weighted line-segment lengths. Our primary contributions in this paper are listed
as follows.
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● Connected operators are utilized to extract building regions from lidar data, which
would not produce new contours nor change their position and have very good
contour-preservation properties.

● Max-tree structure, attribute-space connectivity, and area-based filtering criterion
are introduced in the process of connected filter to ensure that building regions are
discriminated accurately and effectively from lidar data.

In this paper, three steps are involved in building extraction and regularization from lidar
data: (1) extracting building regions from the raw lidar data; (2) utilizing the ‘sleeve’
method to determine the boundary line segments of buildings; and (3) determining the
main directions of buildings, regularizing the boundary line segments of buildings based
on the main directions.

2. Connected operators

Connected operators (Salembier and Serra 1995; Heijmans 1999) are the efficient image
processing tools set in the framework of mathematical morphology. They have been success-
fully applied to biomedical imaging (Dufour et al. 2013), astronomy (Berger et al. 2007; Perret
et al. 2010), remote sensing (Kurtz et al. 2012; Cavallaro et al. 2015), and document analysis
(Naegel and Wendling 2010). Connected operators focus on the notion of connection that
explains how pixels are grouped together to achieve objects called connected components.
They cannot create or shift but only delete connected components. The extension to grey-
scale images is realized through threshold superposition, which can be effectively represented
by a tree structure naturally leading to the hierarchical representation of image.

2.1. Connectivity classes

Binary image X is considered to be the subsets of some universal set V (usually Z2). Let P
(V) be the set of all subsets of V. Connectivity in V can be defined using connectivity
classes (Serra 1998; Braga-Neto and Goutsias 2002).

Definition 1. Let V be an arbitrary nonempty set. A connectivity class or connection C �
P Vð Þ is a set of sets that satisfies the following.

1. � 2 C and for all x 2 V; xf g 2 C:
2. For any Cif g � C;\i Ci � � ) [iCi 2 C:

Any member of C is said to be connected. The definition means that both the empty
set and the singleton set ({x}) are connected, and any union of sets Ci in C which have a
nonempty intersection is connected. The members of C are called connected sets and
correspond to subsets of V.

2.2. Attribute filters

Through definition 1, we know that any binary image X can be taken as a collection of
connected components. Connected filters are considered as filters that preserve only
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those components that satisfy the given criteria in a binary image. The criteria are based
on one or more of the component’s attributes (e.g. area or perimeter). The notion of a
connected filter may be formalized as follows.

ΨΛ Xð Þ ¼ [
Ci2C

ΓΛ Cið Þ: (1)

The subscript ‘Λ’ denotes a given criterion, and ΓΛ an operator. For a connected
component Ci 2 C, ΓΛ returns Ci if Λ Cið Þ is true and null otherwise. The connected filter
ΨΛ is anti-extensive (ΨΛ Xð Þ � X) and idempotent (ΨΛðΨΛ Xð ÞÞ ¼ ΨΛ Xð Þ) (Crespo, Serra,
and Schafer 1999). Anti-extensive attribute filters are considered as attribute openings or
thinnings, depending on whether the criterion is, respectively, increasing or not (Breen
and Jones 1996).

Grey-level connected filters can be constructed by the binary connected filters using
the notion of threshold decomposition (Maragos and Ziff 1990; Vincent 1993). Given a
grey-level image f: V→Z, thresholding f in an increasing order from hmin to hmax

generates a stack of nested binary sets. Each binary image at level h is denoted by

Th fð Þ ¼ fx 2 Vjf xð Þ � hg; (2)

and for any two levels, h1 < h2 ) Th1 fð Þ � Th2 fð Þ.
Thus, grey-level connected filter can be given by the binary connected filter of each

level. The response of the greyscale counterpart of a binary increasing filter ΨΛ on each
point x of image f is denoted by

ΥΛ fð Þ xð Þ ¼ sup fhjx 2 ΨΛ Th fð Þð Þg: (3)

The operator YΛ assigns each point of the original image the highest threshold at which
it still belongs to a connected foreground which satisfies an attribute criterion Λ.
Nonincreasing (increasing) attributes can also be used to define greyscale nonincreasing
(increasing) filters (Breen and Jones 1996).

2.3. Max-tree algorithm

For grey-level image, connected filters can be implemented efficiently by tree-based
algorithms (Salembier, Oliveras, and Garrido 1998; Jones 1999). Max-tree algorithm is a
typical example introduced by Salembier, Oliveras, and Garrido (1998) for anti-extensive
connected filtering. Given a grey-level image f, the tree structure reflects the nesting
order of its connected components Qi

h: The nodes Ci
h; addressed by their level h and

index i, correspond to sets of pixels for which there exists a unique mapping to
connected components:

Ci
h ¼ fx 2 Qi

h jf xð Þ ¼ hg: (4)

Each node of the max-tree points to its parent at level h′< h, except for the root node.
The root node at level hmin points to itself. Every parent inherits the attribute of its
descendants, which makes the computation of connected component attributes simple.
Inheritance is a simple accumulation in the case of increasing attributes such as area or
volume.
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As above, the nodes Ci
h are just a subset of the connected components Qi

h. Actually, the
connected components Qi

h are equivalent to the set of pixels belonging to Ci
h and all their

descendant nodes. In this paper, the nodes Ci
h correspond to the connected components Qi

h

straightforwardly, which was proposed by Jones (1999). In such a case, for nodes Ci
h, there

exist nodes Cn
hþ1 such that Cn

hþ1 � Ci
h, and Cn

hþ1 is the descendant of C
i
h. C

1
0 at the minimum

grey level in the image is the entire image domain and called the root of a tree. A node that
is not linked to another component at a higher grey level is called a leaf node of the tree.
Thus, the set of nodes and the links between them form the structure of the tree.

The grey-level connected filters may be implemented using the following tree filter,
which classifies every tree node Ci

h using the simple rule:

Ci
h is active; if Ci

hsatisfies criterion Λ;
not active; otherwise:

�
(5)

In this formula, a morphological opening is obtained when increasing criteria are used
and a morphological thinning is obtained while nonincreasing criteria are used (Breen
and Jones 1996).

The max-tree is usually constructed by flood-filling (Salembier, Oliveras, and Garrido
1998) or union-find (Najman and Couprie 2006) approach. The flood-filling approach is
usually based on a hierarchical queue. It performs a depth-first scan of the tree, starting
at the lowest grey level of the image which represents the root of the tree, and moving
upwards in greyscale. The union-find approach has a low theoretical complexity, but it is
slower than the hierarchical queue approach (Salembier and Wilkinson 2009).

3. Building segmentation from lidar data

In this paper, the general principle of building extraction from lidar data is based on the
slope difference between ground and building features. Connected operators are
involved to extract buildings effectively and straightforwardly. The outline of the
method is given over the following three steps.

(1) Initialization constructs a regular grid over the input lidar point cloud.
(2) Extraction of building candidate regions is performed by area-based filtering on

max-tree representation of lidar-generated DSM.
(3) Removing vegetation regions is done by thresholding minimal area and maximum

normalized difference vegetation index (NDVI) value of building regions.

3.1. Initialization

There are three main neighbourhood representation approaches for lidar point clouds
(Filin and Pfeifer 2005): (1) rasterization of the points which was applied to filtering
(Zhang et al. 2003; Chen et al. 2007; Shao and Chen 2008, Meng et al. 2009b; Liu et al.
2012, Li et al. 2013; Pingel, Clarke, and Mcbride 2013; Mongus, Lukač, and Žalik 2014)
and building extraction (Zhang, Yan, and Chen 2006; Meng, Wang, and Currit 2009a;
Kabolizade, Ebadi, and Ahmadi 2010; Huang, Brenner, and Sester 2013; Mongus, Lukač,
and Žalik 2014) from lidar data; (2) triangulation of the points mainly applied to filtering
(Axelsson 2000); and (3) storage of the points in buckets (Kraus and Pfeifer 1998),
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rectangular cells containing 100–1000 points. In this research, the rasterization method
is applied to building extraction from lidar points. Three criteria of choosing this method
are as follows: (1) simple to manage, and the spatial and topological relationships
among points are easy to handle; (2) mature image processing algorithms can be
applied to lidar data; and (3) little deviations, if the resolution of rasterization is similar
to the density of lidar data.

Lidar raw point data are shown in Figure 1(a), and connectivity between points is
established by the construction of a grid G with a finite rectangular subset I. The extent
of I is related to bounding box of lidar points and p denotes a grid point. The construc-
tion of G is done by the following three steps (Mongus, Lukač, and Žalik 2014).

(1) RG defines the resolution of G, estimated according to the lidar data density D.
(2) g[p] Is the value of g at p given by the lowest elevation point contained within the

corresponding grid cells.
(3) p* Denotes an undefined grid point obtained when no points are contained within

the corresponding grid cell. In this case, g[p*] is estimated by the nearest neighbour
interpolation method to guarantee the authenticity of the original data.

In addition, outliers of lidar data, including high outliers and low outliers, should be
removed. Low outliers originate from multi-path errors and that of laser range finder,

Figure 1. The process of building regions extraction: (a) raw lidar points which are cut out from
ISPRS benchmark data set in Vaihingen; (b) grid data interpolated by lidar points; (c) building
candidate regions; and (d) final extracted building regions.
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while high outliers usually result from pulses hitting birds, aircrafts, and so on (Sithole
and Vosselman 2004). High outliers can be removed by the morphological opening
(Chen et al. 2007). In contrast, morphological closing can remove low outliers of lidar
data (Mongus and Žalik 2012), but it will connect two close buildings, if the buildings of
test area are concentrated. So, the low outliers E are detected as follows (Li et al. 2013):

E ¼ p ρþ pð Þj it1; sum pi 2 Npjabs g½pi� � g p½ �ð Þ < t2
� �

< t3
� �

; (6)

where ρþ pð Þ refers to the half gradient by dilation of grid point p, whose threshold is t1.
abs g½pi� � g p½ �ð Þ is the absolute value of height difference between p and pi which is a
neighbouring pixel of p in the neighbourhood Np, and t2 is its threshold. t3 is the
threshold of the sum of points near p. ρþ pð Þ is defined as the difference between the
dilated value and the original value:

ρþ pð Þ ¼ δB Gð Þ p½ � � g p½ �; (7)

where δB Gð Þ p½ � refers to the dilation value of p in grid G with a structuring element B
(3 × 3 square).

After removing outliers of lidar data, the value of outlier will be recovered by the
nearest neighbour interpolation method. Finally, as shown in Figure 1(b), the lidar-
derived DSM is obtained by initializing from lidar point cloud.

3.2. Extraction of building candidate regions

The progressive morphological filtering (Zhang et al. 2003) is a common filtering
method applied to lidar-derived DSM, in which buildings are extracted from elevations
of each pixel obtained by applying morphological filters with increasing size of the
structuring element (Zhang, Yan, and Chen 2006; Chen et al. 2007; Li et al. 2013; Pingel,
Clarke, and Mcbride 2013; Mongus, Lukač, and Žalik 2014). Compared with the progres-
sive morphological filtering, the building extraction method using connected operators
works based on area rather than pixel, which makes building region extraction effective
and straightforward.

Lidar-derived DSM can be considered as a grey-level image, so the grey-level con-
nected operators can be applied to extract building regions. At first, threshold decom-
position is transformed to grid G. Thresholding grid G in an increasing order from hmin to
hmax will generate a stack of nested binary sets:

Th gð Þ ¼ fp 2 Ijg p½ � � hg: (8)

However, to remove the small object and the plane with small height in the process of
filtering for building extraction from lidar-derived DSM, a stack of nested binary sets are
usually generated from the value around the average elevation rather than hmin.

Then, the max-tree is constructed. The area difference of one parent node Cf
k and its

child node bCf
k is utilized to discriminate building regions. So, we only need to know the

relation between the parent node Cf
k and its child node bCf

k. Similar to the flood-filling
approach, the max-tree in this paper is performed in increasing order of level of grid G,
starting at the lowest level of the grid. In addition, to separate building from other
objects completely, the attribute-space connectivity (Wilkinson 2007) is introduced to
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each level of grid G, namely that each level of gird G is clustered by the elevation value
of each grid. Thus, each node of tree represents a clustered region of each level in
grid G.

Once the max-tree has been established, the filtering criterion is introduced to
analyse each node and takes a decision on the elimination or preservation of the
node (Salembier, Oliveras, and Garrido 1998). Based on the slope difference of building
and ground, an area difference–based filtering criterion is introduced. The filtering
criterion is defined as:

Δ Að Þ ¼ CfA
k � bCf

k
A
: (9)

CfA
k is the area of Cf

k ,
bCf
k
A
the area of bCf

k , and Δ Að Þ the difference of two. Suppose that TA1

is the threshold of Δ Að Þ. Namely, if the value of Δ Að Þ is less than TA1 , the corresponding
connect components will be considered as the candidate building object, which is called
as the min filtering rule (Salembier and Wilkinson 2009). In addition, although the area is
decreasing attribute, the area difference is not. This means that the area difference
between a child node and its parent node can be above the given threshold, while the
area difference between its parent node and grandparent node is below the threshold
and will make the filter unstable (Salembier and Wilkinson 2009). To solve this problem,

the nodes from the node Cf
k to the leaf node are all classified active node, if the node Cf

k

satisfies the citation. The results of candidate building extraction are shown in
Figure 1(c).

In fact, the value of Δ Að Þ is related to the inclination degree of one object (building or
hill). As shown in Figure 2, suppose that building is an ideal cylinder, hill is an ideal
parabolic body, and areas S1 and S2 are two connected components of hill correspond-
ing to two nodes of max-tree. Areas S3 and S4 are two connected components of the
building. Suppose that areas S1; S2; S3; andS4 are all the standard circles, and r1 and r2
are the radii of the areas S1 and S2, respectively; d is the interval of two adjacent
elevation levels and e the inclination degree of the hill, respectively. In such a case,
Δ Að Þ is the area difference between the areas S1 and S2:

Figure 2. The schematic diagram of building extraction: ‘S1’ and ‘S2’ are two connected components
of hill; ‘r1’ and ‘r2’ are the radii of the area S1 and S2, respectively; ‘d’ and ‘e’ are the interval of two
adjacent elevation levels and the inclination degree of object, respectively; S3 and S4 are two
connected components of building.
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Δ Að Þ ¼ πr22 � πr12 ¼ π r1 þ d cot eð Þ2 � πr12

¼ πd cot e 2r1 þ d cot eð Þ: (10)

Thus, the value of Δ Að Þ is related to the values of r1, e, and d. It is known to us that
building size is smaller compared with the ground, and building has greater inclina-
tion degree. So, the corresponding value Δ Að Þ of building is smaller than ground. As
shown in Figure 2, the areas of S3 and S4 are almost equal; d is the input parameter
which will also affect the value of Δ Að Þ. The value of TA1 is related to the maximum
size of the building object, the maximum slope of the ground object, and the input
parameter d.

3.3. Removing vegetation regions

Building candidate regions contain buildings and vegetation which should be removed.
Usually, spectrum, area, elevation, roughness, and the number of echoes are adopted to
distinguish building and vegetation areas (Lee, Lee, and Lee 2008). Although researchers
make many efforts to distinguish buildings from trees based on lidar data only
(Rottensteiner and Briese 2002; Li et al. 2010; Yang, Xu, and Dong 2013; Mongus et al.
2013; Mongus, Lukač, and Žalik 2014), they have not got a satisfactory result till now.
Some complex buildings will be recognized as vegetation using texture of feature, and
some high vegetation will also remain if a height threshold is applied to maintain the
buildings. Under these conditions, a colour feature based on the image is introduced to
discriminate buildings from trees (Li et al. 2010; Kabolizade, Ebadi, and Ahmadi 2010; Vu,
Yamazaki, and Matsuoka 2009).

The average NDVI value PN and area PA of every region are calculated. The NDVI value
of each grid is calculated by the NDVI value of its corresponding pixel in the image:

gNDVI p½ � ¼ gNIR p½ � � gR p½ �
gNIR p½ � þ gR p½ � ; (11)

where gNIR p½ � refers to the near-infrared band value of the corresponding image, and
gR p½ � red band value of the corresponding image. If PN < TN and PA > TA2 , this region is
building or tree. TN and TA2 are the thresholds of PN and PA. The final building regions
are as shown in Figure 1(d).

4. Extraction of building boundaries

After the extraction of building regions, the boundaries of buildings need to be
extracted. It can be divided into two steps: identifying the boundaries and boundary
tracking. First, the building grid point adjacent to ground grid point is considered as the
boundary point of buildings, and the boundary point must have only two adjacent
points. Second, boundary points in one unordered set are tracked in order to find an
ordered set of boundary points. Two adjacent boundary points constitute a boundary
line, so building boundaries consist of a number of ordered line segments.
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4.1. Boundary identification

A building region presented by binary image is shown in Figure 3(a). The values ‘0’
(black area in Figure 3(a)) and ‘255’ (white area in Figure 3(a)) represent ground and
building, respectively. In the eight neighbourhoods of a ‘255’ grid point, if there is one or
more ‘0’ grid points, the ‘255’ grid point is identified as boundary point. To trace
boundary points conveniently, each boundary point can and only can have two adjacent
points. In the red rectangular areas of Figure 3(b), there are boundary points which have
three adjacent points. So, as shown in the red rectangular areas of Figure 3(c), in the
case of ensuring connectivity, we can remove one adjacent point.

4.2. Boundary tracing

Once the boundary of building region is identified, it should be tracked before regular-
ization. A simple boundary is a loop where a set of boundary points are connected in a
series. However, some buildings have one or more inner cavities so that these buildings
have two or more loops.

In addition, the boundary of the raw footprint contains too many details and ‘zigzag’
noise because of the irregularly spaced point measurements and the grid-based inter-
polation. Thus, a line simplification method is introduced to reduce the noise of the raw
footprint. In this research, an algorithm originally proposed by Zhao and Saalfeld (1997)
is modified to perform the line simplification. The great advantage of this algorithm is

Figure 3. Principles of building boundary determination: (a) building region; (b) identification of
building boundary and boundary points which have three adjacent points in the red rectangular
areas; (c) removing redundant boundary grid points in the red rectangular areas; and (d) result of
boundary tracing.
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that it can process points in sequence, which is very suitable for processing boundary
points when they are extracted from raster format to vector (Ma 2004).

For simple building boundaries, starting from the lower left corner point, it is traced
anticlockwise. The process can be described as follows.

(1) As shown in Figure 4, points S1; S2; . . . ; S5 denote the boundary grid point of one
building, and f is the input parameter, which indicates how far a point deviating
from a line can be kept as a key point.

(2) The beginning point Si(S1) is determined and Siþ1(S2) is the right neighbour point
of Si(S1). The length l0 and direction angle δ0 of line segment SiSiþ1(S1S2) are
calculated, and δ0 is an angle between line segment SiSiþ1(S1S2) and positive
direction of axis x.

(3) The direction range α0 at current point Si S1ð Þ is calculated according to the line-
segment length l0 and parameter f. The range of α0 is given by δ0 � Δα0. Δα0 is

calculated as tan�1 f
2l0
.

(4) Siþ2 S3ð Þis the right neighbour point of Siþ1(S2). In the same way, the length l1 and
direction angle δ1 of line segment SiSiþ2 S1S3ð Þ are calculated. The direction range

of α1is given by δ1 � Δα1. Δα1 is calculated as tan�1 f
2l1
.

(5) If the direction δ1 is within the calculated direction range α0, the point Siþ1(S2) is
discarded because it is not a key point. Then, a new direction range of line
segment SiSiþ2 S1S3ð Þ is generated as the intersection of the direction range α0
and α1. The new direction α0 for further testing is max δ0 � Δα0;ð½
δ1 � Δα1Þ;min δ0 þ Δα0; δ1 þ Δα1ð Þ�. Go back to step 2, Si=S1 Siþ1= S3.

(6) If direction δ1 is out of the direction range α0, the point Siþ1(S2) is kept in the
generalized line as a key point. The point Siþ1(S2) is taken as the first point of a
new line segment and the point Siþ1(S3) is taken as the second point for the
next simplification process. Repeat the procedure in steps 2–6 until the last
point.

Figure 4. Line simplification using the ‘sleeve’ algorithm: points S1; S2; . . . ; S5 denote the boundary
grid point of one building; l0 and l1 are the lengths of line segments S1S2 and S1S3; δ0 is an angle
between line segment S1S2 and positive direction of axis x; δ1 is an angle between line segment
S1S3 and positive direction of axis x; Δα0 is calculated as tan�1f=2l0; f is the input parameter which
indicates how far a point deviating from a line can be kept as a key point.
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The result of simple building tracing is shown in Figure 3(d). For the building which
has one or more inner cavities, the tracing process of the outer boundary is the same as
the process described above, while an inner boundary is traced clockwise commencing
from the lower left corner point.

After the tracing and simplification of building boundaries, each building boundary
consists of several line segments whose length and direction can be achieved. The
number and length of boundary line segments are determined by parameter f.

5. Boundary regularization

Figure 6(a) shows the traced roof boundary line segments of a practical building scene
(f = 1 pixel). As can be seen, there is an obvious irregularity or noise in the lidar-derived
building boundary line segments. Thus, the first step of the proposed regularization
method is to merge the extracted boundary line segments and find the principal
directions of buildings to regularize the boundary line segments of buildings. For the
second step, the direction of each boundary line segment is classified based on principal
directions of building.

5.1. Confirmation of principal directions

Though the line simplification method is introduced in the process of boundary tracing,
there is still an obvious irregularity or noise in the lidar-derived building boundary line
segments. Thus, in the condition of not changing the outline of building, the lines in the
same direction and that of small length will be merged. For the line segment Li, the
process of line merging is as follows.

● Merged by length: li and liþ1 are the lengths of line segments Li and Liþ1. If li < TL
(TL is a threshold of length), line segment Li is merged with Liþ1 and li ¼ li þ liþ1.
The building boundary lines are merged successively, as they are shown in
Figure 6(b).

● Merged by direction: Δ@0 is the directional difference of line segment Li and Liþ1.
If Δ@0 < TD (TD is a directional threshold), boundary line segment Li will be
merged with Liþ1, then comparing Li with Liþ2 successively. If Δ@0 � TD, the
directional difference Δ@1 of Liþ1 and Liþ2 is calculated first and compared with
TD. The steps above are followed to merge the boundary line segments in turn
(Figure 6(c)).

In this paper, we consult the method mentioned by Zhang, Yan, and Chen (2006)
to confirm the main direction of buildings, since it is very robust. The major direction
of the buildings will be defined in accordance with the longer building segments. Let
x′ and y′ represent possible dominant directions in a 2D xy-coordinate system
(Figure 5). The dominant directions x′ and y′ are related to the coordinate systems
x and y through an anticlockwise rotation by an angle q (0 ≤ q < 90). Therefore, the
key step to estimate the dominant directions is to find the rotation angle q. Assuming
that the anticlockwise intersection angle between a line segment and the x-axis is ti
(0 ≤ti<180), we define
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Figure 5. ‘B’ represents a building outline; the coordinate systems x0and y0 are anticlockwise rotation
of the coordinate systems x and y by an angle q; ti is the anticlockwise intersection angle between a
line segment of a building footprint and the axis x.

Figure 6. The process of boundary regularization: (a) boundary line segments after tracing; (b)
merging the line segments of small length; (c) merging the line segments of same direction; and (d)
boundary line segments after regularizing.
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W ¼
XN
i¼1

g lið Þf ti; qð Þ; (12)

where N is the total number of building boundary line segments, li is the ith boundary line-
segment length, g() is the weight function based on li, and f() is the weight function based
on ti and q. The dominant building directions can be estimated through finding an
optimum q so that W will reach a minimum. Functions f() and g() are presented as follows.

g lið Þ ¼ liPN
i¼1

li

: (13)

f ti; qð Þ ¼ min jti � q ; 90� jti � qj jð Þ=45 : jti � qj � 90
min 180� jti � q ; jti � qj j � 90ð Þ=45 : jti � qj > 90

�
: (14)

5.2. Regularization of direction

We classify the direction of building line segments after confirming the main direction.
Suppose Dh ¼ q is the horizontal main direction, Dv ¼ qþ π=2 the vertical main direc-
tion, di 0 � di < 180ð Þandli i ¼ 1; 2; . . . ;Nð Þ the direction and length of the ith building
line segments, and N the number of the building line segments, then classifying di:

di ¼
Dh Dh � dij j < dt or Dh � πþ dij j < dt;
Dv Dv � dij j < dt or Dv � πþ dij j < dt;

di others:

8<
: (15)

dt is the threshold value we set. If Dh � dij j < dt, di is close to the horizontal main
direction Dh and let di ¼ Dh; if Dv � dij j < dt, di is close to the vertical main direction Dv

and let di ¼ Dv; otherwise, di is oblique and remains unchanged. According to the
classification of building boundary line segments, we can regularize the building bound-
ary line segment, as shown in Figure 6(d).

6. Experiments and evaluation

The proposed method was tested with three test data sets in Vaihingen from ‘ISPRS
benchmark dataset’. The lidar data is acquired by Leica Geosystems using a Leica ALS50
system with 45° field of view and a mean flying height above ground of 500 m. The
median point density is 6.7 points/m2. The area of buildings is 50–700 m2. The buildings
in ‘area 1’ have skew angles with the flight direction, and the buildings in ‘area 2 and
area 3’ are mostly parallel or perpendicular to the flight direction.

6.1. Parameter setting

In this section, the parameters of experiment are set for three areas. The lidar data of test
area have relatively high density, so we let RG ¼ 0:3m. Moreover, in order to remove
outliers of lidar points effectively, let t1 = 100 m, t2 = 0.5 m, and t3 = 4. The value of TA1
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can be estimated by Equation (10). For Equation (10), r1 is related to the maximum size
of building object and e is related to the maximum slope of ground object. So, we let
r1 = 50 pixels, e = 30° and d = 0.1 m for three test areas, and TA1 ¼ 55pixels are achieved.
Parameter TA2 is calculated by TA2 = Sm/0.09 and Sm is the minimum size of building
object in test area. Parameter TN is fitted based on the luxuriant degree of vegetation
regions. To simplify the building boundary under the condition of not changing the
outline of boundary, we let f = 1 pixel, TL = 3 pixels, TD ¼ π=10, and dt ¼ π=10.

6.2. Accuracy and performance evaluation of building extraction

In this section, the performance of building extraction method newly proposed within
this paper will be compared with the method based on DMPs which is developed from
morphology filter by Mongus (2014).

The execution times of the method in this paper and the method based on DMPs
were measured on AMD Phenom (tm) II X6 1055 T Processor 2.80 GHz with 8 GB of main
memory. The accuracy of the method proposed within this paper was evaluated accord-
ing to the ISPRS reference data. Therefore, the completeness CP (%), correctness CR (%),
and quality Q (%) metrics were used, as proposed by Rutzinger, Rottensteiner, and
Pfeifer (2009). The results of the execution times and evaluation of the method in this
paper are shown in Table 1, which were compared with the method based on DMPs.

The method based on DMPs is executed by pixel. So, it has a long execute time and is
affected by the size of the contained buildings in test area. The method in this paper is
much more effective than the method based on DMPs since it is performed based on
area; what is more, it would not be influenced by the size of the contained buildings.

As shown in Table 1, the efficiency of the method in this paper is over 10 times better
than that of the method based on DMPs, but they are almost equal in accuracy. For the
accuracy of buildings extraction results by the method in this paper, the correctness is a
little bit better while the completeness is a little bit worse in area 1, which is mainly
caused by the missing extraction of low buildings (Figure 7(a) A); the correctness is a
little bit worse while the completeness is a little bit better in area 2, for the vegetation is
connected to and recognized as a building (Figure 7(b) B); and the correctness and
completeness are both a little bit worse in area 3 when compared with the method
based on DMPs, which is caused by both the missing extraction of low buildings
(Figure 7(c) D and E) and the vegetation connected to and recognized as a building
(Figure 7(c) C and F).

Table 1. The results of the execution times and evaluation of the method in this paper compared
with the method based on DMPs.

Test case Method

Per-pixel Per-object Per-object for objects > 50 m2

Time (s)CP CR Q CP CR Q CP CR Q

Area 1 DMPs method 90.3 91.7 83.5 86.5 93.9 81.9 100.0 96.6 96.6 188.84
Our method 89.4 94.5 84.9 83.8 93.8 79.4 100.0 100.0 100.0 17.55

Area 2 DMPs method 89.9 97.8 88.1 78.6 91.7 73.4 100.0 100.0 100.0 172.54
Our method 91.0 95.0 86.8 78.6 91.7 73.3 100.0 100.0 100.0 6.44

Area 3 DMPs method 88.9 96.2 85.9 76.8 95.6 74.2 97.4 100.0 97.4 215.94
Our method 87.7 94.5 83.4 73.2 97.7 72.0 94.9 100.0 94.9 8.69

‘CP’, ‘CR’, and ‘Q’ are completeness, correctness, and quality metrics, respectively.
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6.3. Accuracy evaluation of buildings boundary

Figures 8–10 show regularized buildings in three test areas of Vaihingen, respectively. In
these figures, the regularized building boundaries are overlaid on the lidar surface
model; lidar boundary points labelled by number are selected from lidar raw points
manually; d is the average offset distance from those points to the corresponding
boundary line segments, and σ is the standard deviation of the offset distance.

Figure 7. Evaluation results of building detection in the three test areas.

Figure 8. Regularized building boundary, corresponding image and quality in area 1: (a) d = 0.35 m,
σ ¼ �0:43 m; (b) d = 0.43 m, σ ¼ �0:57 m; and (c) d = 0.45 m, σ ¼ �0:57 m. Building ‘a’ is
simpler than buildings ‘b’ and ‘c’. So, the average offset distances of buildings ‘b’ and ‘c’ are greater
than the average offset distances of building ‘a’.
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Several observations can be made based on the results in Figures 8–10. It is first seen
that almost all building boundary line segments are very well determined. The regularized
boundary fits to the lidar boundary points and reflects the buildings’ shape. The building
outline provides an authentic appearance comparing to the images and the lidar surface
model. Second, many minor rectilinear features, for example, the short right-angle line
segments labelled as A, are determined correctly through the regularization process. This
forms the fine details in the determined building boundary, which can possibly be inferred
from the lidar data. As shown by the B labels, the boundary line segments have a large
shift from lidar boundary points due to the regularization of line segments. At the C labels
of Figure 8(b), the complex structure of building will introduce errors in the process of
regularization. And at the D labels of Figure 9(a) and (b), the errors are led into by the
interpolation of lidar DSM. Finally, at the E and F labels of Figures 9(b), (c), and 10(b), the
errors are led to by the errors of building detection results.

Figure 9. Regularized building boundary, corresponding image and quality in area 2: (a) d = 0.54 m,
σ ¼ �0:64 m; (b) d = 0.72 m, σ ¼ �0:93 m; and (c) d = 0.60 m, σ ¼ �0:74 m. Buildings ‘a’, ‘b’, and
‘c’ are all complex, so the average offset distances of the three buildings are all large. In addition, the
average offset distances of buildings ‘b’ and ‘c’ are greater, which is caused by misleading points.
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Table 2 lists the offset values of lidar boundary points from boundary line segments
obtained from nine buildings of three test areas. The measurements are used to
quantitatively evaluate the fitness of the regularized building boundary to the lidar
points. Corresponding to Figures 8–10, (A), (B), and (C) represent three buildings in each
area; ‘Number’ is the serial number of the boundary points in every building. ‘Mean1’
and ‘Std1’ denote the average offset distance and standard deviation of the offset
distance of the boundary points including misleading points (bold value in Table 2)
resulting from building extraction, while ‘Mean2’ and ‘Std2’ denote the average offset
distance and standard deviation of the offset distance of the boundary points excluding
misleading points. As we can see from the data, the more complicated the building is,
the larger the offset value will be. In the test data of area 3, the buildings are simple, so
the average offset value of buildings from 0.2 to 0.4 m is small except for the misleading

Figure 10. Regularized building boundary, corresponding image and quality in area 3: (a)
d = 0.28 m, σ ¼ �0:34 m; (b) d = 0.52 m, σ ¼ �0:69 m; and (c) d = 0.35 m, σ ¼ �0:42 m.
Buildings ‘a’, ‘b’, and ‘c’ are all simple, so the average offset distances of the three buildings are all
small. The average offset distances of building ‘b’ are greater, which is caused by misleading points.
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points. The average offset values are located between 0.3 and 0.6 m in areas 1 and 2
where some buildings are complex. The offset values of complicated buildings are large
while they are small for simple buildings. The buildings extraction results of three test
areas are shown in Figure 11.

7. Conclusion

The steps of determining building boundary from lidar data include the following: (1)
attribute filters for separating building candidate regions from lidar data; (2) removing
vegetation regions from building candidate regions by NDVI value of image; (3) identify-
ing and tracing building boundary; and (4) confirming the main directions of buildings
and regularizing the building boundary line segments based on estimated main
directions.

Attribute flitters are introduced to detect building regions from lidar data. Three test
areas from ISPRS benchmark data are utilized for experiments, and the reference data is
used to evaluate the results. Compared with the morphology method based on DMPs, they
are almost equal in accuracy, but the proposed method performs more than 10 times in

Table 2. The offset values of buildings in three areas: corresponding to Figures 8–10, (A), (B), and (C)
represent three buildings in each area.

Number

Area 1 Area 2 Area 3

(A) (m) (B) (m) (C) (m) (A) (m) (B) (m) (C) (m) (A) (m) (B) (m) (C) (m)

1 0.10 0.06 0.44 0.67 0.56 0.41 0.26 0.19 0.73
2 0.39 0.63 0.07 0.74 0.68 0.55 0.11 0.43 0.66
3 0.14 0.59 0.37 0.93 0.22 0.49 0.11 0.24 0.47
4 0.34 0.55 0.09 0.14 0.68 0.61 0.23 0.48 0.11
5 0.29 0.02 0.31 0.93 0.52 0.54 0.59 0.25 0.30
6 0.44 0.09 0.65 0.29 0.68 2.19 0.63 0.22 0.05
7 0.89 1.12 0.56 0.86 0.48 0.74 0.06 0.64 0.36
8 0.08 1.20 0.42 0.12 0.35 0.31 0.22 0.49 0.16
9 0.38 0.40 1.40 0.35 1.96 0.02 – 1.72 –
10 0.19 0.01 0.49 0.11 0.04 0.08 – – –
11 0.38 0.56 0.18 1.13 2.55 0.54 – – –
12 0.19 0.20 – 0.26 0.11 0.14 – – –
13 0.05 0.57 – 0.41 0.86 0.73 – – –
14 0.43 0.03 – 0.95 0.57 0.87 – – –
15 0.89 0.49 – 0.95 0.71 0.94 – – –
16 – – – 0.95 1.09 0.41 – – –
17 – – – 0.20 1.02 0.57 – – –
18 – – – 1.03 0.24 0.80 – – –
19 – – – 0.36 0.45 0.61 – – –
20 – – – 0.89 1.12 0.46 – – –
21 – – – 0.11 0.22 – – – –
22 – – – 0.29 – – – – –
23 – – – 0.28 – – – – –
24 – – – 0.44 – – – – –
25 – – – 0.15 – – – – –
Mean1 (m) 0.35 0.43 0.45 0.54 0.72 0.60 0.28 0.52 0.35
Std1 (m) 0.43 0.57 0.57 0.64 0.93 0.74 0.34 0.69 0.42
Mean2 (m) – – – – 0.56 0.49 – 0.37 –
Std2 (m) – – – – 0.64 0.55 – 0.40 –

‘Number’ is the serial number of the boundary point in each building. ‘Mean1’ and ‘Std1’ denote the average offset
distance and standard deviation of the offset distance of the boundary points including misleading points (bold
values) resulting from building extraction, while ‘Mean2’ and ‘Std2’ excluding misleading points.
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efficiency. The errors are mainly caused by the missing extraction of low buildings and the
vegetation connected to and recognized as a building. The processes of building boundary
tracing and regularization are introduced. For most of the simple buildings, the boundaries
can be represented precisely; for the complex buildings which have non-linear boundaries,
the non-linear boundaries will be exhibited by the linear form and lead to deviations.

The experiment results show that the method proposed within this paper determined
building outlines effectively. The quantitative accuracy analysis indicates that the aver-
age offset values from lidar boundary points to boundary line segments is less than
0.6 m (2RG), despite the fact that there are several complex building shapes in Vaihingen
area.
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Figure 11. Regularized building boundaries of the three test areas.
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