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Abstract

Critical keylines, such as concave and convex edges of a building fac�ade, can
be lost in photogrammetric recognition procedures. To solve this problem and to
reconstruct quasi-planar 3D fac�ades automatically and precisely, a set of
algorithms and techniques for the automatic recognition of lines and 3D
reconstruction is proposed. This includes: (1) a procedure for line-segment
matching that satisfies the spatial requirements of a 3D scene based on “global
independence” and “local dependence”; (2) a technique of generalised point
bundle block adjustment combined with spatial line constraints (in the form of
virtual observations) to control the propagation of error; and (3) the methods of
perceptual organisation, plane fitting and plane–plane intersection are suggested
to acquire the critical keylines corresponding to concave and convex building
edges. Experimental results show that these new algorithms are feasible and
applicable to recognition and 3D reconstruction. Recommendations for recognition
methods are provided depending on whether or not a priori topological
relationships are available between the planes under consideration.

Keywords: generalised point photogrammetry, line recognition, line-segment
matching, plane fitting, quasi-planar fac�ades, 3D reconstruction

Introduction

THREE-DIMENSIONAL RECONSTRUCTION OF BUILDINGS is an important component of a digital city
model (Baillard and Zisserman, 1999; Brenner, 2000; Zhang et al., 2005; Khoshelham
et al., 2010), and building fac�ades are a significant component of street landscapes.
However, the automatic reconstruction of 3D objects from images remains a classic problem
in computer vision and digital photogrammetry (Schindler and Bauer, 2003; Remondino
et al., 2008; Haala and Kada, 2010). Recently, the interdisciplinary field of photogrammetric
computer vision has emerged that involves fusing photogrammetry and computer vision to
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support fully automated 3D modelling and mapping tasks using visual and electromagnetic
sensors (F€orstner, 2002; Zhang, 2004). Photogrammetric computer vision is becoming
increasingly more popular, as evidenced by related research. Thus, the methods and techniques
of the fields of photogrammetry and computer vision can be integrated to enhance both the
automation and accuracy of 3D reconstruction. Typically, airborne and satellite imagery are used
to extract texture information on the upper surfaces of 3D cartographic objects such as the
ground surface and buildings (Baillard and Zisserman, 1999; Suveg and Vosselman, 2004;
Barazzetti and Scaioni, 2009; Khoshelham et al., 2010; Huang et al., 2013; Rottensteiner et al.,
2014). However, near-nadir photography from airborne and spaceborne platforms cannot acquire
detailed textural information regarding building fac�ades because of the limitations in the
camera’s viewing direction. Thus, a terrestrial (land-based) platform generally needs to be used
for generating 3D building-fac�ade models. Moreover, the processing of close-range images
acquired by such terrestrial platforms is more challenging than that of aerial and satellite images
because of the large geometric distortions among overlapping images, including partial
occlusions, image rotation and viewpoint changes. These problems are addressed in this paper.

As well as planar surfaces, buildings possess both concave and convex components;
therefore, recognising such edges is a key task in 3D building reconstruction. A concave
edge has an external angle less than 180° (for example, in a recess); in a convex edge this
angle is greater than 180° (as in a bay window). Line-segment matching can be used to
address a broad range of scenes that include concave and convex edges. However, these key
edges are not always matched or recognised because of noise and differences in line-
extraction and line-matching performance. In the example shown in Fig. 1, the line
matching was successful (Bay et al., 2005), but the regions marked with pecked ellipses
(key edges) were not recognised. In addition, current algorithms for line matching do not
always acquire both conjugate (corresponding) endpoints of a line segment (also see Fig. 1);
this outcome is inconvenient for 3D reconstruction. Thus, the question of how to optimally
and automatically recognise these “lost” concave and convex edges, together with matching
the endpoints of line segments, is investigated in this paper.

The question of how to express discrete spatial features (such as point clouds and 3D
lines) as a structure with topological relationships is an important issue in 3D reconstruction
and modelling. Common and traditional methods of scene representation are always based
on triangulated irregular networks (TINs) (Pollefeys et al., 2004). However, a 3D surface
that is generated using a TIN always contains many “blurry” edges. In a TIN-based model,
the model surface is divided into many small triangular facets, and the corresponding 3D
scene on each triangular facet has a continuous surface. When an image contains a large
planar region, the triangular facets are extended into a polygon that encompasses the entire
plane, forming a plane-based model or a piecewise planar model (Werner and Zisserman,

Fig. 1. Results for the recognition of line segments (Bay et al., 2005). Key concave and convex edges,
indicated by the pecked ellipses, were not recognised.
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2002; Bodis-Szomoru et al., 2014). Hence, a plane-based model can be applied to the 3D
reconstruction of building fac�ades to improve efficiency. In addition, such fac�ades can often
be regarded as roughly planar or forming a vertical building (Kang et al., 2010). Therefore,
this paper focuses on the 3D modelling of quasi-planar fac�ades based on a 3D wireframe
surface model (3DWSM).

Motivated by the aforementioned studies and concerns, this paper has three main
objectives:

(1) To offer an approach to image matching and shape recognition based on a
particular philosophical principle, namely, the image-matching algorithm must
satisfy the objective requirements for the spatial distribution of a 3D scene. This
paper investigates an algorithm for line-segment matching, based on the authors’
original research, which is improved and extended into a more generic technique
for line-segment matching.

(2) To extend the scope of generalised point photogrammetry. A method of
generalised point bundle block adjustment is proposed which is combined with
spatial line constraints in the form of virtual observations to control the
propagation of error in image rectification with large oblique angles using two
vanishing points. (Large oblique angle implies the camera axis is significantly
non-orthogonal relative to the building fac�ade.)

(3) To improve the efficiency, precision and reliability of keyline recognition. The
methods of perceptual organisation (coplanarity clustering), plane fitting and
plane–plane intersection are proposed for the acquisition of critical keylines
corresponding to concave and convex edges. The problem of missing key edge
lines caused by failures of line extraction or matching is efficiently overcome.

A flowchart of the proposed methods is presented in Fig. 2 and will be elaborated
upon in the remainder of the paper.

Stereomatching of Line Segments

Image matching can be a bottleneck in modern photogrammetric technology and is a
classically difficult problem in 3D reconstruction. Area-based matching (ABM) and
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Fig. 2. Flowchart of the proposed methods for 3D fac�ade reconstruction. Abbreviations are explained in the
text.
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feature-based matching (FBM) are classic types of image-matching algorithms (Gruen,
2012). Point descriptors include the scale-invariant feature transform (SIFT) (Lowe, 2004),
speeded-up robust features (SURF) (Bay et al., 2008), principal components analysis SIFT
(PCA-SIFT), gradient location-orientation histogram (GLOH) and binary robust invariant
scalable keypoints (BRISK). Line descriptors include the mean standard-deviation line
descriptor (MSLD) (Wang et al., 2009) and the line band descriptor (LBD) (Zhang and
Koch, 2013). However, because the texture of a neighbourhood is not sufficiently rich, a
linear feature description is less clear and robust than a point description (Fan et al., 2012).
Homography is commonly used for line matching (Schmid and Zisserman, 1997, 2000), but
it has certain limitations. When a scene is not planar or approximately planar, such
algorithms are invalid. For aerial images, Ok et al. (2012) have proposed a new pairwise
approach for line segments that are nearly parallel to the epipolar line. However, this
approach may be not suitable for application to close-range stereo-images because of
discontinuities and variations in parallax that occur in such imagery, which can change the
topological relationships between objects.

The essence of image matching, as presented by Zhang (2007), is that the spatial
distribution of a 3D environment is neither continuous nor smooth, yet local areas are.
Thus, such an environment represents a unity of opposites, namely, global independence and
local dependence (GILD). Therefore, Zhang (2007) proposed an independence rule for
image matching in accordance with this principle. Furthermore, in the digital
photogrammetry grid (DPGrid) system (Zhang et al., 2011), an innovative system for image
matching based on this GILD rule was implemented. It is well known that a line segment
contains more information than a point. In many state-of-the-art approaches to point
matching (such as semi-global matching (Hirschm€uller, 2005), dynamic programming and
optimisation techniques based on graph cuts) the global minimum of an energy function is
identified through local scanning and matching. In contrast, the proposed GILD strategy
consists of globally matching potential candidates and then locally eliminating the ambiguity
or outliers in candidate sets using line-segment continuity constraints. The advantage of this
strategy is that omission-error matching, caused by an inappropriate (for example, too small)
search space and occlusions (such as at the endpoints of a line segment), is reduced through
globally independent matching. Furthermore, commission-error matching, caused by
repetitive textures, similar scene structure and so on, is simultaneously reduced through
locally dependent matching. In addition, complexly optimised searches in the solution space
are avoided in the proposed GILD approach, thereby increasing computational efficiency.

Based on the GILD approach, an improved and more generic technique for line-
segment matching has been developed by incorporating the procedures outlined in (1) to (4)
below.

(1) Relative Orientation (RO) using FBM

Points are incorporated to assist in line-segment matching. According to the
definition of epipolar geometry, corresponding (conjugate) points must be located along
an epipolar line. Hence, relative orientation, performed by using the well-known SURF
descriptor and random sample consensus (RANSAC) (Fischler and Bolles, 1981), can be
performed to determine orientation parameters and transform a 2D matching problem into
a 1D matching problem. In RO, five points from the matched results are randomly
sampled to iteratively estimate and find the optimal parameters of the coplanarity model
using a voting scheme.

Li et al. Automatic keyline recognition and 3D reconstruction for quasi-planar fac�ades
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(2) Line-Segment Extraction

This is implemented, on the basis of the authors’ previous research (Li et al., 2009),
using the following four steps:

(a) The image is pre-processed by Wallis filtering that is used to enhance image contrast
and reduce the noise.

(b) The Canny (1986) operator is used to detect edges in the image.
(c) Feature grouping (perceptual organisation) and line fitting with hypothesis testing are

utilised to merge short line segments.
(d) An adaptive least-squares matching algorithm (Ackermann, 1984; Gruen, 1985) is used

to acquire the higher precision lines.

(3) Generating Candidate Line Segments using ABM and Global Independence

Let the endpoints of the target line segment, after its automatic extraction, be p and q
(Fig. 3(a)). The sets of candidate endpoints for the line segment are Q = {q1, q2, . . ., qn}
and P = {p1, p2, . . ., pm}, which are generated by computing the global normalised cross
correlation (NCC) to obtain local peak points. The matching processes for p and q are
independent. The correlation coefficient is calculated based on the NCC, which is a classic
ABM method. There are n 9 m possible line segments. In Fig. 3(a), eq and ep are the
epipolar lines corresponding to q and p. {q1, p1}, {q1, p2}, {q2, p1} and {q2, p2} are the
candidate line segments. Note the following five properties:

(a) Independence must be maintained at the endpoints of the matched line segment
because the spatial distribution of a 3D object is not globally continuous or
smooth.

(b) The search window must be sufficiently large to capture the corresponding endpoints
and reduce omission-error matching.

(c) The candidate endpoints for a line segment must be generated by matching in the
vicinity of the epipolar line, not just directly on the epipolar line, because of:

(i) error due to uncalibrated radial distortion; and
(ii) residual errors in the relative orientation affecting the propagated epipolar line.

(a) (b)

S1 S2

a1 b1

c1 a2

b2
c2

A B C

Fig. 3. Sketch of line-segment matching: (a) matching to generate candidate line segments (ep and eq are
epipolar lines for p and q); (b) geometric length deformation between corresponding line segments.
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(d) The geometric distortion among close-range stereo-images should first be corrected
using the following affine-transformation model to compensate for the effects of image
shifts and rotations:

xR ¼ a0 þ a1xL þ a2yL; yR ¼ b0 þ b1xL þ b2yL ð1Þ

where (xL, yL) and (xR, yR) are the pixel coordinates in the left and right images,
respectively. The coefficients a0, a1, a2, b0, b1 and b2 can be calculated from the
conjugate points obtained by the relative orientation.

(e) Self-adaptive matching for occluded endpoints, which can effectively reduce omission
errors, is implemented by:
(i) reserving endpoints with high NCC values;
(ii) abandoning endpoints with low NCC values that may be occluded; and
(iii) searching for new endpoints with high NCC values along the line segment.

(4) Eliminating the Ambiguity in Candidate Line Segments based on Local Dependence

The spatial distribution of a 3D object is locally continuous and smooth, in a similar way
to a line segment. Therefore, continuity restrictions (local dependence) can be imposed during
line-segment matching to eliminate ambiguities in the set of candidate line segments. In this
paper, relaxation matching, which can control commission errors, is proposed to ensure local
dependence by computing the probability for each candidate line segment based on Bayes’
theorem. The basic algorithm can be described by the following two procedures:

(a) Resampling. For each pair consisting of the target line segment and one of the candidate
line segments, resample one of the line segments to eliminate the length difference
between them. In Fig. 3(b), the lengths of the corresponding line segments a1b1 and
a2b2 are not equal: |a1b1| 6¼ |a2b2|. Thus, the shorter of the two line segments between
the target and the candidate must first be found as follows:

Min Length qpj j; qipj
�� ��� �

; ði ¼ 1; ::; n; j ¼ 1; ::;mÞ:

Then, taking the length of the shorter line segment as a reference, select windows which
are 7 pixels wide in the direction orthogonal to the line segment. Next, resample the
window of the longer line segment to a new window that is equal to the size (length
and width) of the shorter line segment. Because of depth discontinuities and differences
in silhouettes, different viewpoints will yield different backgrounds on the non-fac�ade
side of the line. Therefore, it is necessary to process the two sides separately; it then
seems appropriate to choose the larger of the two similarity scores.

(b) Matching. Match the line segment based on probabilistic relaxation. This matching
method has been successfully applied in the VirtuoZo digital photogrammetric system
(Zhang et al., 1992). Based on the features of a line segment, a new compatibility
coefficient is defined as follows:

Cði; j; k; lÞ ¼ Cijkl ¼ NCCfresamplefði; jÞ; ðk; lÞgg ð2Þ
where (i, j) is the window for the target line segment qp in the left (reference) image,
(k, l) is the window for the candidate line segment qipj {i = 1, . . ., n; j = 1, . . ., m} in the
right image, resample{(i, j), (k, l)} represents the resampling window generated in the
previous step (4a) and NCC represents the similarity-measuring approach. By measuring
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the probability of the existence of a connectivity region between the endpoint and starting
point of the line segment and then calculating whether the target and candidate line segments
are compatible, the line segment can be matched under the constraint of local dependence
(continuity restrictions). Cijkl plays an important role in the relaxation-matching approach.
Local consistency in line-segment matching can be achieved based on Bayes’ theorem using
an iterative scheme (Zhang et al., 2000; Zhang and Gruen, 2006):

Pðnþ1Þ
ðai¼wjÞ ¼

PðnÞ
ðai¼wjÞQ

ðnÞ
ðai¼wjÞP

k2X
PðnÞ
ðai¼kÞQ

ðnÞ
ðai¼kÞ

) Pðnþ1Þði; jÞ ¼ PðnÞði; jÞQðnÞði; jÞPmj

s¼1
PðnÞði; sÞQðnÞði; sÞ

ð3Þ

and

QðnÞði; jÞ ¼ Pðn�1Þði; jÞ c0 þ c1
X
j2Ni

Xnj
l¼1

CijklP
ðn�1Þðk; lÞ

 !
ð4Þ

where c0 and c1 are relaxation coefficients set to 0 and 1, respectively; n is the number
of iterations; and Q(n)(i, j) represents the probability of the existence of a connecting
region from the starting point to the endpoint of the line segment in the nth iteration.
When a candidate line segment with a matching probability higher than 0�9 is found,
or when the maximum number of iterations is reached, the iterative calculation is
terminated. At this time, the candidate line segment with the highest matching
probability is considered to be the corresponding line segment.

Note that the proposed GILD approach differs from the method by Schmid and Zisserman
(2000) as follows: (a) line-segment extraction; (b) similarity measurement; (c) matching of
corresponding endpoints; (d) matching strategy for short-range and long-range motion; and
(e) self-adaptive matching. Moreover, image pyramids and least squares matching
(Ackermann, 1984; Gruen, 1985) can also be utilised to obtain matching results with high
reliability and precision.

Automatic Image Rectification and Automatic Mosaicking with Generalised

Point Photogrammetry

With terrestrial (land-based) imagery, large oblique angles lead to substantial
perspective geometric distortions of building-fac�ade textures. However, images with such
tilted camera axes cannot be easily rectified and mosaicked without measured ground
control points (GCPs) determined by traditional surveying methods. Therefore, rectification
of the raw image based on the following proposed method is necessary to acquire a visually
appealing texture.

Camera Calibration

In computer vision, vanishing points have been used for camera calibration (Caprile
and Torre, 1990; Hartley and Zisserman, 2003). In generalised point photogrammetry (GPP)
(Zhang and Zhang, 2004; Zhang et al., 2008), six equations, involving three interior
orientation parameters (the principal point (x0, y0) and the principal distance f) and three
exterior direction parameters (φ, x and j) can be computed based on vanishing points
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located in three orthogonal directions relative to three limitless points along the X, Y and Z
axes. Let X, Y and Z extend to infinity. The collinear equations of the vanishing points can
be acquired as follows:

xX1 ¼ x0 � f � a1=a3; yX1 ¼ y0 � f � a2=a3
xY1 ¼ x0 � f � b1=b3; yY1 ¼ y0 � f � b2=b3
xZ1 ¼ x0 � f � c1=c3; yZ1 ¼ y0 � f � c2=c3

ð5Þ

where (xX∞, yX∞), (xY∞, yY∞) and (xZ∞, yZ∞) are the coordinates of the intersections; φ, x
and j are the angular elements corresponding to the coefficients of the rotation matrix (ai, bi
and ci, i = 1, 2, 3). The interior orientation parameters can be acquired using equation (5).
Since the solution of (x0, y0) is unstable, (x0, y0) is approximately regarded as the centre
coordinates of the image. Moreover, the interior orientation parameters (x0, y0 and f) are
fixed during the solution processing. However, distortion parameters should be solved by
pre-calibration.

Automatic Image Rectification and Mosaicking

The object in this study is a quasi-planar fac�ade; indeed, fac�ades are often approximately
planar and vertical. Thus, two groups of lines parallel to the X and Y axes (corresponding to two
vanishing points) in the object space are generally available on building fac�ades, but the
vanishing point in the depth direction (Z) cannot always be detected when the fac�ade resembles a
wall in the X–Y plane with little Z component; this is a common problem in terrestrial fac�ade
images. Furthermore, even if a vanishing point in Z can be detected in a quasi-planar fac�ade
scene, its accuracy is very low and it generally cannot be used because the extracted line
segments corresponding to the Z vanishing point are always short and poorly distributed spatially
over the fac�ade scene (Li et al., 2011). Hence, the application of two constraints (in the X and Y
directions) as control conditions for calculating the orientation parameters was proposed by Kang
et al. (2010). However, the vanishing point in the depth orientation (Z) is not geometrically
restricted. Thus, to allow for automatic rectification of a close-range image with large oblique
angles, a more stable and rigorous algorithm is proposed called generalised-point bundle block
adjustment combined with additional spatial line constraint. This method was developed based
on the works cited above by applying object-space compensation in the Z direction. The steps of
this procedure are as follows:

(1) Select matching line segments and group them in the vanishing-point direction as
observations for subsequent adjustment.

(2) Acquire the initial values of the orientation parameters via the processing reported
by Kang et al. (2010).

(3) Implement generalised-point bundle block adjustment combined with spatial line
constraints via alternate convergence.

Typically, six parameters are used to describe a line segment:

X ¼ X0 þ t � cos a
Y ¼ Y0 þ t � cos b ðt0 � t� t1Þ
Z ¼ Z0 þ t � cos c

(
ð6Þ

where (X0, Y0, Z0) is the starting point, (a, b, c) is the angular direction of the line, t is the
distance from a particular point on the line to the starting point, and t0 and t1 define the
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limits of parameter t. After corresponding line segments are matched and orientation
parameters are gained in the previous step, 3D line segments are calculated by space
intersection and parameterised using equation (6). Then, equation (6) can be substituted into
the collinearity equations for a stereopair. Using two stereo-images (left and right images) as
an example, after adding the constraint condition in the Z (depth) direction, the following is
obtained:

xL�xL0¼�f L
aL1ðX0þt0 �cosa�XLSÞþbL1ðY0þt0 �cosb�YLSÞþcL1ðZ0�ZLSÞ
aL3ðX0þt0 �cosa�XLSÞþbL3ðY0þt0 �cosb�YLSÞþcL3ðZ0�ZLSÞ

;jhj�45�

yL�yL0¼�f L
aL2ðX0þt0 �cosa�XLSÞþbL2ðY0þt0 �cosb�YLSÞþcL2ðZ0�ZLSÞ
aL3ðX0þt0 �cosa�XLSÞþbL3ðY0þt0 �cosb�YLSÞþcL3ðZ0�ZLSÞ

;jhj\45�

xR�xR0¼�f R
aR1ðX0þt1 �cosa�XRSÞþbR1ðY0þt1 �cosb�YRSÞþcR1ðZ1�ZRSÞ
aR3ðX0þt1 �cosa�XRSÞþbR3ðY0þt1 �cosb�YRSÞþcR3ðZ1�ZRSÞ

;jhj�45�

yR�yR0¼�f R
aR2ðX0þt1 �cosa�XRSÞþbR2ðY0þt1 �cosb�YRSÞþcR2ðZ1�ZRSÞ
aR3ðX0þt1 �cosa�XRSÞþbR3ðY0þt1 �cosb�YRSÞþcR3ðZ1�ZRSÞ

;jhj\45�

Z1�Z0 ¼ 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð7Þ
where fL, xL0, yL0 and fR, xR0, yR0 are elements of the interior orientation elements for the
left and right images, respectively; XLS, YLS, ZLS and XRS, YRS, ZRS are the positional
elements of the exterior orientation for the left and right images, respectively; the
coefficients of the rotation matrix (aLi, bLi and cLi, i = 1, 2, 3) and (aRi, bRi and cRi,
i = 1, 2, 3) consist of the rotation angles φL, xL, jL and φR, xR, jR for the left and right
images, respectively; and Z0 and Z1 are the coordinates of the two endpoints of the line
segment in the depth direction. Note that the angle h (defined by the direction of an
image line with respect to the image x axis) of the observed line is used to select the
equation in the x or y direction; details are provided in previous papers (Zhang and
Zhang, 2004; Zhang et al., 2008). The weight matrix is very important to the suggested
combined bundle adjustment to ensure that reliable solutions are obtained. Observations
that exhibit gross errors (for example, if the Z values of the endpoints are significantly
unequal) are removed by the robust estimation technique. Moreover, the weights of all
observations are determined based on the a posteriori variance estimation (iterative method
with variable weights) presented by Li and Yuan (2002), which is recalculated based on
the iterative results obtained during the bundle adjustment.

As a result, the virtual constraints are incorporated into the generalised point bundle
adjustment. Then, the orientation parameters (except for the coordinates of the perspective
centre) are employed to rectify the stereo-images with large oblique angles. Note that the
proposed method is a supplementary method of camera calibration and image rectification
under the condition of two vanishing points. If three orthogonal vanishing points can be
acquired with high accuracy, then the traditional method can also be used.

After rectifying the images’ highly tilted camera axes, the method presented by Kang
et al. (2010) is used to automatically retrieve the corresponding images for each building
fac�ade from the raw image sequence. This process is performed via the detection of the
range variance using the histogram of the projective differences between the corresponding
points and lines for each of the fac�ades in the raw images.
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Key Edge Recognition

Recognition of non-extracted or unmatched concave and convex critical edge lines is a
complicated task, so the following methods are suggested for resolving this problem.

Recognising the Edges of Building Roofs

In contrast to aerial and satellite images, terrestrial images possess the particular feature
that the sky appears above the roof of a building. Therefore, a roof can be recognised by
segmenting the sky from other objects, in other words performing a single-class or unary
classification. Afterwards, the extracted sky data is regarded as the background (the
foreground will include building roofs). Even if the roofs are not recognised in a few
scenes, most roof edges can still be obtained, thereby reducing the post-processing
workload.

This paper presents an algorithm based on parallelepiped classification for roof
recognition, which can obtain favourable results but at high computational cost. First,
images with large oblique angles must be rectified and mosaicked. Then, the brightness
values from each pixel of the red/green/blue (RGB) images are used to produce a 3D RGB
mean vector, ls = (ls1, ls2, ls3), in which ls is the mean value of the training data obtained
for the class s (sky). A similar notation is used for class c (cloud) (s and c constitute the
two possible classes (unary classification)). Here rs and rc are the standard deviation of the
training data for classes s and c, respectively. Afterwards, on the basis of a 3r criterion for
normal distributions with a decision tree (Quinlan, 1987), a parallelepiped method is used to
determine the foreground and background:

if XSfðx;yÞjvi 2 ðls1�3rs1;ls2�3rs2;ls3�3rs3Þg) sky
else if XCfðx;yÞjvi 2 ðlc1;�3rc1;lc2�3rc2;lc3�3rc3Þg
if XCðx;yÞ�XSðx;yÞ

�
) cloud

9=
;) foreground

else background (buildings and occlusions etc.)

8>><
>>: ð8Þ

where vi is a pixel vector with an RGB value under the specified classification, and ΩS

and ΩC are the segmented areas corresponding to the sky and the clouds, respectively.
To eliminate noise interference, the topological relationship is constrained to satisfy the
requirement that area ΩC lies inside area ΩS. After the extraction of lines from the
image, several fragmented line segments, including roof edges, are acquired. Then, a
broken roof edge can be treated as an initial recognition buffer (area) that can be
automatically located by searching and classifying sky along the top of the image. Note
that there is no need to recognise the entire sky; the focus is only in the neighbourhood
of the roof. Hence, when compared with the Gaussian mixture model and support vector
machine, the computational efficiency and reliability of roof recognition are
considerably improved by the suggested method due to the reduction in the area
subjected to image segmentation. Furthermore, because the sky’s boundary is not
always the roof boundary of the fac�ade, a few human–computer interactions may be
necessary for post-editing of roof boundaries.

Finally, after the image areas are identified as either foreground or background in the
classification based on the parallelepiped method and a decision tree, the edges can be
easily detected using a Canny (1986) operator such that the edge coordinates of the building
roof are obtained by tracing the roof edges.
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Key Edges for Building Recognition

As illustrated in Fig. 1, it is difficult to entirely avoid the problem of “missing”
concave and convex edges. A method to recognise missing edges is proposed as follows:

(1) The matched conjugate lines are intersected to obtain spatial 3D lines.
(2) These spatial lines are clustered for the classification of coplanar lines by combining

RANSAC, the 3D Hough transform (Overby et al., 2004) and the iterative self-
organising data analysis technique algorithm (ISODATA) (used for 3D geometric
pattern recognition). RANSAC can be employed to detect planes quickly and accurately
(Tarsha-Kurdi et al., 2007). Hence, to begin, three points from two random parallel line
segments are selected; the parameters of the corresponding plane are calculated as:

x cos h cosuþ y cos h sinuþ z sin h ¼ qðh;uÞ ð9Þ
where a plane Π2ℜ3 is uniquely defined by a triplet (h, φ, d), h2 {0, 2p} and φ2 {�p/2,
p/2} denote the two angles (azimuth and elevation) associated with the spherical
representation of the plane’s unit-length normal vector, and d ≥ 0 denotes the distance from
the origin of the coordinate system to the plane. When the triplet (h, φ, d) is calculated for a
3D plane, information related to any other 3D plane constitutes noise and outliers that
should be eliminated using RANSAC.

However, because of the shortcomings of the Hough transform, in the initial space
segmentation some geometrically coplanar planes that are actually discontinuous planes
may be mistakenly clustered. Therefore, this paper proposes the application of
ISODATA to the initial results for the final space segmentation. In ISODATA, the
standard deviation within each cluster and the distances between cluster centres are
calculated. Clusters are split if one or more standard deviations are greater than a user-
defined threshold; conversely, they are merged if the distance between clusters is
smaller than a user-defined threshold; thus, the application of this procedure can
overcome the shortcomings of the 3D Hough transform.

(3) The utilisation of spatial coplanar lines is suitable for fitting spatial planes. Three
methods are considered to determine which yields the best fitting results, which directly
affect the accuracy of edge recognition:

(a) Gauss–Markov Model (GMM). The Gauss–Markov theorem (Plackett, 1950) states
that, in a linear regression model in which the errors are expected to be zero, are
uncorrelated and have equal variances, the best linear unbiased estimator of the
coefficients is the ordinary least squares estimator. Suppose that the equation of a
plane is

axi þ byi þ czi þ 1 ¼ 0 ð10Þ
where pi = (xi, yi, zi)

T represents the 3D coordinates of a point on the plane and
n = (a, b, c) is the normal vector to the plane. The n points are composed of line
segments, which is computed using an iterative method with variable weights. This
is a weighted least squares solution.

(b) Constrained GMM (CGMM). Usually, constraints can be added to the fitting of the
plane to achieve more optimal fitting performance. For example, in Fig. 4, suppose
that n1 = (a1, b1, c1), n2 = (a2, b2, c2) and n3 = (a3, b3, c3) are the normal vectors
of planes 1, 2 and 3, respectively. The three spatial equations for points i, j and k
are:
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a1xi þ b1yi þ c1zi þ 1 ¼ 0
a2xj þ b2yj þ c2zj þ 1 ¼ 0
a3xk þ b3yk þ c3zk þ 1 ¼ 0:

8<
: ð11Þ

Suppose that the constraints are n1⊥ n2, n2⊥ n3 and n1 // n3. Then:

a1a2 þ b1b2 þ c1c2 ¼ 0
a2a3 þ b2b3 þ c2c3 ¼ 0
a1=a3 ¼ b1=b3 ¼ c1=c3:

8<
: ð12Þ

The combined adjustment model consists of equations (11) and (12), which are
also computed using the iterative method with variable weights (Li and Yuan,
2002). This is a constrained Gauss–Markov model (CGMM) or a constrained
adjustment model.

(c) Errors-in-Variables (EIV) Model. A model of this type is a regression model that
accounts for measurement errors in the independent variables, such that observational
errors in both the dependent and independent variables are considered (Markovsky
and van Huffel, 2007). Such a model is introduced to improve the accuracy of plane
fitting. The EIV model for the plane equation (9) or (10) can be written as follows:

argmin
EA;eb

k½EAeb	kF ; ðA� EAÞX ¼ b� eb ð13Þ

where [EA eb] is the augmented matrix in which EA and eb are adjacent, b is the
closure-error vector and ||�||F is the Frobenius norm. According to the geometric
interpretation of principal component analysis (PCA), this approach also yields results
equivalent to those of an EIV model. Data centralisation is applied to the point set,
which consists of observations of the two endpoints of line segments. Singular value
decomposition (SVD) is used to solve the equation of the plane. To remove the impact
of gross errors, RANSAC should be applied.

(4) The intersections of the clustered spatial planes yield the critical lines corresponding to
concave and convex edges.

Plane 
1

Plane 
2

Plane 
3

Fig. 4. Topological relationship among planes.
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Experiments and Analysis

Several sets of close-range digital images were used for the experiments. Three of the
investigated datasets, which were captured to cover various building fac�ades, are shown in
Fig. 5. The images were acquired using two hand-held non-metric digital cameras (Kodak
Professional DCS Pro SLR/n and Sony Cybershot 5�0 Mpixels) along both residential and
commercial streets, as shown in Fig. 5. The image size for datasets 1 and 2 (from the
Kodak camera) is 1000 9 1500 pixels, with a pixel size of 0�025mm. The image size for
dataset 3 (from the Sony camera) is 1000 9 750 pixels, with a pixel size of 0�035mm. The
images in these datasets were compressed to avoid the necessity of processing large raw
images. The proposed algorithms were implemented and the 3D model visualised using
Visual C++ and OpenGL (Windows 7 Professional; 64 bit IBM ThinkPad X200; Intel
Core 2 Duo CPU P8600 @ 2�40 GHz; 4�00 GB RAM). The experimental results for the
matching, rectification, mosaicking and recognition of the images, together with the 3D
reconstruction of the building fac�ades, are illustrated and discussed below.

Image Matching for Line Segments

Corresponding (conjugate) points were obtained using SURF. Then, the relative
orientation was performed for the detection of outliers using RANSAC and for the
calculation of epipolar lines. Five conjugate points are sufficient to solve for the five relative
orientation parameters; however, it is suggested that detecting and matching approximately
20 to 30 correct SURF points in the four corner areas of a stereopair to enhance the
matching speed. It is noted that SURF descriptor matching is an error-prone process, so the
initial statistical sample of matched SURF points should be larger than 20 to 30. Sigma
naught (r0) for the relative orientation was approximately a quarter of the physical pixel
size. Afterwards, the geometric distortion between the close-range stereo-images was
corrected using equation (1).

Fig. 6 shows the line-segment matching results for the three images with numbers 33
to 35. To ensure the acquisition of reliable results, only line segments longer than 40 pixels
were retained for matching in the line-extraction step. Through repeated testing, the NCC
value was set to 60% for the generation of candidate line segments, and the search area was
expanded by 3 to 4 pixels in the direction orthogonal to the epipolar line to reduce
matching omission errors caused by the uncertainty (error) in the epipolar line and
uncalibrated camera parameters. Moreover, an image pyramid was constructed using a 3-
pixel mean filter (thus a 3 9 3 array of pixels was degraded to a single coarse pixel) to
enhance reliability and to reduce commission errors in matching. Approximately 200
successfully matched conjugate line segments were identified for each image pair using the

(a) Dataset 1 Kodak (b) Dataset 2 Kodak (c) Dataset 3 Sony

Fig. 5. Close-range images acquired with: (a) and (b) a Kodak Professional DCS Pro SLR/n camera; and (c) a
Sony Cybershot 5�0 Mpixel camera.
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(c)  Occlusion of a line segment

Occlusion

(b) Line matching between images 34 and 35

(a) Line matching between images 33 and 34

Self-adaptive
matching

2
1 1 2

(d)  Self-adaptive matching result for an occlusion

Fig. 6. Line-segment results for dataset 1 (sequence of images 33 to 35).
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proposed GILD strategy. Although a large number of densely matched line segments were
not obtained, a sufficient number of matched lines were still available to calculate the plane
parameters for 3D reconstruction.

All corresponding line segments for the two overlapping stereopairs shown in Fig. 6
were randomly distributed throughout the overlap areas, with a few outliers. Furthermore,
the overall accuracy of the matching results was higher than 97%, which shows the
commission error is well controlled. Regarding the computational efficiency for a stereopair,
the proposed GILD method of line-segment matching required less than 5 s using the
hardware, software and data size specified above. The proposed method cannot only match
conjugate line segments but can also successfully match the two endpoints of a line
segment. In Figs. 6(c) and (d), self-adaptive matching for occluded endpoints is
demonstrated in the circular areas which reduces omission-error matching; however, two
key edges were not matched (marked as pecked ellipses 1 (concave) and 2 (convex) on the
right of Fig. 6(d)) because the corresponding line segments were missed during the
automatic extraction process.

Image Rectification and Mosaicking for Images with Large Oblique Angles

The line segments were extracted and grouped according to the angle histogram; the
results were added to the interpretation plane, which describes the geometric relationship
between parallel lines in object space and the corresponding lines in image space. Then, the
vanishing-point coordinates were determined based on the appropriately weighted
intersection of the lines in the image space. Using two constraints (in the X and Y
directions) as control conditions (Kang et al., 2010), together with equation (5), the
orientation parameters were calculated. The stereopair consisting of images 34 and 35 was
chosen to demonstrate the effectiveness of the improved method (namely, generalised point
bundle block adjustment combined with spatial line constraints). The significance level a
that was used for hypothesis testing was set to 0�05 for the iterative method with variable
weights. The corresponding interior and exterior orientation parameters were calculated in
the experiments. Moreover, the spatial-intersection results (3D start and endpoints (X1, Y1,
Z1) and (X2, Y2, Z2)) prior to adopting the proposed methodology showed that, in the depth
direction, Z1 6¼ Z2. However, after the application of the proposed adjustment method, the Z
coordinates were the same (Z1 = Z2). The new orientation parameters for the images were
adjusted and utilised to rectify and mosaic the images, as seen in Figs. 7(a) and (b).

Key Edge Recognition

As shown in Fig. 7(b), the edges of the building roofs were detected and recognised
using the suggested parallelepiped method. Different training samples were selected for
different images depending on the various spectra of the sky and clouds that were obtained
with changes in the environment. The RGB values (v in equation (8) with these 8-bit
images) for datasets 1 and 2 were set to (251 � 4, 252 � 3, 254 � 1), and for dataset 3
they were set to (236 � 19, 248 � 7, 252 � 3); this was because of the occlusion of the
sky and the scattering by atmospheric particles.

For key edges in building recognition, the initial segmentation results (object-space line
segments intersected by conjugate line segments with interior and exterior parameters) were
clustered using the Hough transform. This was extended with RANSAC to acquire both the
initial cluster centres and the number of clusters for the next step in the classification.
Subsequently, ISODATA was applied to complete the final space segmentation. During this
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step, clusters may be split: the Hough transform can mistakenly cluster some geometrically
coplanar planes that are, in reality, discontinuous planes. For example, the missing concave
and convex keylines indicated in Fig. 6(d) were recognised as a result of the proposed plane
intersection calculations; they are labelled l1, l2, l3 and l4 in Fig. 7(b). The plane
parameters for planes 1 and 2, as shown in Fig. 4, were calculated using the three proposed
methods, namely, RANSAC + GMM, RANSAC + EIV and RANSAC + CGMM. The
angles between the two planes and the mean error in the back-projection of the image are
presented in Table I. The RANSAC + CGMM approach yielded the best recognition results
among the three methods in terms of both the angles and the mean error; RANSAC + EIV
also yielded good results.

Thus, if the topological connections between planes are known (for example, the
vertical or parallel relationships depicted in Fig. 4), then RANSAC + CGMM is
recommended for recognising key edges; otherwise, RANSAC + EIV is the preferred
choice. This difference is apparent in the three datasets depicted in Fig. 8. In Figs. 8(a) and
(b), for identifying the lines corresponding to the concave and convex corners of a building,
RANSAC + CGMM is suggested in the case of datasets 1 and 2. However, RANSAC + EIV is
suggested for dataset 3 (Fig. 8(c)) because no a priori information regarding the topological
relationship between the adjacent planes is available. For the building boundary with the ground,
a point on this boundary should be manually selected to determine the Y coordinate in Fig. 7(b);
after image rectification, the line segments corresponding to the X vanishing point are parallel to
the x direction in the image space. Subsequently, the 3D model of the fac�ade can be

(a) Rectified results for images 33 to 35

P1  P2  P3  P4  A1  A2  

(c) 2D vector map corresponding to (b).
X

Z

Z
X

Y

a1 p2

l1
l2

l3 l4

Y1

Y2 Y3

Y4

X1

Automatically detected roof edges

Manually selected point on the ground 

A
utom

atically recognized concave and convex edges

(b) Automatic recognition and automatic mosaicking results.

Fig. 7. Texture space and corresponding 2D vector space.
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Table I. Angles between two building planes and the mean error using different algorithms.

Algorithm RANSAC + GMM RANSAC + EIV RANSAC + CGMM

Angles between planes 86° 310 37″ 88° 140 15″ 90°
Mean error 0�8 pixel 0�6 pixel 0�5 pixel

(b) Results of the 3D reconstruction for dataset 2

(g) Point cloud and surface reconstruction 
based on a TIN

(d)  3D model (relative coordinates)

(e) 2D vector 

Mapping

Corresponding

(c) Results of the 3D reconstruction for dataset 3

(a) Results of the 3D reconstruction for dataset 1

(f)  3D model (absolute coordinates)

Fig. 8. 3D reconstructions created using a wireframe surface model and textures.
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reconstructed using a 3DWSM (wireframe model). Finally, the surface model in the depth (Z)
direction can be reconstructed readily and reproducibly in a virtual reality environment or as a
2D vector map along the Z direction.

Compared with a traditional TIN based on point clouds for 3D interpretation
(Fig. 8(g)), the proposed method produces clearer contour edges without the blurriness
observed in Fig. 8(a). Lafarge and Mallet (2012) note that a hybrid representation that
combines meshes (irregular elements) and geometric primitives (regular structures) can
generally provide highly accurate modelling results. However, these authors report that this
algorithm is not optimal when the vertical accuracy of input points is poor and the point
density is weak (typically with low-resolution digital surface models (DSM)). Unfortunately,
the input data in the current paper are stereopairs rather than multiview stereo-images, so a
dense point cloud may not be available. Therefore, the suggested 3DWSM approach is more
suitable than a TIN for 3D representation. The fac�ades of datasets 1 to 3 that are shown in
Figs. 8(a) to (c) were generated from 54, 8 and 31 images, respectively. Finally, the image
textures were mapped onto three 3D models of street fac�ades for the three datasets.
Approximately 100 fac�ades from several streets were reconstructed to test the proposed
approaches. Figs. 8(d) to (f) illustrate the transformation of a 3D model from a relative
coordinate system into an absolute coordinate system by using a 2D vector map and
applying a scale factor k:

k ¼ jA1P2j=ja1p2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðZA1 � ZP2Þ2 þ ðXA1 � XP2Þ2	=½ðya1 � yp2Þ2 þ ðxa1 � xp2Þ2	

q
ð14Þ

where lines a1p2 and A1P2 can be identified in Figs. 7(b) and (c), respectively. For this
final step, it is proposed that shape contexts are employed (Belongie et al., 2000, 2002;
Ling and Jacobs, 2007) for shape matching between a 2D vector map and the projection of
a 3D model in the Z–X plane. However, it is essential to employ human–computer
interactions when ambiguities arise in the shape matching.

Conclusions

On the basis of photogrammetric computer vision, a set of algorithms and techniques
for keyline recognition and 3D reconstruction of quasi-planar fac�ades has been proposed in
this paper. Recognising the edges of building fac�ades is a key step in 3D reconstruction.
The classic problem of line-segment matching can be overcome by applying the GILD
principle; in this manner, good experimental results can be achieved. Furthermore, plane
fitting and spatial intersection are proposed to compensate for missing concave and convex
edges of a fac�ade. The accuracy of plane fitting is a critical factor that affects edge-
recognition accuracy. Strategies for plane fitting are proposed, depending on whether the
topological relationships between the planes are known or unknown.

Finally, a 3D model of a building fac�ade can be reconstructed by mapping the rectified
texture space into the model space. Moreover, a 3D model in absolute coordinates can be
obtained if the corresponding 2D vector map is known. Otherwise, a 3D model is obtained
in a relative coordinate system, which is similar to the results obtained in computer vision.

In the 3D reconstruction of a planar fac�ade, the test results for the proposed methods
and techniques illustrate several advantages:

(1) automation was achieved based on a set of matching and recognition methods;
(2) accuracy was improved by applying the GPP model and the proposed adjustment;
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(3) reliability was enhanced using 3DWSM, yielding a result without blurring; and
(4) efficiency was achieved by applying a high-speed automatic processing algorithm.

The approach presented in this paper, along with that reported in the paper by Kang
et al. (2010), is applicable for the 3D modelling of urban streets. The method demonstrates
high efficiency in built-up areas. Future work will concentrate on more meticulous aspects
of 3D reconstruction, such as integrating volumetric models with 3DWSM, improving the
edge-extraction and edge-recognition performance in the case of more complex and high-
rise buildings, and applying computer-aided design (CAD) for high-level 3D building
modelling.
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R�esum�e

Des lignes caract�eristiques comme les arêtes concaves et convexes de la fac�ade des bâtiments peuvent
être perdues lors de la restitution photogramm�etrique. Pour r�esoudre ce probl�eme et reconstruire de mani�ere
automatique et pr�ecise des fac�ades 3D quasi-planes, un ensemble d’algorithmes est propos�e pour la
reconnaissance automatique des lignes et la reconstruction 3D. Il inclut: (1) une proc�edure pour l’appariement
de segments de lignes satisfaisant des exigences spatiales d’ind�ependance globale et de d�ependance locale dans
une sc�ene 3D; (2) une technique de compensation par faisceaux g�en�eralis�ee assortie de contraintes sur les
lignes (sous la forme d’observations virtuelles) pour contrôler la propagation de l’erreur; et (3) les m�ethodes
d’organisation perceptuelle, calage de plan et intersection plan–plan sont sugg�er�ees pour l’acquisition des
lignes caract�eristiques correspondant aux arêtes concaves et convexes des bâtiments. Les r�esultats
exp�erimentaux montrent que ces algorithmes sont viables et peuvent être appliqu�es pour la reconnaissance et la
reconstruction 3D. Des recommandations sont exprim�ees pour les m�ethodes de reconnaissance, selon que l’on
dispose ou non de relations topologiques entre les plans consid�er�es.

Zusammenfassung

Wichtige Linien, wie etwa konkave oder konvexe Kanten einer Geb€audefassade, k€onnen bei einer
photogrammetrischen Objekterkennung verlorengehen. Um dies zu vermeiden und quasi-planare 3D Fassaden
automatisch und exakt zu rekonstruieren wird hierzu ein Satz von Algorithmen und Techniken vorgeschlagen.
Darin sind enthalten: (1) eine Prozedur f€ur Liniensegmentzuordnung, die den r€aumlichen Anforderungen einer
3D Szene gen€ugt und auf “globaler Unabh€angigkeit” und “lokaler Abh€angigkeit” beruht; (2) einer Technik zur
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generalisierten, punktbasierten B€undelblockausgleichung, kombiniert mit r€aumlichen Linienbedingungen (in
Form von virtuellen Beobachtungen), um die Fehlerfortpflanzung zu kontrollieren; und (3) den Methoden zur
Wahrnehnumgsorganisation, Ebenenanpassung und Ebenenschnitten, die vorgeschlagen werden, um wichtige
Linien, die konkave und konvexe Geb€audekanten darstellen zu erfassen. Die experimentellen Ergebnisse zeigen,
dass diese neuen Algorithmen geeignet und anwendbar f€ur die Erkennung und 3D Rekonstruktion sind. Es
werden Empfehlungen f€ur Erkennungsmethoden gegeben, in Abh€angigkeit davon, ob vorab topologische
Beziehungen bei den betrachteten Ebenen verf€ugbar sind oder nicht.

Resumen

L�ıneas cr�ıticas, tales como aristas c�oncavas y convexas de la fachada de un edificio, se pueden perder en
los procedimientos de reconocimiento fotogram�etricos. Para resolver este problema y reconstruir fachadas 3D
casi planas de forma autom�atica y precisa, se proponen un conjunto de algoritmos y t�ecnicas para el
reconocimiento autom�atico de l�ıneas y la reconstrucci�on 3D. Esto incluye: (1) un procedimiento para la
adaptaci�on de la l�ınea del segmento que satisfaga las necesidades de espacio de una escena 3D basado en la
“independencia global” y la “dependencia local”; (2) un ajuste de bloque generalizado con restricciones
lineales (en forma de observaciones virtuales) para controlar la propagaci�on de error; y (3) para adquirir las
l�ıneas cr�ıticas correspondientes a aristas c�oncavas y convexas de construcci�on se sugieren los m�etodos de
organizaci�on perceptual, montaje plano y la intersecci�on de planos. Los resultados experimentales muestran
que estos nuevos algoritmos son factibles y aplicables al reconocimiento y la reconstrucci�on 3D. Se
proporcionan recomendaciones para los m�etodos de reconocimiento en funci�on de la disponibilidad a priori de
las relaciones topol�ogicas entre los planos que se consideran.

摘 要

重要的关键线,例如建筑物立面的凹凸边缘,在摄影测量的识别处理中往往会丢失。为了解决这个丢失

问题,并且为了自动、精确重建三维拟平面的立面,提出了一套自动识别线段和三维重建的算法和技术,包
括:(1)一个满足三维场景空间分布客观规律的、基于”全局独立性”和”局部约束性”的线段匹配处理算法;(2)
一个联合空间线约束(采用虚拟观测方程)的广义点光束法平差技术,用以控制误差的传播;(3)一套感知编

组、平面拟合和”面-面”交会的方法,用来获取重要的关键线对应的建筑物凹凸边缘。实验结果表明,这些新

算法可行且能应用于线特征识别和三维重建。而且,对于是否已知平面之间的先验拓扑关系,给出了不同的

识别建议和策略。
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