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A Stepwise-then-Orthogonal Regression (STOR) 
with quality control for Optimizing the RFM of 

High-Resolution Satellite Imagery
Chang Li, Xiaojuan Liu, Yongjun Zhang, and Zuxun Zhang

Abstract 
There are two major problems in Rational Function Model 
(RFM) solution: (a) Data source error, including gross error, 
random error, and systematic error; and (b) Model error, 
including over-parameterization and over-correction issues 
caused by unnecessary RFM parameters and exaggeration of 
random error in constant term of error-in-variables (EIV) mod-
el, respectively. In order to solve two major problems simul-
taneously, we propose a new approach named stepwise-then-
orthogonal regression (STOR) with quality control. First, RFM 
parameters are selected by stepwise regression with gross error 
detection. Second, the revised orthogonal distance regression 
is utilized to adjust random error and address the overcorrec-
tion problem. Third, systematic error is compensated by Fou-
rier series. The performance of conventional strategies and 
the proposed STOR are evaluated by control and check grids 
generated from SPOT5 high-resolution imagery. Compared with 
the least squares regression, partial least squares regression, 
ridge regression, and stepwise regression, the proposed STOR 
shows a significant improvement in accuracy.

Introduction
A satellite sensor model, which contributes to the precise 
georeferenced and geopositioning (Jeong et al., 2015; Li et al., 
2014; Tong et al., 2010), DEM generation (Qayyum et al., 2015), 
and image matching (Zhang et al., 2006), describes a meaning-
ful relationship between the object space coordinates and the 
corresponding image coordinates. The broadly used geometric 
models can be roughly divided into the rigorous physical sen-
sor model and the generalized sensor model. 

A rigorous physical sensor model is used for modeling the 
physical imaging process of a specific satellite sensor. Since 
different satellite sensors with different image processing 
require specific physical sensor models, the rigorous physi-
cal sensor model becomes more complex and cost for user. By 
contrast, the generalized sensor model is a simple mathemati-
cal description of photogrammetric exploitation. The general-
ized sensor method usually includes grid interpolation model, 
rational function model (RFM), and universal real-time model. 
Since its successful application in Ikonos (Dial et al., 2003; 
Fraser et al. 2003), QuickBird (Li et al. 2007, Tong, Liu and 
Weng 2010), SPOT (Tao et al. 2001), ALOS PRISM (Hashimoto, 
2003), IRS-P6 (Nagasubramanian et al., 2007),Ziyuan1-02C (Ji-
ang et al., 2015), ZY-3 (Wu et al., 2015), GF-1(Wu et al., 2016), 

and other high-resolution satellite imageries (HRSI), RFM has 
been adopted to replace physical sensor models in photogram-
metric mapping and becomes a standard way for economical 
and fast mapping from high-resolution satellite imagery. 

RFM, related the object-space (Latitude, Longitude, Height) 
coordinates to image-space (Line, Sample) coordinates, is a 
form of a ratio of two cubic polynomials with 78 Rational 
Polynomial Coefficients (RPCs). The least-squares regression is 
firstly employed to estimate the optimal RPCs (Grodecki et al., 
2003; Tao and Hu, 2001; Tong et al, 2010). However, owing 
to the strong correlation between the 78 RPCs and a limited 
accurate result in RPCs estimation, various developments such 
as the solutions, accuracy, and numerical stability of direct 
RFM have been achieved. Generally, for the sake of numerical 
accuracy, the image- and object-space coordinates are normal-
ized to (−1, +1)(Tao and Hu, 2001). Singular value decom-
position (SVD) method has been applied to solve RPCs (Fraser 
et al., 2006; Li et al., 2009), since a design matrix is likely 
to be close to singularity in HRSI data. In respect of ill-posed 
problem caused by strong correlation among 78 RPCs, several 
methods have been proposed to solve the ill-posed normal 
equation including the ridge estimation strategy, Levenberg-
Marquardt algorithm, and the artificial intelligence. The ridge 
estimation strategy, a revised biased estimation based on the 
least-squares regression, is a widely used method. Combined 
with the L-curve method, the ridge estimation strategy can 
address the ill-posed equation well and obtain stratifying 
RPCs easily (Yuan et al., 2008). In spite of the accurate RPCs 
obtained, the automatic determination of the optimal regular-
ization parameter of ridge estimation is rather hard to obtain. 
With regard to the shortcoming of ridge estimation, a stepwise 
regression for ill-posed problem by removing all of the un-
necessary parameters based on scatter matrix and elimination 
transformation strategies has been employed. With the F-sta-
tistic as an evaluation criterion, the parameter that contributes 
to F-statistic more would be selected the necessary parameters 
in RFM (Zhang et al., 2012). Simultaneously, a method named 
the Levenberg-Marquardt algorithm has been adopted to sub-
stitute the least squares regression and solve the RPCs (Zhou et 
al., 2012). The Levenberg-Marquardt, specialized in dealing 
with ill-posed problem, combines the steepest decent method 
and the Gauss-Newton method and inherits the global-search 
of gradient descent as well as the local-fast-converge of Gauss-
Newton. Furthermore, another solution combined with matrix 
orthogonal decomposition, Levenberg-Marquardt algorithm, 
and compute unified device architecture high-performance 
computing technique has been employed (Wu and Ming, 
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2016). With the development of HRSI sensors and solutions 
to RFM, much attention is attached to automation, such as 
automatic parameters selection and automatic global or local 
search for best RPCs values. An automatic optimal selection of 
RPCs based on nested regression and automatic global search 
for RPCs values based on genetic algorithm (GA) (Jannati et al., 
2015) have been presented for weeding out the redundant pa-
rameters. However, when it comes to the situation where the 
number of the observation less than the unknown parameters, 
the least-squares solution is not unique. Thus, by the virtual 
use of the theory of compressive sensing, the parameters 
selection problem can be solved by l1-norm-regularized least-
squares (L1LS) equivalently (Long et al., 2015), which makes it 
possible to find the unique solution of RPCs from insufficient 
observations efficiently and robustly. 

Although various methods have been generated for more ac-
curate RPCs, the quality of data source and the RFM itself is not 
reliable in some cases. Exterior and interior orientation bias 
in RFM cause the RFM less convincing and high geopositioning 
errors in practice. Exterior orientation bias (such as the orbit 
and attitude errors) are usually compensated by the shift, shift 
and drift, and the affine models (Fraser and Hanley, 2003; Li et 
al., 2014; Tong et al., 2010) or multiple physical camera model 
parameters (Fraser et al. 2005; Grodecki and Dial, 2003). 

Interior orientation bias (such as lens distortion) are usu-
ally presented stably as a systematic error in RPCs estimation. 
Polynomial models (Wang et al., 2016) and combined interior-
orientation calibration method (Cao et al., 2016; Jiang et al., 
2015) are used to compensate the interior orientation bias in 
RFM. Equally, it is likewise noteworthy that the model errors 
including the over-parameterization problem and overcor-
rection problem have a remarkable influence on the accuracy 
of RPCs. Except that methods such as ridge estimation and 
Levenberg-Marquardt algorithm mentioned before, a modified 
RFM computation based mean-variance theory is proposed to 
examine how much the individual RPCs contribute to RFM (Wu 
et al., 2015), according to the consistency in the high-solution 
satellite imagery and airborne light detection and ranging 
in 3D spatial information, a matching scheme between the 
georeferenced airborne lidar data and high-resolution satel-
lite images intended to control the bias of RPCs; it is verified to 
improve the accuracy from 18 m to about 0.58 m (Safdarine-
zhad et al., 2017). A total least squares adjustment in partial 
error-in-variables model algorithm can be applied to solve the 
overcorrection problem caused by random error (Xu et al., 
2012). However, the model errors mentioned above are rarely 
taken into consideration simultaneously when estimating 
RPCs, especially the random error.

Nevertheless, the existence of data source errors in solving 
RPCs and model errors in RFM can cause a significant inaccuracy:
1. The quality control of data source: (a) the gross error

caused by the irregular attitude and velocity of the remote
sensing platform, exercises a profound influence in the
reliability of RFM solutions; (b) the random error, usu-
ally with a Gaussian normal distribution, is statistical
fluctuation (in either direction) in the HRSI data due to
the precision imperfections of measurement devices or
the atmospheric conditions; and (c) the systematic error,
generally derived from (i) temperature not being standard
while taping, (ii) an index error of the like the error in
satellite positioning vertical circle of a theodolite or total
station instrument, and (iii) use of a level rod that is not of
standard length, has a significant existence in both sample
and line directions.

2. The quality control of the model: (a) over-parameteriza-
tion: the 78 RPCs in RFM is strongly correlated, and the
over-parameterization problem caused by unnecessary RPCs
leads to a less generalized model; and (b) Overcorrection:

when taken the random error into consideration both in 
independent and response variables, the constant term 
will be added an extra random error mistakenly. Thus, the 
result will considered to be inaccurate owing to the effect 
of random error exaggerated in constant term. 
This paper proposes a method named stepwise-then-or-
thogonal regression (STOR) to solve aforementioned prob-
lems with high quality control, and contributions to the 
work in this research can be roughly outlined as follows:

3. Theoretically, a novel RPCs computation method based on
STOR has been proposed. The accuracy, in practice, has
been significantly improved in STOR when comparing to
least squares regression, partial least squares regression,
ridge regression, and stepwise regression in practice.

4. The data source errors have been well controlled in the
course of STOR processing: (a) The gross error is detected
with 3 sigma rule; (b) the random error of data source has
been comprehensively considered into the procedure of
the revised orthogonal distance regression; and (c) the sys-
tematic error is compensated with Fourier series. Datasets
possess high reliability and availability attributes when
the three type errors alleviated. Furthermore, the model
errors caused by overparameterization and overcorrec-
tion problems can be solved in the processing of stepwise
regression and revised orthogonal distance regression.

The remainder of this paper is organized as follows. The con-
ventional method of RFM parameters computation is reviewed 
and followed by a discussion of the stepwise-then-orthogonal 
regression (STOR). Two SOPT-5 HRSI data sets are used for test-
ing the new scheme and other conventional strategies of RFM. 
Finally, the conclusions are outlined.

Conventional Method of RFM Parameters Optimization
The RFM is the form of a ratio of two cubic polynomials 
related the object-space (Latitude, Longitude, Height) coordi-
nates to image-space (Sample, Line) coordinates. Given the 
object-space coordinates (Latitude, Longitude, Height), where 
Latitude is geodetic latitude, Longitude is geodetic longi-
tude, and Height is height above the ellipsoid. The latitude, 
longitude and height offsets and scale factor (LAT_OFF, 
LONG_OFF, HEIGHT_OFF, LAT_SCALE, LONG_SCALE and 
HEIGHT_SCALE), the calculation of image-space coordinates 
begins by normalizing latitude, longitude, and height as 
follows(Grodecki and Dial, 2003):

P
Latitude LAT OFF

LAT SCALE

L
Longitude LONG OFF

LONG SCALE

H

=
−

=
−

_
_

_
_

==
−Height HEIGHT OFF

HEIGHT SCALE
_

_

. (1)

The normalized line and sample image-space coordinates 
(Y and X, respectively) are then calculated as follows:

Y
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Let us consider RFM of full rank. The four polynomials 
NumL(P,L,H), DenL(P,L,H), NumS(P,L,H) and DenS(P,L,H) have 
the following general forms, respectively:

NumL = (P, L, H) = a0 + a1L + a2P + a3H + … + a19H3 

(3)
DenL = (P, L, H) = b0 + b1L + b2P + b3H + … + b19H3

NumS = (P, L, H) = c0 + c1L + c2P + c3H + … + c19H3

DenS = (P, L, H) = d0 + d1L + d2P + d3H + … + d19H3

where ai, bi, ci, and di (I = 0, 1, 2, …, 19) are the coefficients of 
RFM parameters with b0 = 1 and d0 = 1.

Then, Equation 2 can be converted into the following lin-
ear form with n being the number of measurements:
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Equations 4 and 5 have no relationship solving their cor-
responding RPCs since they represent the line and sample 
directions of the sensor model, respectively. The two equa-
tions can be solved independently with the same strategy. 
Then, Equation 4 will be discussed and represented with the 
following matrix form:

G · β = Y (6)

where

Y =
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Tβ

With Gi,j (i=1,2,…, n; j=1,2,…,38) being the corresponding ele-
ments of the coefficient matrix in Equation 6.

Typically, the least squares regression is widely used for 
computation of RPCs. It obtains the estimation of parameters 
matrixby the following equations:

min = = −V Gβ Y
F

2

, (7)

GTG β  = GTY, (8)

where the min = = −V Gβ Y
F

2 is the Frobenius norm of (V = Gβ – Y),
namely, ||V||2

F = ∑i ∑jVi,j
2, with the Vi,j being the element of V at 

low i and column j.
However, one of the issues in the least squares is that all the 

78 unnecessary and correlational RPCs need estimating (Tao 
and Hu, 2001). Usually the ridge estimation and partial least 
squares are used for alleviating ill-posed problem caused by 
over-parameterization when estimating RPCs. The ridge estima-
tion adds a diagonal elements of the normal matrix in Equation 
8 before the normal matrix is inversed. Similarly, partial least 
squares is also adopted for generalized parameters. But both of 
them are hard to optimize the parameters automatically.

Moreover, for more accurate RPCs, a model named error-in-
variables has been adopted in surveying. In the EIV model, the 
coefficients matrix G as a set of observed variables is usually 
regarded as a matrix with random errors (Lemmerling et al., 
2001; Mahboub, 2012; Peiliang, 2006; Schaffrin et al., 2009, 
Shi et al., 2014; Xu et al., 2012). However, the constant term 
has been added by random error (i.e., δi,1(i=1,2,…,n)) mistaken-
ly like Equation 9, which caused the overcorrection problem.

G B

1

1
1 1 1 1 1 2 1 38 1 39

2 1 2 1 2 2 2 38 2 39

+ + +
+ + +
δ δ δ
δ δ δ
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, , , , ,
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11 1 1 2 38 39+ + +



















= +( ) = +

δ δ δn n n n nG G, , , , ,

β δ εY (9)

where δi,k and ε are the corrections to G and Y. Generally 
speaking, the error corrections δi,k and ε are far smaller than G 
and Y, and according to the assumption that the random error 
is Gaussian distribution in error-in-variables model, δ and ε 
are similarly in the form of Gaussian distribution, which 

means 1
1

1
10 0n i

n
i k n i

n
iΣ Σ= == =δ ε, , . k = (1, …, 39), and n is the 

number of observed data.
A universal β for EIV model by minimizing the Frobenius-2 

norm of the corrections of G and Y is proposed by Golub and 
van Loan (Golub et al., 1980):

[ ]( )min : , , ,s δ ε β δ ε−
F

2

(10)

From Equation 9, it is easy to realize that the random error 
has been mistakenly adjusted in the column of constant term, 
and the criterion of Equation 10 is not satisfying for a better 
RFM parameter estimation.

With the intention of alleviating the model errors caused 
by over-parameterization and overcorrection with a high 
quality control, in this paper, we proposed a stepwise-then-
orthogonal regression method for optimizing RFM to control 
data source errors and solve the over-parameterization and 
over-correction problems simultaneously.

RFM Parameters Estimation Based on 
Stepwise-then-Orthogonal Model
Stepwise-then-orthogonal regression is a comprehensive 
method including several steps, i.e., stepwise regression 
based on gross error detection, orthogonal distance regression, 
and systematic error compensation (Figure 1). The way of 
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solving over-parameterization and over-correction problems 
with a reliable data source in the course of estimating the 
unknown parameters β will be introduced in detail in the fol-
lowing sections.

Stepwise Regression Based on Gross Error Detection
The necessary RPCs optimization is based on stepwise regres-
sion strategy. The stepwise regression was firstly proposed by 
(Hair et al., 2010), but will also be briefly summarized here. In 
the beginning, the initial number of unknown parameters is 
zero. When potential parameters introduced into the equa-
tion, the stepwise regression will compute the sum of squares 
of partial regression of each unknown parameter until the 
criteria of assessment has been reached. From Equation 9 we 
obtain an equation of a0 as following:

a Y a G a G b G b G0 1 1 19 19 1 20 19 38= − − − − −  (11)

where 

1
0

1
01 1n ni

n
i k i

n
nΣ Σ= == =δ ε, ,

, G n Gj i
n

i j i j= += +( / ) ( ), ,1 1 1Σ δ  and 
Y Yn i

n
i i= +( ) =1/ ( )Σ 1 ε , (k=1,2,…,39; j=1,2,…,38).

Then, Equation 9 without a0 can be rewritten as follows:
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where Lj,p = ∑n
i=1(Gi,j + δi,j+1 – G–i)(Gi,p + δi,p+1 – G–p), Lj,r = ∑n

i=1(Gi,j + δi,j+1 
– G–i)(Yi + εi – Y–), (j = 1, 2, …, m; p = 1, 2, …, m); m is the num-ber
of unknown parameters, and in Equation 12, it equals 38.

The (m+1) rank scatter matrix of Lj,p can be shown as follows:
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Then, we set li,j
(0), l(0)

i,m+1 and l(0)
i,m+1,m+1 to represent the elements 

GTG, GTY and YTY in Equation 13, respectively. Every time 
the potential parameters are introduced into Equation 12, 
the sum of squares Pj

(t) of partial regression of each unknown 
parameters would be computed, and whether parameters 
can be introduced into the final equation will be tested with 
F-distribution.

Pi
(t) = (l(t)

i,m+1)2 / l(t)
i,i (14)

The unknown parameters will be accepted if the signifi-
cance value is Fin (1, n-t-2) ≥Fout (1, n-t-1), t is the number 
of accepted parameters, (n-t-2) is the number of degrees of 
freedom with t. When the parameters selection finished by 
stepwise regression, Equation 12 can be rewritten with β1 and 
β2 as follows:

Figure 1. The procedures of STOR system for RFM parameters estimation.
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where β1 is a meaningful vector of t accepted parameters and 
(m-t) zeroes, β2 is a vector with t zeroes and (m-t) unaccepted 
parameters and β' = β1 + β2 = (a1, …, a19, b1, …, b19)T.

In order to make the RPCs selection more generalized, Equa-
tion 15 can be transformed into Equation 16 and the matrix 
form as follows:
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Lβ1 = Lr (17)
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and Lr = (L1,r, L2,r, …, Lm,r)T.

In stepwise regression, every time a RPC is introduced or 
rejected, the β1 will be updated and roughly estimated with 
the vector β1

�. It indicates that the RFM parameters in β1 are rea-
sonable when the maximum difference (correction) in |Δβ1| of 
estimated β1

� for two successive times is less than 10-6.

max{|Δβ11|,|Δβ12|, …, |Δβ1m|}≤10–6. (18)

But for high resolution satellite imagery analysis, there is 
always existing an accuracy gap because of the noise in datas-
ets. The data prediction or analysis with RFM will be more ac-
curate when modeling as much signal as possible and as little 
noise as possible. Thus, in order to control the data source 
errors and insure a high reliable and available experiment da-
taset, the gross error in the data source should to be detected 
with the stepwise regression processing at the same time.

Gross error detection is the fundamental procedure of the 
parameters estimation. The combination of sum of squared 
residuals||VL||2

F and the standard deviation S obtained in step-
wise regression processing is a one of criterions of iteration in 
gross error detection.

V L L1L F F

2 2 2= − = ∑β r Li
i

V (19)

S
n t

=
−

VL F

2

(20)

where, the||VL||2
F is the Frobenius norm of VL, and the VL(i,j) is 

the element of VL at low i and column j, the n and t represent 
the number of data points and the necessary observation 
number of RPCs accepted by stepwise regression, respectively.

Thus, the criterion in gross error detection with a combina-
tion of VLi and S shows in Equation 21, which is performed 
with variable weights, generally, 3 sigma rule, the point will 
be detected if the residual of a point is larger than 2.5 times of 
the standard deviation S.

VL(ij) ≤ 2.5S (21)

γ = [a0β1
T]T (22)

With the procedure of gross error detec-
tion, the necessary RFM parameters γ with a 
more reliable and available original dataset 
can be obtained, and the flow of stepwise 
regression based on gross error detection 
can be briefly summarized as the Figure 2.

Notwithstanding the optimized RPCs 
in γ selected by stepwise regression, the 
problem regarding how to estimate the 
optimized parameterswith the least impact 
of random error still remains for discussion. 
The principle of least squares regression 
involves the assumption that the indepen-
dent variables is well-known with no error 
dependence. Therefore, to some extent, the 
existence of random errors in the measure-
ment and determination variables disturbs 
the accuracy of RPCs estimation.

Orthogonal Distance Regression
Orthogonal distance regression (ODR) is the 
name given to the computational problem 
associated with finding the maximum likeli-
hood estimators of parameters in observa-
tional error models in the case of normally 
distributed errors. Different from the least 
squares regression, the ODR can sufficiently 
reduce the impact of random error in inde-
pendent and deter-

Figure 2. Stepwise regression based on gross error detection.
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mination variables with the criterion of
 
min s: , , [ , ]δ ε γ δ ε( ) =

F

2 , 
and the criterion can be intuitively explained with Figure 3.

Figure 3. Geometrical illustrations of Orthogonal Distance 
solution: the dotted lines are the observational errors in ob-
served variables. The solid lines represent the minimum Eu-
clidean distance from data points to fitting the hyperplane.

In order to have a stable estimation of γ with singular value 
decomposition (SVD), the augmented matrix in Equation 9 
without constant term can be rewritten as follows:

M =

+ + + +
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M = ( )G G Gt1 2 Y (24)
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1Σ , (k = 1, …, t), Yi,  and t is the number 

of necessary RFM parameters selected by stepwise regression.
Considering the random error compensation both in Line 

and Sample, all the measurements can be treated far more 
precise by subtracting the mean value of each column mea-
surements in M, and the matrix M will be treated as Q:
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To obtain the RFM parameter values of γ, the method of 
singular value decomposition (SVD) is adopted. The singular 
value decomposition is a well-known matrix factorization 
technique that factors n by (t+1) matrix Q into three matrices 
as follows:

Q USV= =
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where U is an orthogonal matrix of Q. S is a diagonal ma-
trix containing the singular values of the matrix Q. There 
are exactly r singular values, where r is the rank of Q. The 
columns of V are the singular vectors of M. When assumed 
that Vr = (V1,r, V2,r, …, Vt+1,r)T and Vtr = (V1,r, V2,r, …, Vt,r)T are part 
of elements in V, the RPCs values γ, which a0 and β1 can be 
estimated by as follows:

β1 = Vtr / Vt+1,r (27)

α = Y – M'β1 (28)

where, ′ =
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, Y = (Y1, Y2, …, Yn)T and the

t is number of necessary RPCs selected by stepwise regression:
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The final estimations of RPCs γ can be rewritten as follows:

γ = ( ) −( )
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. (30)

The orthogonal distance regression processing has taken 
the random error into account in both independent and 
dependent variables and successfully addressed the overcor-
rection problem caused by constant term. Through subtract-
ing the mean of each column measurements from augmented 
matrix in Equation 19, the random error has been adjusted 
properly. Thus, the reliability and the accuracy of the RFM 
model would be significantly enhanced.

Systematic Errors Compensation 
The systematic error compensation is used for alleviating the 
residual systematic error of RFM and improving the accuracy 
of RPCs. Usually, the distribution of residues shows a wavy 
change. Contrary to other fitting methods in experiments, the 
Fourier series has a more advantageous result. The Fourier 
series fitting model is shown as follows:
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where,
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where, pr0, pr1, qr1, …, qrn, wr, pc0, pc1, qc1, …, qcn  and wc are 
the Fourier series fitting coefficients l, and k is the number of 
fitting terms. In experiments, the values of l and k are set to 
be 6 and 8, respectively, which can sufficiently alleviate the 
systematic error.

Shown as the Figure 1 and the description of STOR algo-
rithm, the model errors caused by over parameterization and 
over correction problems has been addressed by stepwise 
regression and orthogonal distance regression, respectively. 
The gross error, random error, and systematic error from data 
source are well controlled by the procedures of gross error 
detection, orthogonal distance and systematic error compen-
sation. Through the procedures of STOR scheme, the necessary 
RPCs have been successfully selected and estimated with a 
good quality control. The intention to estimate RFM param-
eters with reliable data source and model have been attained.

Experiments 
To test the stability and accuracy of the STOR method, two 
experiments were performed with spatial grids generated by 
SPOT5 HRS data. The introduction of the two datasets and the 
experimental results will be shown in detail in the following 
sections.

Test Datasets 
The datasets, which contain the virtual control points and 
virtual check points, are generated by the rigorous model of 
SPOT5 HRS stereo images and all the original image sizes are 
12,000 × 12,000 pixels. The elevation of the spatial grids var-
ies from 200 to 2,200 m. There are in total five layers with 500 
m height interval for control and check points. As shown in 
Figure 4. There are 552 image points evenly distributed in ev-
ery image plane. The even points are used for control points, 
and the odd are checkpoints. A spatial ray can be determined 
for image point by the projection center and its image coordi-
nate. The corresponding spatial coordinate of an image point 
can be calculated by intersection between the ray and a level 
plane with known elevation.

In this experiment, the two datasets have a procedure of 
gross error detection based on 3 sigma rule. If a point with a 
RMSE larger than 2.5 times of the standard deviation S would 
not be accepted and vice versa.

Results of STOR Method and Conventional Strategies
In order to select, estimate, and optimize the necessary RPCs 
with a good control of model errors and data source errors, we 
have proposed the stepwise-then-orthogonal regression (STOR) 
method, and make a comparison with conventional strategies 
in the numbers of optimized RPCs and the accuracy with dif-
ferent methods.

The number of optimized RPCs of different methods have 
been shown in Table 1. As the table shows, the proposed STOR 
method performed the best result in RPCs selection. In the 
first experimental dataset, the STOR scheme can estimate the 
RFM with the RPCs in sample and line are both 17, and in the 
second dataset shows that the numbers in sample and line 
directions are 23 and19, respectively. The least squares solve 
the RFM with 39 RPCs both in sample and line directions in 
two datasets. The number of optimized RPCs in partial least 
squares and ridge regression is 25 in sample and line direc-
tions in the two experimental datasets. The stepwise regres-
sion method can cope with this RFM estimation with 17 RPCs 
both in sample and line directions in the first experimental 
dataset, and 23 and 19 RPCs in the second experimental da-
taset in sample and line directions, respectively. Compared 
with least squares regression, the methods of partial least 
squares and ridge regression show a better stability, but the 
automatic determination of the optimized RPCs in the methods 

of partial least squares and ridge regression are hard to obtain 
in experiments. Simultaneously, the numbers of gross error 
points detected in the procedure of stepwise regression based 
on gross error are 73 and 70, respectively.

The distribution of systematic error in sample and line di-
rections has been shown in Figure 5. Generally, the systematic 
error is a wavy change, which indicates that residual caused 
by systematic error can be well compensated. In the experi-
ments, we found that the systematic error compensation with 
Fourier series emphasized a satisfying result.
1. The Fourier series fitting in Sample direction in first data-

set;
2. The Fourier series fitting in Line direction in first dataset;
3. The Fourier series fitting in Sample direction in second

dataset; and
4. The Fourier series fitting in Line direction in second

dataset.

The accuracy of the calculated RPCs directly influences the 
possible applications of HRSI. In order to evaluate whether 
the accuracy of STOR scheme is superior to that estimated by 
conventional methods, the RMSEs of the calculated RPCs for 
the STOR scheme and conventional strategies are compared 
to each other. As the results shown in Table 2 and Table 3, in 
the first experimental dataset, the RMSEs of STOR scheme are 

(a)

(b)

Figure 4. Spatial grids of SPOT-5 stereo image: (a) The first 
dataset of SPOT-5 stereo image, and (b) The second dataset of 
SPOT-5 stereo image.

Table 1. The Number of RPCs of different strategies.

Strategies of 
RPCs estimation

The number of optimized RPCs

The first dataset The second dataset

Sample Line Sample Line

Least squares regression 39 39 39 39

Partial Least Squares regression 25 25 25 25

Ridge regression 25 25 25 25

Stepwise regression 17 17 23 19

STOR 17 17 23 19
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Table 2. RMSE of RFM Computation with the first dataset 
(Pixels).

Statistics items Sample Line plane

Least Squares regression 0.01651020 0.00518250 0.01730448

Partial Least  
Squares regression

0.01439075 0.00686784 0.01594556

Ridge regression 0.01449994 0.00724664 0.01620993

Stepwise regression 0.01482885 0.00688105 0.01634759

STOR 0.01436922 0.00607054 0.01559891

Table 3. RMSE of RFM computation with the second dataset 
(pixels).

Statistics items Sample Line plane

Least Squares regression 0.00789303 0.01016222 0.01286742

Partial Least 
Squares regression

0.00748515 0.01045084 0.01285486

Ridge regression 0.00756336 0.01082874 0.01320857

Stepwise regression 0.00789611 0.01047145 0.01311487

STOR 0.00749188 0.00688172 0.01017282

(a) (b)

(c) (d)

Figure 5. The systematic error compensation with Fourier series: the dots represent the residual after the stepwise-then-
orthogonal regression, the line is the fitting of Fourier series, and the horizontal axis “Sample” and “Line” means the 
regularized image coordinate, the vertical axis shows the value of Fourier series: (a) The Fourier series fitting in Sample 
direction in first dataset; (b) The Fourier series fitting in Line direction in first dataset; (c) The Fourier series fitting in 
Sample direction in second dataset; and (d) The Fourier series fitting in Line direction in second dataset.
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0.01436922 and 0.00607054 in sample and line, respectively. 
In the second dataset, the RMSEs of STOR are 0.00749188 and 
0.00688172 in sample and line, respectively. And in the two 
experimental datasets the accuracies in sample and line plane 
reaches 0.01559891 and 0.01017282 pixel, which is about 3 
percent higher than stepwise regression, ridge regression and 
partial least squares regression, and 10 percent to 20 percent 
higher than least squares regression and orthogonal distance 
regression. Thus, the accuracy of STOR is significantly higher 
than conventional methods. As Figure 6 shows, the RMSEs in 
image plane of every point in different spatial grids are cen-
tralizing around zero.

(a)

(b)

Figure 6. The RMSE distributions of STOR in SPOT-5 stereo im-
ages: (a) RMSE distribution in the first dataset, and (b) RMSE 
distribution in the second dataset.

Conclusion and Discussion
For RPCs selection and estimation, this paper has proposed 
a stepwise-then-orthogonal regression (STOR), which can ad-
dress the over parameterization and over correction problems 
with highly reliable and available datasets. This STOR contains 
the procedures of stepwise regression based on gross error 
detection, orthogonal distance regression, and the systematic 
error compensation. The contributions of this novel proposed 
method can be roughly listed in two aspects: 
1. The quality control of data source errors: (a) the gross error

produced by a faulty procedure adopted can be detected
with 3 sigma rule; (b) the random error caused by the
precision limitation of the measurement instruments or
environmental conditions in data source has be compre-
hensively considered into the orthogonal distance regres-
sion; and (c) the systematic error is reproducible inac-
curacy in the sample or line direction. With the method
of Fourier series, this kind of error has been compensated
significantly.

2. The quality control of the model errors: (a) over param-
eterization: the necessary RFM parameters selected by the
stepwise regression has improved the availability of the
model and avoided the ill-posed problem to a great extent;
and (b) over correction: with the random error in predic-
tion and response variables considered into the orthogonal
distance regression; the constant terms have been added a
random error mistakenly. In order to estimate the constant
term more scientifically, the prediction and response
added a random error have subtracted the mean of the ran-
dom error in each column in the processing of orthogonal
distance regression.

Furthermore, as the experimental results show, the number 
of RPCs in STOR is less ill-posed, and the accuracy of STOR is 
higher 10percent to 20percent than the least squares, 3percent 
higher than partial least squares, ridge regression, and step-
wise regression. Thus, this proposed approach can select and 
estimate the necessary RFM parameters with a good control 
of model errors and data source errors, which means that the 
problems of over parameterization and overcorrection can be 
addressed simultaneously and the reliability and availability 
of data source can be enhanced remarkably with the proce-
dures of gross error detection, random error adjustment, and 
systematic error compensation.
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