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Abstract A 3D model reconstruction workflow with hand-

held cameras is developed. The exterior and interior ori-

entation models combined with the state-of-the-art struc-

ture from motion and multi-view stereo techniques are

applied to extract dense point cloud and reconstruct 3D

model from digital images. An overview of the presented

3D model reconstruction methods is given. The whole

procedure including tie point extraction, relative orienta-

tion, bundle block adjustment, dense point production and

3D model reconstruction is all reviewed in brief. Among

them, we focus on bundle block adjustment procedure; the

mathematical and technical details of bundle block

adjustment are introduced and discussed. Finally, four

scenes of images collected by hand-held cameras are tested

in this paper. The preliminary results have shown that sub-

pixel (\1 pixel) accuracy can be achieved with the pro-

posed exterior–interior orientation models and satisfactory

3D models can be reconstructed using images collected by

hand-held cameras. This work can be applied in indoor

navigation, crime scene reconstruction, heritage reserva-

tion and other applications in geosciences.

Keywords 3D model reconstruction � Hand-held cameras �
Bundle block adjustment � Preconditioned conjugate

gradients � Multi-view stereo

1 Introduction

3D model reconstruction is an essential procedure in virtual

reality. To create a virtual scene of the reality, the 3D

model of the reality scene should be firstly reconstructed.

Cameras are the most commonly used sensors for data

collection in 3D model reconstruction. They are also the

most familiar electronic devices around human beings.

Almost every smart phone is equipped with two cameras,

the front camera and rear camera. The rear camera always

has a much higher resolution than the front camera, even

close to the professional digital camera. Those cameras are

usually hand-held by human beings. Theoretically, anyone

who has a digital camera or a smart phone with high-res-

olution cameras can collect images to reconstruct 3D

model. However, those cameras are designed only for

amateur photographing. The focal length is not fixed. The

lens distortion is large and unknown. Furthermore, the

positions and attitudes of hand-held camera are unknown,

and the imaging structure of a scene is also not regularly

aligned. Those characteristics make the images collected

by hand-held cameras much more difficult to be applied in

3D model reconstruction. However, those hand-held cam-

eras are quite convenient. If the 3D model reconstruction

can be implemented with these hand-held cameras, the

conventional complex 3D modeling work could be easier;

more people can study and participate in the 3D modeling

work or even in virtual reality activities through their hand-

held cameras. This is significant to the development and

innovation of photogrammetry, remote sensing and virtual

reality communities.

3D modeling is a relatively complex procedure. The

most frequently used methods of 3D modeling are pho-

togrammetry methods (Jesse 2015; Agisoft 2015; Acute3D

2015; Eos Software module Inc. 2015; SimActive Inc.
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2015; Rothganger et al. 2006; Garcı́a-Gago et al. 2014; Rau

and Chen 2003; Kocaman et al. 2006; Ozaki et al. 2011;

Bujnak et al. 2009; Park and Subbarao 2004; Park et al.

2008; Wang 2012; Elias and Kebisek 2010), light detection

and ranging (LiDAR) methods (Ackermann 1999; Li et al.

2012; Jiang et al. 2014; Zhang et al. 2006; Yu et al. 2014;

Arefi et al. 2008; Martin et al. 2010; Kato et al. 2009; Yang

et al. 2013; Zhu 2014) and LiDAR combined with pho-

togrammetry methods (Baltsavias 1999; Ma 2004; Sohn

and Dowman 2007; Chen et al. 2014; Kim and Habib 2009;

Susaki 2013). Except the necessary auxiliary data, the first

way only uses image data, the second one uses LiDAR

point cloud data, and the third way uses both images and

LiDAR point cloud. Photogrammetry method utilizes

cameras to collect images, tie point observations are

extracted and combined with other auxiliary data to restore

the relative positions, altitudes and inner parameters of

each camera, and then the point cloud and 3D model of the

scenes can be generated. LiDAR method uses light detec-

tion positioning technology combined with the IMU/DGPS

position and orientation System (POS) to directly acquire

3D coordinates of the ground points of the scenes. It is

simple and effective for extraction of the Digital Surface

Model (DSM). But the instruments are very expensive.

Furthermore, the edge and texture information of the sce-

nes are missing since the point cloud is collected with a

regular interval. Both photogrammetry and LiDAR meth-

ods have advantages and disadvantages; thus, the LiDAR

combined with photogrammetry method is proposed to

exhaustively utilize the advantages and abandon the dis-

advantages of these two methods. However, the registration

problem between the photogrammetry and LiDAR data is

still not perfectly solved. The photogrammetry method is

still a feasible and widely used method.

3D model reconstruction using images includes a num-

ber of procedures. Firstly, all images are preprocessed for

data standardization, and tie points are automatically

identified and matched in all images. Then, the ground

control points (if there is any), tie points and initial posi-

tions, attitudes, known as exterior orientation parameters

(EOPs), and inner parameters, known as interior orientation

parameters (IOPs), of each camera are combined in a

bundle block adjustment (BBA) procedure aiming to obtain

the accurate EOPs and IOPs of each camera. At last, the

dense point cloud is produced with these EOPs and IOPs,

and the 3D model is reconstructed with these dense point

cloud and the raw images. In this paper, the common

digital images are used as test data for 3D modeling

experiments. The main purpose of this work is to utilize

proper exterior and interior orientation models, develop a

stable and efficient workflow for 3D modeling with hand-

held cameras. The whole procedure, with emphasis on the

mathematical and technical details of BBA with these

hand-held cameras, is discussed. The experimental results

of the outcome dense point cloud and the reconstructed 3D

model are also presented.

2 Related works

3D model reconstruction has been comprehensively studied

in the photogrammetry, remote sensing and computer

vision area in recent years. As mentioned before, the most

frequently used methods are photogrammetry method,

LiDAR method and LiDAR combined with photogram-

metry method. A lot of research works have been focused

on these methods.

In the photogrammetry community, explosive growth

has been made in 3D model reconstruction. 123D Catch

developed by Autodesk is an open-source photogrammetry

software which can extract 3D information from 2D ima-

ges (Jesse 2015); Photoscan developed by Agisoft (2015) is

a stand-alone software product that performs photogram-

metric processing of digital images and generates 3D

spatial data; Smart3DCapture developed by Acute3D

(2015) can turn photos into 3D models automatically;

PhotoModeler developed by Eos Systems Inc. (2015)

extracts 3D measurements and models from photographs

taken with an ordinary camera; and Simactive (2015) is

developed for the generation of high-quality geospatial

data from imagery. Most of these software packages are

customized to solve certain problems, for instance, aerial

triangulation, 3D model reconstruction and others. The

mathematic and technical details of 3D model reconstruc-

tion using only images are also discussed. Rothganger et al.

(2006) used local affine-invariant image descriptors and

multi-view spatial constraints to model the 3D objects.

Garcı́a-Gago et al. (2014) developed a photogrammetric

and computer vision-based approach for automatic 3D

architectural modeling and its typological analysis. Rau

and Chen (2003) proposed a robust method for recon-

struction of building model from three-dimensional line

segments. Most of the above works use aerial imagery.

Other source images are also adopted. Kocaman et al.

(2006) used high-resolution satellite images to extract 3D

models of buildings. Ozaki et al. (2011) tried to develop a

method for 3D modeling of dynamic remote environments

using the images from two cell phone cameras and a

communication network. Bujnak et al. (2009) introduced a

method for 3D reconstruction from images collections with

only a single known focal length. Some researchers even

use only 2D images and a priori information to reconstruct

3D model. Park and Subbarao (2004) and Park et al. (2008)

developed a method for automatic 3D model reconstruction

based on pose estimation and integration techniques and

then he reconstructed a 3D face from only a single 2D face

222 Virtual Reality (2016) 20:221–235

123



image based on this method. To improve the efficiency,

graphic processing unit (GPU) parallel computing was

introduced in. Wang (2012) built a framework for GPU 3D

model reconstruction using structure from motion in his

master thesis. Elias reported an overview of methods for

3D model reconstruction from 2D orthographic views. He

argued that most of the design works did not lie in

designing new components, but in adapting, modifying and

refining existing ones (Elias and Kebisek 2010). Krasić and

Pejić (2014) compared the semi-automatic and full-auto-

matic photogrammetry method in the case study of 3D

modeling for the remains of the Nis Palace.

Light detection and ranging (LiDAR) system has been

widely used for 3D model reconstruction in recent years.

Back in 1999, Ackermann (1999) have contributed a

comprehensive analysis of the status and the expectations

of airborne laser scanning system. Now in twenty-first

century, a lot of works are still focused on the mathemat-

ical theory and technical detail of 3D reconstruction with

LiDAR data. Some focused on 3D building model recon-

struction. Li et al. (2012) developed a hierarchical contour

method for automatic 3D city reconstruction with LiDAR

data. Jiang et al. (2014) built a model for automatic

reconstruction of multilayer building 3D contour model

from airborne LiDAR point cloud. Zhang et al. (2006)

introduced an automatic construction of building footprints

from airborne LiDAR data. Yu et al. (2014) proposed a

method to automatically reconstruct the 3D building

models from segmented data based on pre-defined formal

grammar and rules using laser scanning data. Arefi et al.

(2008) studied the levels of detail in 3D building recon-

struction from LiDAR data. Some focused on the 3D

modeling of plants, vegetations and others. Martin et al.

(2010) applied LiDAR point cloud in canopy surface

reconstruction using Hough transformation. Kato et al.

(2009) performed an implicit surface reconstruction for

capturing the tree crown formation using airborne LiDAR

data. Yang et al. (2013) proposed a method for 3D forest

reconstruction and structural parameter retrievals using a

terrestrial full-waveform LiDAR instrument. Zhu (2014)

used airborne and mobile laser scanning to reconstruct 3D

model of the railway environments.

Baltsavias (1999) has reported an early comparison

research between the photogrammetry and laser scanning.

These two methods both have advantages and disadvan-

tages, thus combining them should be a wise choice. Ma

(2004) had studied the theory and technical details of

building model reconstruction from LiDAR data and aerial

photographs in his doctoral dissertation. Sohn and Dow-

man (2007) performed the data fusion of high-resolution

satellite imagery and LiDAR data for automatic 3D model

of building extraction. Chen integrated LiDAR and camera

data for 3D reconstruction for both indoor and outdoor

environments (Chen et al. 2014). Kim and Habib (2009)

studied the object-based integration of photogrammetric

and LiDAR data for automatic generation of complex

polyhedral building models, while Susaki (2013) proposed

a knowledge-based modeling of building in dense urban

areas by combining airborne LiDAR data and aerial ima-

ges. Despite that a lot of research works have been done,

but the registration between these two kinds of data still

needs to be perfectly solved. None of the present solutions

is satisfying in both stability and efficiency. Some other

methods of 3D model reconstruction are also applied. For

instance, Zhang et al. (2013) performed a real-time 3D

model reconstruction and interaction system using Kinect

for a game-based virtual laboratory.

In this work, we choose an economical and practical

way, photogrammetry method. The source images are

photographed by common hand-held cameras.

3 Methodology

To reconstruct 3D model from images, correspondence of

images should be identified via tie point extraction and

relative orientation procedure. Then, the BBA is applied to

improve the accuracy of the image orientation. Finally,

dense point cloud is produced using these orientation

parameters and 3D models are reconstructed. Methods of

processing common digital images are quite different from

conventional aerial photogrammetry. A lot of the

researchers have been focused on this problem. Some good

methods and algorithms have been proposed, such as

structure from motion (SFM) and multi-view stereo

(MVS). In this paper, an efficient and effective BBA

method using preconditioner conjugate gradient algorithm

combined with the state-of-the-art SFM and MVS tech-

niques is applied to reconstruct the 3D model with common

hand-held cameras.

3.1 Tie point extraction and relative orientation

Common hand-held cameras are non-metric cameras. The

correspondence problem of these images is difficult due to

the distortions and deformations. Thus, a stable and effi-

cient correspondence algorithm is required. Fortunately,

the scale-invariant feature transform (SIFT) can provide

robust feature extraction and image matching performance,

invariant to many transformations such as scaling and

rotating (Lowe 2004). SIFT is adopted to firstly identify

feature points on the images and then match the conjugate

points on the corresponding images. More information

about SIFT can be found in reference (Lowe 2004).

Although SIFT is invariant to many deformations, it is still

prone to errors (Agarwal et al. 2011). To avoid
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mismatches, the epipolar constraint is applied. Epipolar

searching is an effective and efficient strategy in image

matching based on the theory that the conjugate points

should be on the corresponding epipolar line as shown in

Fig. 1. This strategy can not only decrease the errors, but

also improve the searching efficiency. To extract tie points,

exhaustive matching of all the images is implemented. But

this process is very time consuming especially when many

images are involved (for instance, more than 1000). Then,

a fast match strategy is needed. Actually, some researchers

had already noticed this problem, and some solutions had

also been reported. Among them, Agarwal et al. (2011)

proposed a quick image matching method base on image

skeleton in his research. When image number is getting

bigger, his method could be a wise choice. Figures 2 and 3

show the screenshots of the tie points from two scenes.

Once the tie points are obtained, we can use them to

perform the relative orientation to connect all the images

and building a scalable block. The relative orientation is a

classic and well-defined algorithm in the conventional

photogrammetry process. Its main purpose is to acquire the

relative position and attitude of the images with respect to a

local coordinate system. All the images in the block can be

connected using these relative positions and attitudes. In

this paper, common digital images are used for 3D mod-

eling. These images are always unordered and irregularly

aligned. Some images might have no overlap with the rest

ones. They should be removed from the block. In the

conventional relative orientation process, the images are

connected one by one. In here, a block adjustment will be

performed at each time when the connected image number

is increased by a certain number. This strategy is applied to

avoid the error accumulation when connecting images one

by one. The threshold of image numbers should be

determined according to the accuracy and efficiency of the

relative orientation process. Our empirical value of the

certain number is 50. After relative orientation, the position

and attitude of the all images in the local coordinate system

can be obtained and a scalable model can be built as shown

in Fig. 4.

3.2 Bundle block adjustment

BBA is to further determine the camera parameters (in-

cluding EOPs and IOPs) and improve the accuracy using

the tie point observations and other given information. It is

a significant and essential process for 3D modeling. The

accuracy of BBA can directly affect the accuracy of the

reconstructed 3D model. Besides, good accuracy can lar-

gely improve the efficiency of the MVS since that the

EOPs and IOPs are used to predict the positions of con-

jugate points on the corresponding images during the MVS

process. The accuracy of camera parameters is higher, the

MVS process is quicker and the final 3D model is more

accurate.

3.2.1 Imaging geometry

A ground point P(X, Y, Z) is imaged by a camera with

parameters (Xs, Ys, Zs, /, x, j) known as EOPs and (f, x0,

y0, k1, k2) known as IOPs. Then, an image point p(x,

y) corresponding to the ground point P can be obtained in

the image. The camera lens center is defined as the per-

spective center S. The ground point P, its corresponding

image point p and the perspective center S are on the same

line; the relationship can be described by formulae as

Eqs. (1), (2) and (3).

Fig. 1 Epipolar line on the left and right images, respectively
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f is the focal length of the camera; it can be read out from

the auxiliary data. Dx;Dy in Eqs. (1) and (3) are known as

corrections for image point coordinates. They can be

expressed by IOPs, lens distortion parameters k1, k2 and

principle point translation parameters x0,y0, as shown in

Eqs. (4) and (5). This interior orientation model is applied

to eliminate the distortions and other deformations in the

common digital cameras.

Dx ¼ x0 þ k1ðx� x0Þr2 þ k2ðx� x0Þr4
Dy ¼ y0 þ k1ðy� y0Þr2 þ k2ðy� y0Þr4

�
ð4Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2þ y� y0ð Þ2

q
ð5Þ

3.2.2 Solving normal equation

To solve the EOPs and IOPs of all cameras and all the

ground point coordinates (GPC) based on the collinearity

Fig. 2 Tie points shown on the test scene 1

Fig. 3 Tie points shown on the test scene 2
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condition, we build error equations from Eq. (3) accord-

ing to the Levenberg–Marquardt (LM) model, and we

have:

V ¼ AX � L ð6Þ

where V is the residual vector, A is a matrix consist of the

first-order derivatives of Eq. (3) to the unknowns (EOPs

and GPC), and it is also called Jacobi matrix. X is the

unknown vector. L is the discrepancy vector of the image

points.

Then, we build the normal equation. Meanwhile, a

damping term kD is used in case that the rank of ATA is not

full and makes Eq. (6) irresolvable. So we have Eq. (7).

ðATAþ kDÞX ¼ ATL ð7Þ

where the matrix D is usually the diagonal of matrix ATA; k
is a damping value between (0, 1). It should be changed

according to the result of each iteration.

The Jacobi matrix A can be partitioned into two parts,

such as camera part and ground point part, so the matrix A

can be rewritten as A ¼ ½AC AP �, the same can be done to

D ¼ DC DP½ � and X ¼ XC XP½ �. Then, we can rewrite

the normal equation as follows:

AT
CAC þ kDC AT

CAP

AT
PAC AT

PAP þ kDP

� �
XC

XP

� �
¼ AT

CL

AT
PL

� �
ð8Þ

Let VC ¼ AT
CAC þ kDC, VP ¼ AT

PAP þ kDP, W ¼ AT
CAP,

LC ¼ AT
CL, LP ¼ AT

PL, and we have Eqs. (9) and (10).

VC W

WT VP

� �
XC

XP

� �
¼ LC

LP

� �
ð9Þ

SXC ¼ B ð10Þ

where

S ¼ VC �WV�1
P WT ð11Þ

B ¼ LC �WV�1
P LP ð12Þ

Unknown parameters XC can be calculated by Eq. (10),

and XP can be then substituted from Eq. (9). The normal

matrix size is reduced to the size of the unknown camera

parameter part. This process is the so-called Schur

compliment.

3.2.3 Conjugate Gradient methods

Conventional BBA uses LM and Schur compliment

method to solve the normal equation. But when the

image number is getting bigger, the normal matrix will

be too large to be stored and inverted in the computer.

Most researchers choose the conjugate gradient (CG)

algorithm.

Conjugate gradient algorithm is firstly proposed by

Hestenes and Stiefel (1952), and it is an iterative method

for solving the linear symmetric positive defines system.

During the iteration of the CG process, an initial vector x0

is given as the approximate initial answer of the normal

equation, and then a new vector x1 is computed by the x0

and other given parameters. As it repeated for certain times

n, the process will eventually converged to a vector xn

which should be the final answer of the normal equation.

The main advantage of CG is that it avoids matrix–matrix

Fig. 4 A scalable model of a

scene where the relative

positions and attitudes of all

images are demonstrated around

the scene

226 Virtual Reality (2016) 20:221–235

123



Fig. 5 Reconstruction of 3D

model from dense point cloud,

the left image shows point

cloud, the middle shows a

coarse 3D model, and the right

shows a refined and accurate 3D

model

Table 1 Test data information
Scenes Number of images Phone/camera type Image size (pixel) Photographed date

Human 40 Xiaomi 3120*4208 2015-04-14

Cabbage 41 iPhone 6 Plus 3264*2448 2015-01-22

Statue 1 91 iPhone 6 Plus 3264*2448 2015-01-22

Statue 2 232 Canon EOS-1Ds 5616*3744 2011-07-20

Fig. 6 Images of the four scenes
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multiplications and matrix inversion which are both time-

consuming computations. Only matrix–vector multiplica-

tions are needed.

The converging times are related to the condition of the

normal matrix. The theoretical iteration times to conver-

gence should be equal to the condition of the normal

matrix. But it has been reported that after r (much smaller

than n) times, the solution xr will be close enough to the

true answer. If one need to further improve the converging

speed, a proper preconditioner should be used; this method

is called preconditioned conjugate gradient (PCG). The

PCG method is to apply a preconditioner M�1 to the nor-

mal matrix, so as to decrease the condition of the normal

matrix, and thus accelerate the iteration process. After

applying a preconditioner, Eq. (10) can be rewritten as

follows:

M�1Sxc ¼ M�1l ð13Þ

The iteration times now should be no more than the

condition of matrix M�1S. The main task is shifted to

finding a proper preconditioner which can not only

decrease the condition of the normal matrix but also is easy

to be inverted. The simplest and most widely used pre-

conditioner is block Jacobi preconditioner which uses a

block diagonal of the normal matrix as the preconditioner.

Other preconditioners, such as symmetric successive over-

relaxation (SSOR) preconditioner (Agarwal et al. 2010),

QR factorization preconditioner (Byröd and Åström 2010),

balanced incomplete factorization-based preconditioner

(Bru et al. 2008), multiscale preconditioner (Byröd and

Åström 2009) and subgraph preconditioner (Jian et al.

2011), could be more efficient but might be more com-

plicated and less stable.

The PCG algorithm can largely decrease the memory

requirement of normal equation especially for a great

number of images. As reported in reference (Zheng et al.

2016), when image number is more than 5000, the memory

requirement of normal equation will be more than 6.7 GB

which is too large for a common computer. Despite some

high-performance computer can spare this large memory

space, the computation efficiency will be compromised

when a large portion of RAM is occupied by normal

equation. More information about this can be found in

(Zheng et al. 2016).

4 3D model reconstruction

After relative orientation and BBA process, the EOPs and

IOPs of the cameras are recovered. The 3D coordinates of

the tie points are also obtained. But these points are not

dense enough to express the 3D model. So a dense match

procedure is still necessary to produce dense point cloud of

the scene. Dense feature points are firstly extracted by

Harris or other effective feature point extraction algo-

rithms. Then, the well-known MVS algorithm is adopted to

extract the dense 3D point cloud. In this paper, we adopt a

patch-based MVS (PMVS) algorithm. The details can be

found in the literature (Furukawa and Ponce 2010). The

EOPs and IOPs are important orientation parameters which

are used in PMVS to predict the potential positions of the

conjugate points in the corresponding images. Some gross

points would exist due to the low contrast and weak tex-

ture; thus, a blunder detection and elimination algorithm

should be applied to remove gross points.

To build a 3D model, the dense point cloud need to be

further processed. The Poisson surface reconstruction

(PSR) algorithm is adopted to generate the triangulated

mesh model (Furukawa and Ponce 2010). A coarse model

is firstly generated which is called an initial model, and

then a refined model is extracted based on this initial model

and related information by abandoning the outliers

according to the method proposed in the literature (Fu-

rukawa and Ponce 2010). This process is also demonstrated

as in Fig. 5.

5 Experiments and analysis

5.1 Dataset

There are totally four scenes of test images which are

photographed by hand-held digital cameras. The first scene

is a man sitting in a chair, the second scene is a cabbage,

and the third and the fourth scene are both statues. The data

information is listed in Table 1. The test images are shown

in Fig. 6. All these images were preprocessed before the

3D model reconstruction procedure.

In all the experiments, SIFT algorithm is implemented

by the well-known OPENCV library (release 2.4.4) which

Table 2 RMSE of the

reprojection error after the BBA

with four scenes

Scene Images Points Observations RMSE of the reprojection error after BBA (pixels)

x y

Human 40 10,042 37,244 0.417 0.522

Cabbage 41 36,633 161,396 0.554 0.557

Statue 1 91 104,075 409,812 0.514 0.509

Statue 2 232 49,913 155,894 0.637 0.443
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is available at http://opencv.org/. BBA module is devel-

oped by the authors according to the method mentioned in

subsection B in section III and literature (Zheng et al.

2016). PMVS module is also developed by the authors

according to the method in the literature (Furukawa and

Ponce 2010). The octree depth in Poisson reconstruction

process is 10. All the experiments are performed on a

common laptop computer equipped with the Inter

(R) Core(TM) i5-33320 M CPU 2.60 GHz, 8.00 GB RAM,

and 64-bit Windows 7 operating system.

We successively performed tie point extraction, relative

orientation, BBA, dense point cloud extraction and 3D

model reconstruction. The test results and analysis are

presented in the next two sections.

5.2 Accuracies of bundle block adjustment

Four scenes of images are tested in this paper, and the root-

mean square errors (RMSE) of the image point reprojection

error are shown in Table 2.

As can be seen in Table 2, after BBA, the RMSE of the

image points are improved from 1 to 2 pixels to about 0.5

pixels. This is also clearly demonstrated in Fig. 7. It indi-

cates that the interior orientation model is quite suitable for

the hand-held digital camera. BBA with these images can

achieve considerable sub-pixel accuracy. Thus, it is prac-

tical for 3D model reconstruction using common hand-held

digital cameras.

5.3 Dense point cloud and 3D model

After BBA, the high-precision EOPs and IOPs are

obtained. These parameters are then used in dense point

cloud extraction. MVS uses EOPs and IOPs to predict the

conjugate image points. The accuracy of EOPs and IOPs is

higher, the MVS process is quicker, and the 3D model is

more accurate. Four models are reconstructed with four

image clusters as shown in Fig. 8.

As demonstrated in Fig. 8, all the reconstructed 3D

models are basically acceptable. These models are elabo-

rate with respect to the real object despite that some 2D

features are hardly to be extracted (such as the low-contrast

area in the images of statue 2). The low-contrast area as

demonstrated in Fig. 9 can also be modeled well. The 3D

model reconstructed by the high-resolution digital cameras

(Dataset 4 in Table 2) is better than others. This is mainly

because of the disparities in resolution and lens quality.

5.4 Compared to other commercial software

Two of the above scenes are also processed by Pix4D

(version 1.1.38-64 bit) software (https://pix4d.com/). The

main setting of parameters is shown in Table 3. The results

of Pix4D and our method are shown in Figs. 10 and 11.

As shown in Figs. 10 and 11, the outcome point clouds

are almost the same between Pix4D and our method, but

the reconstructed models are different. There are less out-

liers in our method than result of Pix4D. This is mainly

contributed by the refine process of our method as men-

tioned in subsection C of section III. The analysis of Pix4D

result is unavailable since the specific method used in

Pix4D is unknown.

To verify the accuracy, we measured some distances in

3D models reconstructed by Pix4D and our method,

respectively, as shown in Figs. 12 and 13. Only relative

error is valid since that the 3D models are all scalable and

no control points were measured. The relative accuracy can

be assessed through the comparison of our method with

Pix4D. Assume that the accuracy of Pix4D has been well

assessed since it is a mature commercial software. So if our

method has the same accuracy to Pix4D, our method

should be acceptable in accuracy phase.

It is obviously that there is a scale factor between Pix4D

model and our model; different models have different

scales. To compare the accuracy of our method with

Pix4D, firstly the average scale factor is calculated by the

following equation:

Fig. 7 The x-axis in the above figures represents the x-axis in image coordinate system, and the y-axis in a, b represents the RMSE of

reprojection error in x direction before and after BBA, respectively
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sc ¼ 1

N

XN
i¼0

Liours
Lipix4D

ð14Þ

where sc is the average scale factor, N is the number of

measured lines, Liours is the measured length of line i in our

model, and Lipix4D is the measured length of the line i in

Pix4D model.

Then, the error and relative error of our model with

respect to the Pix4D model are calculated by the following

equations:

ei ¼ Liours � Lipix4D � sc ð15Þ

ri ¼ ei=Liours ð16Þ

where ei is the error of line i, and ri is the relative error of line i.

As can be seen in Table 4, the relative error of our 3D

model with respect to Pix4D is about 1 % which is an

acceptable accuracy. According to this relative accuracy, if

the true length is 1 m, the error would be about 0.01 m. It

also indicates that the 3D models reconstructed by our

method are as fine as Pix4D in the accuracy phase.

Fig. 8 3D model reconstruction

of four scenes, where the left

image is the raw image; the

middle image is the screenshot

of the 3D dense point cloud; and

the right image is the screenshot

of the reconstructed 3D model
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5.5 Potential applications

These 3D models reconstructed by the common hand-held

camera have relatively good accuracies which have

potential applications in many fields. In the indoor envi-

ronment where the GPS signal is unavailable, one can walk

through the indoor area while holding a camera and taking

pictures. Then, the 3D model of the indoor scenes and the

camera trajectory can be reconstructed and restored

adopting our method. This is very useful for indoor navi-

gation. The same can be done in a crime scene. To protect

the crime scene, officers only have to take as much pictures

as possible without touching any object, and high-precision

3D model of the crime scene can be reconstructed in the

laboratory. If a high-resolution camera is available, the

precious historical relics can be preserved by reconstruct-

ing the accurate 3D model of them using our technology.

Once they are destroyed somehow, the accurate 3D model

will help the engineers to rebuild or restore the relics. As

reported in the literature (Krasić and Pejić 2014), the

remains of Nis Palace were successfully reconstructed

using photogrammetry method. Although our method is

capable of dealing with large-scale data, these applications

still need to be further tested with plenty of datasets.

6 Conclusion

We proposed a method for 3D modeling with common hand-

held cameras. The novelty of this work is not the pure math-

ematical algorithm but the whole framework of the inexpen-

sive and convenient method to reconstruct 3D model with

hand-held cameras. Thus, our method can decrease the cost

and might bring more people to participate into virtual reality

activitieswhichwill undoubtedly promote the development of

virtual reality. Besides, the PCG algorithm is introduced to

solve normal equation in the bundle adjustment instead of the

conventional LM model which enables our method to have

potential capacity for big data (more than 5000 images in a

scene). The whole procedures of 3Dmodel reconstruction are

all briefly reviewed. Totally, four scenes of images collected

by hand-held cameras are tested. According to the test results

and analysis, we can conclude that:

1. After BBA with the test dataset, the accuracy can reach

0.5 pixels, which indicates that the adjustment model

proposed in this paper is suitable for these cameras.

2. The dense point cloud is elaborate, even in some low-

contrast areas. The final 3D models are acceptable. The

3D model reconstructed by high-resolution digital

camera is more elaborate than that of cameras with low

resolution. After all, the common hand-held cameras

have high potential for 3D model reconstruction since

they are more convenient and cheaper.

3. Our experiment results are slightly better than the

results of Pix4D (a commercial photogrammetry

software) in some respects, while the accuracy perfor-

mance are about the same.

This technology has potential applications in indoor

navigation, crime scene reconstruction and heritage

Fig. 9 The reconstruction

performance in the low-contrast

area as shown in red and blue

rectangles in the source image

and 3D model, respectively

(color figure online)

Table 3 Parameters setting of Pix4D in the experiment

Parameters Options Our setting

Point cloud density High/optimal/low Optimal

Minimal number of matches 2/3/4/5/6 3

Use noise filter Yes/no Yes

Generate triangle mesh Yes/no Yes
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Pix4D

Ours

Fig. 10 3D model reconstruction of the Cabbage by Pix4D (top) and

our method (down) respectively. From left to right, the first image is

the raw image; the second image is the screenshot of the 3D dense

point cloud; the third image is the screenshot of the reconstructed

3D model; and the last image is the screenshot of the textured 3D

model

Pix4D

Ours

Fig. 11 3D model reconstruction of the statue 1 by Pix4D (top) and

our method (down), respectively. From left to right, the first image is

the raw image; the second image is the screenshot of the 3D dense

point cloud; the third image is the screenshot of the reconstructed

3D model; and the last image is the screenshot of the textured 3D

model
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preservation for example, but the test for large-scale data

is yet to be done. A lot of specific problem of large-scale

data still need to be solved. This is our next research

interest. The authors also have to admit that more works

still need to be done for improvements on image match-

ing strategies in occlusions and shadow areas, robustness

and efficiency of BBA, gross point detection and elimi-

nation strategy in both tie points and dense point cloud.

1

2

3

1

2

3

Fig. 12 Measurements in 3D model of the cabbage, left image shows the 3D model reconstructed by our method, right image shows the 3D

model reconstructed by Pix4D

1

2

3

1

2

3

Fig. 13 Measurements in 3D model of the statue 1, left image shows the 3D model reconstructed by our method, right image shows the 3D

model reconstructed by Pix4D
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More experiments need to be carried out to further exam

and verify this work.
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