
308 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 10, NO. 2, MARCH 2013

Fast Filtering of LiDAR Point Cloud in Urban
Areas Based on Scan Line Segmentation

and GPU Acceleration
Xiangyun Hu, Xiaokai Li, and Yongjun Zhang

Abstract—The fast filtering of massive point cloud data from
light detection and ranging (LiDAR) systems is important for
many applications, such as the automatic extraction of digital ele-
vation models in urban areas. We propose a simple scan-line-based
algorithm that detects local lowest points first and treats them
as the seeds to grow into ground segments by using slope and
elevation. The scan line segmentation algorithm can be naturally
accelerated by parallel computing due to the independent process-
ing of each line. Furthermore, modern graphics processing units
(GPUs) can be used to speed up the parallel process significantly.
Using a strip of a LiDAR point cloud, with up to 48 million
points, we test the algorithm in terms of both error rate and
time performance. The tests show that the method can produce
satisfactory results in less than 0.6 s of processing time using the
GPU acceleration.

Index Terms—Acceleration, fast filtering, graphics processing
unit (GPU), light detection and ranging (LiDAR), scan line,
segmentation.

I. INTRODUCTION

L IGHT detection and ranging (LiDAR) integrates the
Global Navigation Satellite System and Inertial Naviga-

tion System with laser scanning and ranging technologies. It
enables direct measurement of the 3-D coordinates of points
on ground objects for the efficient creation of digital surface
models (DSMs). This massive set of points is called “point
cloud.” Modern airborne LiDAR technology can map the
Earth’s surface at a 15–20-cm horizontal resolution, and future
generations of LiDAR scanners are expected to generate even
higher resolution maps [1]. The large volume of scanned data
that are manipulated when processing a LiDAR point cloud
has been one of the major challenges in data processing. For
example, one strip of a scanned area can easily reach tens of
millions of points. Efficient algorithms are therefore important
in practical applications. For some critical fields, such as emer-
gency response, very short production time is required. For
example, after an earthquake, terrain maps are required quickly
for damage estimation and rescue plans.

Manuscript received February 29, 2012; revised May 5, 2012 and May 22,
2012; accepted May 25, 2012. Date of publication July 23, 2012; date of current
version October 22, 2012. This work was supported by the National Basic
Research Program of China under Grant 2012CB719904.

The authors are with the School of Remote Sensing and Information Engi-
neering, Wuhan University, Wuhan 430079, China (e-mail: huxy@whu.edu.cn;
lixiaokai8990@gmail.com; zhangyj@whu.edu.cn).

Digital Object Identifier 10.1109/LGRS.2012.2205130

The filtering of LiDAR point cloud is an important step in
LiDAR data processing. It classifies the LiDAR points into
ground points and nonground points, which are objects such
as buildings, trees, and low vegetation. Filtering is the first and
most important step in producing the digital elevation model
(DEM) and terrain information.

Many filtering algorithms have been developed for auto-
matically extracting ground points from the point cloud [2],
[3]. These can be divided into several categories, including
methods based on mathematical morphology [4]–[7], linear
prediction [8], [9], progressive triangulated irregular network
(TIN) [10], [11], and segmentation [12], [13]. Sithole and
Vosselman [2] tested several algorithms and determined that
none could process every type of terrain well. Many researchers
are still developing algorithms for the automatic extraction
of ground points. For example, Costantino and Angelini [14]
and Crosilla et al. [15] introduce high-order moments into
the classification of point clouds. Currently, researchers are
also paying attention to processing efficiency due to the huge
amount of data involved in these techniques. Shan and Sampath
[16] propose a 1-D approach that conducts the 1-D labeling
in two opposite directions, followed by a linear regression.
Han et al. [17] suggest a new 1-D segmentation algorithm
that directly classifies the points into homogeneous groups
along a scan line. One-dimensional algorithms are more effi-
cient than existing algorithms, which are mostly based on 2-D
neighborhoods.

Parallel processing methods have also been introduced to
speed up computation. Han et al. [18] use a PC cluster and a
virtual grid to create a raster DSM and then produce a digital
terrain model using enormous amounts of airborne laser scan-
ning data. Beutel et al. [1] construct a grid DEM from massive
point clouds using natural neighbor interpolation and get a 10×
increase in speed using a graphics processing unit (GPU). Field-
programmable gate array (FPGA) [19] and cloud computing
[20] are also used to improve processing efficiency. GPU con-
stitutes the most common and cheapest parallel technology. It
is relatively difficult to use cloud computing. FPGA is highly
customizable and can be very fast, but the developing time and
price are high and it is not really suitable for regular computer
programmers [21]. Few people have access to a PC cluster. To-
day, almost all PCs are equipped with a GPU. GPU processing
power is growing, and its price is decreasing. After NVIDIA
released its Compute Unified Device Architecture (CUDA)
[22], GPUs have become more flexible and programmable.

In this letter, we propose a scan line segmentation (SLS) al-
gorithm. First, the local lowest points are detected in a window

1545-598X/$31.00 © 2012 IEEE

Authorized licensed use limited to: Wuhan University. Downloaded on March 11,2024 at 04:18:43 UTC from IEEE Xplore. Restrictions apply.

HU et al.: FAST FILTERING OF LIDAR POINT CLOUD IN URBAN AREAS 309

Fig. 1. Diagram of SLS algorithm.

Fig. 2. Case where the method fails.

moving along the scan line. These points are then treated as
seeds to grow into ground segments. The algorithm is simple
and very efficient. Each scan line is processed independently, so
it is suitable for parallel computing. We use a GPU to speed up
the SLS algorithm. Experimental results and comparisons with
other commonly used methods are presented to evaluate the
performance with regard to the filtering error rate and algorithm
speed.

II. SCAN-LINE-BASED FILTERING ALGORITHM

In this section, we describe the algorithm explicitly. Most
LiDAR systems produce a general sawtooth pattern of measure-
ments of the ground. This scanning mode results in a series of
scan lines. There is a 1-b tag to indicate whether the point is
the edge of the scan line in the LAS data format. It is easy to
obtain the complete data for every scan line, which makes 1-D
filtering easy and natural. Our algorithm is based on slope and
elevation, and each scan line is regarded as a single process.

The terrain of urban area is usually continuous and smooth,
and the slopes are small, ignoring buildings, trees, and so on.
We assume that the outliers have been detected and eliminated
in advance. Ground points have the lowest elevations in their
neighborhoods. Based on these assumptions, we set a window
along the scan line and measure the lowest point in the window.
Fig. 1 shows the window moving along the scan line and how
a series of local lowest points is obtained. We then treat these
points as the seed points for segmentation. Comparing the seed
points with their neighbors, if the slopes and elevations between
the seed points and the adjacent points are less than the given
threshold, their neighbors are marked as ground points or end
the process in this direction.

Considering the situation shown in Fig. 2, there is no local
lowest point around B. Thus, the points near B will not be
labeled as ground points. In this case, the points around A or
C are used to fit a line, and the line is used to predict the height
of the points around B. If the difference of the predicted height
and the real one is less than the threshold, the point is labeled
as a ground point. Least squares method or others can be used
to fit a line.

The pseudocode of the algorithm is as follows.

Step 1) Read the points’ coordinates in a scan line.
Step 2) Move the window with a certain step length, and find

out the lowest point in each window.
Step 3) /∗grow into ground segments ∗/

for local lowest point pi
/∗grow to the right ∗/
for j = i → next lowest point id

calculate hj,j+1 and slopej,j+1

if (pj is a ground point and hj,j+1 < theight
and slopej,j+1 < tslope)
mark pj+1 as a ground point

if (pj is not a ground point and
(hj,j+1 < −theight or slopej,j+1 <

−tslope) and hj+1 − hpredicted <
theight)
mark pj+1 as a ground point

end for j loop
/∗ grow to the left, the same with upper ∗/
end for loop

Step 4) If there are more scan lines to process, go to step 1;
else, exit.

Here, hi is the Z-coordinate of point pi, hpredicted denotes
the height predicted by fitting a line, theight and tslope refer to
the thresholds of height difference and slope, hi,j and slopei,j
denote the height difference and slope between point pi and
point pj , and slopei,j is calculated by using the following
formula:

slopei,j = arctan

(
Zj − Zi√

(Xj −Xi)2 + (Yj − Yi)2

)
,

slopei,j ∈
[
−π

2
,
π

2

]
. (1)

Generally, the length of the moving window should be
greater than the maximum object size. In an urban area,
50–70 m is usually suitable. The slope and height thresholds are
affected by the conditions of the data set, such as point density
and the slope of the terrain. theight can be set to 1 m, and tslope
can take 70◦–80◦ for urban areas.

The algorithm is applied to the raw data directly, not to
resampled data, to ensure that it avoids any loss of geometric
accuracy. It is based on a single scan line, so there is no
need to calculate the complex 2-D neighbor relationship, which
makes the implementation of the algorithm more efficient.
Furthermore, due to the independence of the scan lines, it is
highly suitable for parallel computing.

III. IMPLEMENTATION OF OPENMP
AND CUDA ACCELERATION

Airborne LiDAR is becoming increasingly popular, but the
rapid processing of enormous data sets remains a serious prob-
lem. Parallel processing is one solution to this problem [20].
In this letter, we use Open Multi-Processing (OpenMP) and
CUDA to accelerate the SLS algorithm. This section describes
the two parallel technologies briefly and how to apply them to
our algorithm. The comparison of their performances is in the
next section.

Authorized licensed use limited to: Wuhan University. Downloaded on March 11,2024 at 04:18:43 UTC from IEEE Xplore. Restrictions apply.

310 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 10, NO. 2, MARCH 2013

Now that central processing units (CPUs) have entered the
multicore era, four- or eight-core CPUs are common. To take
full advantage of CPUs’ computing ability, it is necessary to
use CPU multithread technology. OpenMP, a kind of shared
memory architecture application programming interface, is an
example of multithreading [23]. It contains a series of compiler
directives, and parallelism can be conveniently implemented
using these directives. For example, a loop can be parallelized
simply by adding one line of compiler directives into the source
code. In our SLS algorithm, we use a for loop to process all scan
lines, and each line is processed independently as mentioned
previously. One only needs to add one line of code (#pragma
omp parallel for) for the for loop to achieve parallelism.

GPUs have evolved into highly parallel multithreaded many-
core processors with tremendous computational power and very
high memory bandwidth [22]. Since the release of CUDA, it has
become increasingly convenient and efficient to use GPUs to
speed up applications. CUDA manages threads in a hierarchical
structure. Threads are organized into a thread block, and the
thread blocks are then organized into a grid. There are several
memory types in GPU, such as shared memory and global
memory. Threads in a block can communicate through high-
speed shared memory, while threads in different blocks can
communicate only through low-speed global memory [22]. The
function that runs on a GPU is called a kernel.

GPU is particularly suitable for running extremely greedy
calculations that run massively parallel with limited memory
access and flow control. In fact, the clock speed of a single
core of GPU is slower than that of CPU. However, GPU has
many more cores. By running a large number of threads in
parallel, for example, thousands of threads, the memory access
latency is hidden at the same time. The LiDAR data often
contain thousands of or more scan lines. The scan lines can be
processed independently, and the algorithm proposed is simple.
It is very suitable to use GPU parallel computation.

In this section, we explain how to use CUDA to implement
the parallel computing of our SLS algorithm. The workflow
chart is shown in Fig. 3. N refers to the number of scan lines,
and n denotes the number of threads in each thread block. Each
scan line is processed by a thread block. The shared memory
is used to reduce the influence of the high latency of global
memory access.

The main processing steps are as follows.

1) Prepare data. Data such as point coordinates and the
marks denoting edge points need to be read from the file
and arranged.

2) Transfer data. Copy data from CPU dynamic random
access memory (DRAM) to GPU global memory.

3) Launch kernel function. First, find the edge point of each
window, then compare the points’ heights in each win-
dow, and obtain the local lowest point. Finally, calculate
the slopes and elevations from the lowest point, and grow
along the two directions.

4) Copy data back to CPU DRAM.

In step 2, data transfer from DRAM to GPU memory is
very slow. cudaHostAlloc() is used to allocate page-locked host
memory (DRAM) which can increase the transfer bandwidth.
The three coordinates of points are organized as shown in Fig. 4
in order to maximize global memory throughput. xi, yi, and zi
refer to the three coordinates of point i, respectively.

Fig. 3. Workflow of GPU-accelerated filtering.

Fig. 4. Organization of point coordinates.

Step 3 can be divided into three substeps.

Step 3.1) Calculate the horizontal distance from each point
to the first point in the scan line. Each point is
processed by one thread, with the pseudocode
shown hereinafter. BlockSize refers to the number
of threads in every thread block, which is usually
set to 128, 256, or 512. The distances (Dist[]) are
stored in shared memory. Then, use one thread to
find the edge of every moving window according
to the size of the window, and store the labels of
edge points in global memory in order to save the
shared memory.

Step 3.1
for (i = threadIdx.x; i < pointNum; i+ =

BlockSize)
{
Dist[i] = distance from point i to point 0;
}

Step 3.2) Read the edge points of each window, and find
the local lowest points. One window is processed
by one thread. lowestPoint[] is stored in shared
memory. See the pseudocode hereinafter.

Step 3.2
for (i = threadIdx.x; i < windowNum; i+ =

BlockSize)
Authorized licensed use limited to: Wuhan University. Downloaded on March 11,2024 at 04:18:43 UTC from IEEE Xplore. Restrictions apply.

HU et al.: FAST FILTERING OF LIDAR POINT CLOUD IN URBAN AREAS 311

{
lowestPoint[i] = startPoint;
for startPoint → endPoint
compare the height and update lowestPoint[];
end for
}

Step 3.3) Both directions of all lowest points are processed
by different threads. It means that two directions
from one lowest point are processed by different
threads. See the pseudocode hereinafter. Set the
value of point’s label in global memory to one if its
slope and elevation are below a certain threshold.

Step 3.3
for (i = threadIdx.x; i < lowestPointNum ∗

2; i+ = BlockSize)
{
for startPoint → the other lowest points in one

direction
compare the slope and elevation with its neigh-

bor and update the label of current point;
end for
}

IV. EXPERIMENTAL RESULTS

The proposed algorithm is applied to two real urban data
sets. The first data set comes from the city of Huiyan in
Guangdong Province in China and contains 249 384 points
with a point density of 1.4 points/m2. It is used to test
the error rate of the SLS algorithm. The second data set,
which covers the city of Foshan, also in Guangdong Province,
has approximately 48 000 000 points with a point density of
0.94 points/m2. This data set is used to test the performance
of the parallel processing.

1) Error Rate of the Algorithm: The Huiyan data contain the
typical object types of modern cities, such as roads, high and
low buildings, and trees. The terrain is not flat, and the elevation
changes over the whole area.

Two types of errors are evaluated: type I (rejection of bare-
earth points) and type II (acceptance of object points as bare
earth) errors [2]. These rates are then compared with those of
the existing algorithms. Table I compares the error rate of our
method with the classical filtering algorithms: progressive TIN,
linear prediction, and Shan’s bidirectional labeling algorithm
[2]. A 1-m height threshold and an 80◦ slope threshold are
chosen for the experiment, and the size of the moving window
is set to 70 m. The test data are carefully classified by manual
editing using TerraSolid’s TerraScan to establish a reference.
We then use the four algorithms to filter and count the number
of ground points.

From Table I, we can see that the progressive-TIN-based
algorithm is the best overall. The total error rate of our SLS
algorithm is 8.24%. It is a little worse than that of the linear-
prediction-based method but better than that of bidirectional la-
beling algorithm, demonstrating that the proposed SLS method
is effective in urban areas. Compared with 2-D filtering al-

TABLE I
QUANTITATIVE COMPARISON OF THREE ALGORITHMS

gorithms, 1-D algorithms have higher error rates due to their
minimal consideration of neighborhoods. However, they are
more efficient and faster even without any acceleration. In the
SLS algorithm, every local lowest point is used to grow into
segments independently. In the bidirectional labeling method,
in contrast, each point’s label depends on that of the previous
point. If the previous point is not labeled correctly due to a
complex surface, then all remaining points may be incorrectly
processed. Hence, the SLS algorithm is more robust than the
bidirectional labeling algorithm, and it is also the fastest.

2) Computational Performance of Parallel Computing Us-
ing CPU Multiple Threads and GPU: In this experiment, the
original data set is divided into different sized subsets. Table II
shows the running time and the speedup ratio of the SLS
algorithm using a single thread, multiple threads, or a GPU to
process different amounts of data. The time listed in Table II is
the average obtained by running the program 100 times. Fig. 5
shows the trend of the speedup ratio. All experiments are done
on a PC with Intel Core i7-920 at 2.67-Hz CPU (four cores
and eight logical processors) with 4.0-GB memory, a NVIDIA
GeForce GTX285 GPU with 1.0-GB memory, and Windows 7
Ultimate 64-b system.

Table II and Fig. 5 show that a GPU can speed up the compu-
tation significantly and is much more powerful than a multicore
CPU. In Fig. 5, we can see that, when the number of points
is less than 10 million, the speedup ratio increases quickly
because data transmission accounts for a smaller and smaller
portion of the processing as the amount of data increases. When
the number of points is larger than 10 million, the speedup ratio
tends to be stable.

V. CONCLUSION

In this letter, we have proposed a new algorithm that uses
scan lines from the LiDAR point cloud to classify the ground
and nonground points, and GPU is used to speed up the process.
By growing local lowest points into smooth segments, the
ground points are obtained. The algorithm by nature is suitable
for parallel computing. The test results show that the proposed
algorithm is fast and effective in urban areas. The GPU acceler-
ation achieves high performance in computational time. It has
the potential to develop into real-time or onboard processing of
LiDAR point cloud data during the data acquisition flight.

Due to steeper slopes and dense trees, our algorithm may not
work well in mountainous areas. Further research is necessary
to extend the method to other terrain types, which would require

Authorized licensed use limited to: Wuhan University. Downloaded on March 11,2024 at 04:18:43 UTC from IEEE Xplore. Restrictions apply.

312 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 10, NO. 2, MARCH 2013

TABLE II
RUNNING TIME AND SPEEDUP RATIO

Fig. 5. Trend of speedup ratio.

more complex analysis of scan lines. Moreover, it is clear that
parallel computing, accelerated by a GPU, can be used to speed
up the process as long as the algorithm is based on scan lines.
Progressive-TIN-based filtering algorithm is one of the most
commonly used and effective methods. The TIN has to be up-
dated when one point is added to it, so it is not suitable for par-
allel computation. Considering that one point only affects a few
triangles nearby, it is also possible to use GPU to speed up the
filtering. This is also one of our research aspects in the future.

ACKNOWLEDGMENT

The authors would like to thank Guangzhou Jiantong Survey-
ing and Mapping Technology Development Ltd. for providing
the data for this research.

REFERENCES

[1] A. Beutel, T. Mlhave, and P. K. Agarwal, “Natural neighbor interpolation
based grid DEM construction using a GPU,” in Proc. 18th SIGSPATIAL
Int. Conf. Adv. Geograph. Inf. Syst., New York, 2010, pp. 172–181.

[2] G. Sithole and G. Vosselman, “Experimental comparison of filter algo-
rithms for bare-Earth extraction from airborne laser scanning point clouds,”
ISPRS J. Photogramm. Remote Sens., vol. 59, no. 1/2, pp. 85–101, 2004.

[3] J. L. S. Cárdenas and L. Wang, “A multi-resolution approach for filtering
LiDAR altimetry data,” ISPRS J. Photogramm. Remote Sens., vol. 61,
no. 1, pp. 11–22, Oct. 2006.

[4] G. Vosselman, “Slope based filtering of laser altimetry data,” in Proc.
33rd Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci., Amsterdam,
The Netherlands, 2000, pp. 935–942.

[5] S. Li, H. Sun, and L. Yan, “A filtering method for generating DTM
based on multi-scale mathematic morphology,” in Proc. IEEE Int. Conf.
Mechatron. Autom., 2011, pp. 693–697.

[6] Q. Chen, P. Gong, D. Baldocchi, and G. Xin, “Filtering airborne laser
scanning data with morphological methods,” Photogramm. Eng. Remote
Sens., vol. 73, no. 2, pp. 175–185, Feb. 2007.

[7] K. Q. Zhang, S. C. Chen, D. Whitman, M. L. Shyu, J. Yan, and C. Zhang,
“A progressive morphological filter for removing nonground measure-
ments from airborne LiDAR data,” IEEE Trans. Geosci. Remote Sens.,
vol. 41, no. 4, pp. 872–882, Apr. 2003.

[8] K. Kraus and N. Pfeifer, “Determination of terrain models in wooded
areas with airborne laser scanner data,” ISPRS J. Photogramm. Remote
Sens., vol. 53, no. 4, pp. 193–203, Aug. 1998.

[9] H. S. Lee and N. H. Younan, “DTM extraction of LiDAR returns via
adaptive processing,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 9,
pp. 2063–2069, Sep. 2003.

[10] P. Axelsson, “DEM generation from laser scanner data using adaptive TIN
models,” in Proc. 33rd Int. Arch. Photogramm., Remote Sens. Spatial Inf.
Sci., Amsterdam, The Netherlands, 2000, pp. 110–117.

[11] G. Sohn and I. Dowman, “Terrain surface reconstruction by the use of
tetrahedron model with the MDL criterion,” in Proc. 34th Int. Arch. Pho-
togramm., Remote Sens. Spatial Inf. Sci., Amsterdam, The Netherlands,
2002, pp. 336–344.

[12] T. Rabbania, F. A. van den Heuvel, and G. Vosselman, “Segmentation
of point clouds using smoothness constraint,” in Proc. 36th Int. Arch.
Photogramm., Remote Sens. Spatial Inf. Sci., Dresden, Germany, 2006,
pp. 248–253.

[13] G. Tolt, Å. Persson, J. Landgård, and U. Söderman, “Segmentation and
classification of airborne laser scanner data for ground and building de-
tection,” in Proc. SPIE, 2006, p. 62140C.

[14] D. Costantino and M. G. Angelini, “Features and ground automatic extrac-
tion from airborne LiDAR data,” in Proc. 38th Int. Arch. Photogramm.,
Remote Sens. Spatial Inf. Sci., Calgary, AB, Canada, 2011.

[15] F. Crosilla, D. Macorig, I. Sebastianutti, and D. Visintini, “Points classi-
fication by a sequential higher-order moments statistical analysis of Lidar
data,” in Proc. 38th Int. Arch. Photogramm., Remote Sens. Spatial Inf.
Sci., Calgary, AB, Canada, 2011.

[16] J. Shan and Sampath, “Urban DEM generation from raw LiDAR data:
A labeling algorithm and its performance,” Photogramm. Eng. Remote
Sens., vol. 71, no. 2, pp. 217–226, Feb. 2005.

[17] S. H. Han, J. H. Lee, and K. Y. Yu, “An approach for segmentation of
airborne laser point clouds utilizing scan-line characteristics,” ETRI J.,
vol. 29, no. 5, pp. 641–648, Oct. 2007.

[18] S. H. Han, J. Heo, H. G. Sohn, and K. Y. Yu, “Parallel processing method
for airborne laser scanning data using a PC cluster and a virtual grid,”
Sensors, vol. 9, no. 4, pp. 2555–2573, 2009.

[19] K. Shih, A. Balachandran, K. Nagarajan, B. Holland, C. Slatton, and
A. George, “Fast real-time lidar processing on FPGAs,” in Proc. Conf.
ERSA, Las Vegas, NV, 2008, pp. 231–237.

[20] R. Sugumaran, D. Oryspayev, and P. Gray, “GPU-based cloud perfor-
mance for LiDAR data processing,” in Proc. 2nd Int. Conf. Comput.
Geospatial Res. Appl., New York, 2011, p. 48.

[21] J. Chase, B. Nelson, J. Bodily, Z. Wei, and D. J. Lee, “Real-time optical
flow calculations on FPGA and GPU architectures: A comparison study,”
in Proc. 16th Annu. IEEE Symp. Field-Programm. Cust. Comput. Mach.,
2008, pp. 173–182.

[22] NVIDIA CUDA C Programming Guide, NVIDIA, Santa Clara, CA,
Apr. 6, 2011. [Online]. Available: http://nvidia.com/cuda

[23] OpenMP Architecture Review Board, OpenMP Application Program Inter-
face, Jul. 2011. [Online]. Available: http://openmp.org/wp/about-openmp/

Authorized licensed use limited to: Wuhan University. Downloaded on March 11,2024 at 04:18:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

