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The topographic mapping products of airborne light detection and ranging (LiDAR) are usually required in
the national coordinates (i.e., using the national datum and a conformal map projection). Since the spatial
scale of the national datum is usually slightly different from the World Geodetic System 1984 (WGS 84)
datum, and the map projection frame is not Cartesian, the georeferencing process in the national coordi-
nates is inevitably affected by various geometric distortions. In this paper, all the major direct georefer-
encing distortion factors in the national coordinates, including one 3D scale distortion (the datum scale
factor distortion), one height distortion (the earth curvature distortion), two length distortions (the hor-
izontal-to-geodesic length distortion and the geodesic-to-projected length distortion), and three angle
distortions (the skew-normal distortion, the normal-section-to-geodesic distortion, and the arc-to-chord
distortion) are identified and demonstrated in detail; and high-precision map projection correction for-
mulas are provided for the direct georeferencing of the airborne LiDAR data. Given the high computa-
tional complexity of the high-precision map projection correction approach, some more approximate
correction formulas are also derived for the practical calculations. The simulated experiments show that
the magnitude of the datum scale distortion can reach several centimeters to decimeters for the low (e.g.,
500 m) and high (e.g., 8000 m) flying heights, and therefore it always needs to be corrected. Our proposed
practical map projection correction approach has better accuracy than Legat’s approach,1 but it needs 25%
more computational cost. As the correction accuracy of Legat’s approach can meet the requirements of air-
borne LiDAR data with low and medium flight height (up to 3000 m above ground), our practical correction
approach is more suitable to the high-altitude aerial imagery. The residuals of our proposed high-precision
map projection correction approach are trivial even for the high flight height of 8000 m. It can be used for
the theoretical applications such as the accurate evaluation of different GPS/INS attitude transformation
methods to the national coordinates.
� 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

In the field of aerial topographic survey, georeferencing com-
monly involves two consecutive procedures: sensor orientation
and scene restitution (Legat, 2006). The former process aims to
precisely acquire the exterior orientation parameters (EOPs) of
the imaging sensor, and the latter process aims to calculate the
ground coordinates by combining the EOPs and the imaging sensor
observations (e.g., the ranges and the scan angles in airborne laser
scanning and the image coordinates in aerial imagery). Benefiting
from the emergence and continuous improvement of high perfor-
mance navigation sensors and the GPS/INS integrated navigation
algorithm, high-precision EOPs can be reliably acquired by the air-
borne position and orientation system (POS), which can be directly
applied to the subsequent scene restitution procedure. This data
processing approach is generally referred to as the direct georefer-
encing (DG) method (Skaloud, 2002). The data processing flow is
greatly simplified because the measurements of ground control
points (GCPs) and the least-squares adjustment are not required
in the DG process, unlike the traditional indirect georeferencing
method (Habib et al., 2006; Ressl, 2001) and the integrated geore-
ferencing method (also known as integrated sensor orientation,
however, this term is not preferred in this paper because it does
not literally cover the content of the scene restitution procedure)
(Blázquez and Colomina, 2012; Ip et al., 2007; Khoshelham,
2009). However, in the scene restitution procedure of the DG
approach, the ground points are extrapolated from the imaging
sensor center (Yastikli and Jacobsen, 2005); and without the con-
straints of the GCPs and tie points (TPs), it is very sensitive to
any source of systematic and random errors.

Aerial photogrammetry and laser scanning data products, such
as digital terrain models (DTMs) and orthoimages, are usually re-
quired in the national coordinates (i.e., using the national geodetic
datum and the conformal map projection) (Legat, 2006; Ressl,
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Fig. 1. Some reference frames required in direct georeferencing.
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2001). However, direct georeferencing in the national coordinates
is unavoidably influenced by a variety of geometric distortions
because the spatial scale of the national datum is usually slightly
different from World Geodetic System 1984 (WGS 84) datum,
and the map projection frame is not a Cartesian frame. For the
special case of airborne light detection and ranging (LiDAR), two
options are available to address this issue (Legat, 2006). The first
approach is to bypass the problem by first choosing a suitable
Cartesian frame of the WGS 84 datum for the process of sensor
orientation and scene restitution, converting the georeferencing
results (i.e., the ground points) then to the geodetic coordinates
of the national datum, and finally transforming them into the re-
quired national map projection frame individually by using the
map projection formula. This method is quite accurate because
the transformation errors of the commonly used map projection
formulas are usually negligible for the aerial topographic survey.
The second approach is more straightforward as it directly chooses
the national map projection frame for the direct georeferencing
process and compensates for the spatial scale distortion and the
map projection distortions as much as possible, which is the main
focus of this paper.

To the best of our knowledge, there are no studies that have
investigated the effect of the spatial scale distortion on the DG pro-
cess in the national datum. On the other hand, correcting the map
projection distortions is a very long-standing topic in the aerial
photogrammetry field. All the early studies focused on earth curva-
ture correction (Hothmer, 1958; Wang, 1980), and distortion cor-
rection already has been well implemented in the available aerial
photogrammetry software. In recent years, length distortion has
received increasing attention because it severely impairs direct
georeferencing accuracy. Several length correction algorithms have
been developed and evaluated for the direct georeferencing pro-
cess of airborne LiDAR data (Legat, 2006) or aerial imagery (Legat,
2006; Ressl, 2001; Yastikli and Jacobsen, 2005); and both simu-
lated data (Legat, 2006) and real data (Skaloud and Legat, 2008)
experiments proved that they could significantly improve direct
georeferencing accuracy. However, the existing correction ap-
proaches are still not fully satisfactory for all aerial mapping sce-
narios. According to the simulated experiments, the residuals are
usually significant and come from two sources: (1) the existing
earth curvature correction and length correction formulas are not
accurate enough; and (2) some small amount of distortion factors
have yet to be characterized and quantified.

In this paper, we identify all the major geometric distortion fac-
tors by analyzing how to transform a vector from a Cartesian frame
of the WGS 84 datum to the national map projection frame; and
further, we provide the high-precision map projection correction
formulas and the more practical formulas for the direct georefer-
encing process of the airborne LiDAR data. The remainder of this
paper is organized as follows. In Section 2, we first introduce and
define five essential reference frames (i.e., the sensor frame, the
earth-centered earth-fixed frame, the eccentric earth-fixed frame,
the map projection frame, and the local level frame of the national
ellipsoid) and further provide the transformation formulas of the
EOPs to the last three frames. Then, we present the computational
model of the airborne LiDAR data and the concept of the DG vector
in the direct georeferencing process. Finally, through the analysis
of the transformation procedures of the DG vector from the
earth-centered earth-fixed frame to the national map projection
frame, we identify and demonstrate all the major geometric distor-
tion factors of the direct georeferencing process in the national
coordinates. In Section 3, we derive the high-precision map projec-
tion correction formulas based on the equations from the geomet-
ric geodesy and provide the practical formulas for reducing the
computational efforts. The accuracies and computational costs of
different correction approaches are carefully evaluated in the
simulated experiments of Section 4; and in the last part of this pa-
per, we present our concluding remarks.
2. Geometric basis

2.1. Reference frames

The direct georeferencing process involves at least seven to
eight different reference frames in the navigation, geodesy, and
photogrammetry field. To avoid unnecessary technical details, only
five essential frames are introduced in this paper, most of which
are schematically shown in Fig. 1. All the reference frames are as-
sumed to be right-handed.

1. Sensor frame (s-frame). In this paper, the imaging sensor refers
specifically to the airborne LiDAR. The coordinate origin is the
laser emission position, the X-axis is assumed to be along the
trajectory direction, and the Z-axis points upward.

2. Earth-centered earth-fixed frame (e-frame). It refers to the WGS
84 reference frame. The X-axis points toward the Greenwich
meridian in the equatorial plane, and the Z-axis points toward
the North Pole.

3. Eccentric earth-fixed frame (e0-frame). This is an earth-fixed
frame defined by the national geodetic datum. The coordinate
origin is at the center of the national reference ellipsoid, which
usually deviates from the mass center of the earth slightly.

4. National map projection frame (p-frame). The coordinate origin
is usually the intersection point between the central meridian
and the equator (the false east and false north are not consid-
ered). The axis directions follow the east-north-up (ENU) con-
vention. It is worth noting that this work only uses the
ellipsoidal heights, and the orthometric heights are not treated.

5. Local level frame of the national ellipsoid (l-frame). This frame
is mainly used to achieve the rotation between the e0-frame and
the p-frame and to facilitate the understanding of the map
projection distortions. The coordinate origin is the sensor
center, and the axis directions follow the ENU convention. The
X-axis points east along the tangent of the prime vertical, the
Y-axis points north along the tangent of the meridian, and the
Z-axis points upward along the ellipsoidal normal.



Fig. 2. Grid convergence c.
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2.2. Transformation of exterior orientation parameters

Before restituting the scene, the EOPs first should be trans-
formed to the desired reference frames. Without going into detail,
this paper assumes that the EOPs are already represented in the
e-frame (the transformation process of GPS/INS trajectory to the
e-frame can be found in (Bäumker and Heimes, 2002)). The next
work is then to transform these EOPs to the e0-frame, l-frame,
and p-frame.

2.2.1. Eccentric earth-fixed frame
In national mapping, the geometric relation between two differ-

ent datums is usually represented by a Helmert 7-parameter trans-
formation (International Association of Oil and Gas Producers,
2013). If we denote the linear EOPs of the e-frame as Te

s (i.e., the
position vector constituted by the sensor center coordinate in the
e-frame) and the attitude matrix as Re

s (i.e., the rotation matrix
transformed from the s-frame to the e-frame), then the EOPs in
the e0-frame can be expressed by

Te0
s ¼ mRe0

e Te
s þ Te0

e0 ð1Þ

and

Re0
s ¼ Re0

e Re
s ð2Þ

where m is the datum scale factor, Re0
e represents the rotation matrix

transformed from the e-frame to the e0-frame, and Te0
e0 is the

e-frame origin given in the e0-frame.

2.2.2. Local level frame of the national ellipsoid
If we already have the EOPs in the e0-frame, then the EOPs in the

l-frame can be given by

T l
s ¼ Rl

e0 Te0
s � Te0

l0

� �
ð3Þ

and

Rl
s ¼ Rl

e0R
e0
s ð4Þ

where Rl
e0 represents the rotation matrix transformed from the e0-

frame to the l-frame, and Te0
l0 is the l-frame origin coordinate in

the e0-frame, which can be given by the conversion result from
ellipsoidal to Cartesian (geocentric) coordinate. Their detailed equa-
tions (International Association of Oil and Gas Producers, 2013) are

Rl
e0 ¼ RXðp=2�uÞRZðp=2þ kÞ

¼
� sin k cos k 0

� sin u cos k � sinu sin k cos u
cos u cos k cos u sin k sinu

264
375

and

Te0
l0 ¼

ðtþ hÞ cos u cos k

ðtþ hÞ cos u sin k

ðt� e2tþ hÞ sin u

264
375 ð6Þ

respectively, where the subscripts X and Z mean that the matrix is
only rotated by the specific axis; u, k, t, and h are the geodetic lat-
itude, the geodetic longitude, the curvature radius in the prime ver-
tical plane, and the ellipsoidal height of the sensor center in the
national ellipsoid, respectively; and e is the first eccentricity of
the national ellipsoid.

2.2.3. National map projection frame
The transformation process of the linear EOPs from the e0-frame

to the p-frame needs two consecutive procedures. The geocentric
coordinates of the e0-frame are first transformed to the ellipsoidal
coordinates, and then they are projected to the desired p-frame.
The detailed formulas are dependent on the specific map projec-
tion used, and some of the frequently-used coordinate conversion
formulas have been published by the International Association of
Oil and Gas Producers (2013).

As for the angular EOPs, note that both the Z-axes of the l-frame
and p-frame point upward along the ellipsoidal normal, but their
Y-axes point toward true north and grid north (cf. Fig. 2), respec-
tively. The angular difference is the grid convergence c. Therefore,

Rp
l ¼

cos c � sin c 0
sin c cos c 0

0 0 1

264
375 ð7Þ

For the transverse Mercator projection, c can be calculated by (Redf-
earn, 1948)

c ¼ ðk� k0Þ sinuþ 1
3
ðk� k0Þ3 sinu cos2 uð2w2 � wÞ

þ 1
15
ðk� k0Þ5 sin u cos4 u½w4ð11� 24t2Þ � w3ð11� 36t2Þ

þ 2w2ð1� 7t2Þ þ wt2� þ 1
315
ðk� k0Þ7 sinu cos6

uð17� 26t2 þ 2t4Þ ð8Þ

with t = tan u and w = t/q, where q is the curvature radius of the
national ellipsoid in the meridian plane, and k0 is the geodetic lon-
gitude of the central meridian. Consequently, we can obtain

Rp
s ¼ Rp

l Rl
s ð9Þ
2.3. Direct georeferencing model of airborne LiDAR

Theoretically, the direct georeferencing process of the airborne
LiDAR data in the e-frame can be abstracted to

Tgrd ¼ Teo þ ReoRscanT range ¼ Teo þ Tdg ð10Þ

where Tgrd is the vector constituted by the ground coordinate, Teo

and Reo are the vector and rotation matrix formed by the linear
and angular EOPs, respectively, Trange and Rscan are the range vector
and the scan angle matrix, respectively, and Tdg is referred to as the
DG vector, which can be calculated by combining the angular EOPs
and the laser scanning observations (i.e., the scan angle and the
range observation). It can be seen from Eq. (10) that the direct



Fig. 4. Decomposition and composition of a DG vector. S and G represent the sensor
center and the ground point, respectively. Zdg is the height component of the DG
vector Tdg, and D and / are the horizontal length and horizontal angle, respectively.
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georeferencing process of the airborne LiDAR data can be simply ex-
pressed as the vector addition operation between Teo and Tdg.

If direct georeferencing is performed in the p-frame, then Tp
eo

can be accurately calculated by the map projection formula, but
Tp

dg (i.e., the multiplication result of Rp
eoRscanT range) is incorrect

because the datum scale is changed and the spatial geometric
operations are not rigorously applicable to the p-frame. If we
denote the correct DG vector (i.e., Tp

grd � Tp
eo) obtained from rigor-

ous transformation of the point cloud after georeferencing as Tp0

dg,
then the direct georeferencing distortions in the p-frame can be
characterized as the coordinate difference between the correct
DG vector Tp0

dg and the incorrect DG vector Tp
dg .

2.4. Direct georeferencing distortions in national coordinates

2.4.1. Datum scale distortion
For the transformation between different Cartesian frames in

the same datum, the length of the DG vector always remains con-
stant. However, according to Eq. (1), if the scale factor m in the da-
tum transformation is not equal to 1.0, then the spatial scale of the
national datum will be different from the WGS 84 datum. Conse-
quently, the distance between the ground point and the sensor
center in the Cartesian frame of the national datum (e.g., e0-frame
and l-frame) will be m times larger than that of the WGS 84 datum,
but the length of the DG vector Tdg computed from Eq. (10) re-
mains unchanged. Therefore, the datum scale distortion is given
by (m � 1)Tdg.

2.4.2. Map projection distortions
It is rather difficult to directly identify and quantify all of the

map projection distortion factors of the DG process in the p-frame,
and an easier way is to analyze how to transform a DG vector from
the l-frame to the p-frame. As schematically shown in Fig. 3, the
transformation process involves the following four procedures:

1. Decomposition of the DG vector T l
dg to the height component

Zdg, the horizontal distance D, and the horizontal angle /l (cf.
Fig. 4), which here will be called ‘‘spatial observations.’’

2. Transformation of the ‘‘spatial observations’’ to the ‘‘ellipsoidal
observations.’’ Zdg does not need to be modified; D is trans-
formed to the geodesic distance S; and for the horizontal angle
component, the additions of the skew-normal correction f and
the normal-section-to-geodesic correction n are required.

3. Transformation of the ‘‘ellipsoidal observations’’ to the ‘‘map-
projected observations.’’ The earth curvature correction hec is
added to the height component; S is transformed to the pro-
jected length D0; and in the horizontal angle component, it
needs to subtract the grid convergence c and to add the arc-
to-chord correction d.

4. Composition of the ‘‘map-projected observations’’ to the DG
vector Tp0

dg. This is the opposite process of the first step.

The above calculation steps are very similar to the data process-
ing procedures of the total station. The only difference is that the Z-
axis of the total station aligns with the plumb line and therefore
Fig. 3. Transformation of a DG vector from l-frame to p-frame.
the gravimetric correction is required to add in its observations.
As for the POS system, the inertial measurement unit (IMU) works
based on the laws of Newtonian physics and its Z-axis aligns also
with the plumb line, but the gravimetric correction is usually ig-
nored in practice because the angular deflections are likely lower
than the noise level of POS attitude data at least in case of ‘‘tacti-
cal-grade’’ IMUs.

According to the analysis in Section 2.2.3, the grid convergence
c is the only difference between the angular EOPs of the l-frame
and the p-frame. Therefore, if direct georeferencing is processed
in the l-frame and p-frame, then their calculated DG vectors meet
Tp

dg ¼ Rp
l T l

dg. This means that, except for the grid convergence c, all
the other corrections added in the above procedures (i.e., the earth
curvature correction hec, the horizontal-to-geodesic length correc-
tion S � D, the geodesic-to-projected length correction D0 � S, the
skew-normal correction f, the normal-section-to-geodesic correc-
tion n, and the arc-to-chord correction d) are the map projection
distortions of the direct georeferencing process in the national
coordinates.

3. Correction of map projection distortions

The high-precision direct georeferencing in the national coordi-
nates requires accurate correction of the datum scale distortion
and the map projection distortions. As indicated in the left part
of Fig. 5, the only thing to do in the datum scale correction is to
multiply the DG vector Tp

dg by the datum scale factor m which is
usually known with sufficient accuracy. Therefore, in this section
we only discuss the correction approaches of the map projection
distortions.

3.1. High-precision approach

As schematically shown in the right part of Fig. 5, the map
projection correction process for the direct georeferencing of the
airborne LiDAR data is to calculate all the geometric distortions
based on the DG vector and other known information (e.g., the sen-
sor center coordinates and the map projection parameters) and to
add them back directly to the DG vector. Since the decomposition



Fig. 5. Correction of direct georeferencing distortions in p-frame.
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and composition of the DG vector only involve simple geometric
operations, they are not elaborated here. In the following para-
graphs, we present only the correction formulas of all the map pro-
jection distortions (except the normal-section-to-geodesic
distortion n). All the formulas are directly or indirectly derived
from the equations in the geometric geodesy. However, some
parameters (e.g., the map projection coordinates of the ground
points) in the original equations are difficult to calculate directly.
Therefore, we replace them with the known values in the direct
georeferencing process.

The height and length components of the map projection distor-
tions are illustrated in Fig. 6. In the height component, only adding
the earth curvature correction value is needed. Here we provide
the correction equation directly, the detailed derivation is pre-
sented in Appendix B.

hec ¼
D2

2ðRa þ hS þ ZdgÞ
ð11Þ

where hS is the ellipsoidal height of the sensor center, Ra is the cur-
vature radius of the normal section in a given azimuth; and it is gi-
ven by (Deakin, 2010)

Ra ¼
qt

q sin2 aþ t cos2 a
ð12Þ

where a is the azimuth. It can be approximately given by a = /p + c,
where /p is the horizontal angle computed from the DG vector in
the p-frame.
Fig. 6. Map projection distortions. G0 is the corresponding projected point of the
ground point G (only the relative position relationship between the sensor center S
and the ground point G is considered), it is not located in the SGE plane by the
influence of the angle distortion.
In the length component, the first step is to calculate the geode-
sic distance S from the horizontal length D. Since S is always signif-
icantly shorter than the earth radius in the aerial topographic
survey, the geodesic line can be approximated by the correspond-
ing circular arc. Therefore, according to the geometric relationships
in Fig. 6, we can approximately get

S ¼ Ra arctan
GE

Ra þ SF0 � SE
¼ Ra arctan

D
Ra þ hS þ Zdg

ð13Þ

The second step is to calculate the projected length D0 from the
geodesic distance S. The equation is

D0 ¼ KS ð14Þ

where K is the line scale factor. For the widely used transverse Mer-
cator projection, it can be given by (Deakin, 2010)

K ¼ k0 1þ X2
S þ XSXG0 þ X2

G0

6k2
0R2

M

1þ X2
S þ XSXG0 þ X2

G0

36k2
0R2

M

 !" #
ð15Þ

where k0 is the point scale factor of the central meridian, XS and XG0

are the east coordinates (the false east is not included) of the sensor
center and the ground point in the p-frame, respectively, and RM is
the mean radius of curvature at the midpoint between the sensor
center and the ground point. Since the ground coordinates could
not be precisely acquired before the direct georeferencing, we
approximately replace XG0 and RM with XS + Xdg and R (the mean ra-
dius of curvature at the sensor center position), respectively. Then,
Eq. (15) is approximated by

K ¼ k0 1þX2
S þXSðXSþXdgÞþðXSþXdgÞ2

6k2
0R2

1þX2
S þXSðXSþXdgÞþðXSþXdgÞ2

36k2
0R2

 !" #

¼ k0 1þ
3X2

S þ3XSXdgþX2
dg

6k2
0R2

1þ
3X2

S þ3XSXdgþX2
dg

36k2
0R2

 !" #
ð16Þ

where R ¼ ffiffiffiffiffiffiqtp
.

In the angle component, the skew-normal correction f is the
horizontal included angle between the directions of the spatial
straight line and its corresponding normal section (cf. Fig. 7), and
it is given by (Deakin, 2010)

f ¼ hG

2qM
e2 sinð2aÞ cos2 uG ð17Þ

where hG and uG are the ellipsoidal height and the geodetic latitude
of the ground point, respectively, and qM represents the curvature
radius in the meridian plane which is calculated at the midpoint po-
sition between the sensor center and the ground point. If we
approximately replace hG with hS + Zdg, and use q and u at the sen-
sor center position, then Eq. (17) can be approximated by

f ¼ hS þ Zdg

2q
e2 sinð2aÞ cos2 u ð18Þ

The normal-section-to-geodesic distortion n is the included an-
gle between the directions of the normal section and the geodesic
line. Given that this distortion is not numerically significant (the
maximum magnitude is only on the order of 1E�9 rad) in the aerial
topographic survey, there is no need for correction in the direct
georeferencing process.

As shown in Fig. 8, the arc-to-chord correction is the included
angle between the tangent of the projected geodesic and its corre-
sponding chord line. For the transverse Mercator projection, it is gi-
ven by (Deakin, 2010)

d ¼ �ðYG0 � YSÞðXG0 þ 2XSÞ
6k2

0R2
M

1� ðXG0 þ 2XSÞ2

27k2
0R2

M

 !
ð19Þ



Fig. 7. Skew-normal correction f. The curve F0G0S

_

has the same horizontal direction
as the light ray SG, and they both locate in the same plane with the normal at the

sensor center S. The curve F0G0G

_

is the normal section, where G0G is calculated by

the normal at the ground point G. The angular difference between F0G0S

_

and F0G0G

_

is called the skew-normal correction, which is also known as the ‘‘height of target’’
correction because it only exists when the ground height is not zero.
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where YS and YG0 are the north coordinates (the false north is not
included) of the sensor center and the ground point in the p-frame,
respectively. Like the simplification of the line scale factor K in Eq.
(15), we can approximately convert Eq. (19) to

d ¼ �Ydgð3XS þ XdgÞ
6k2

0R2
1� ð3XS þ XdgÞ2

27k2
0R2

 !
ð20Þ
3.2. Practical approach

The high-precision correction formulas involve a lot of
computational parameters and some of them (e.g., Ra) are quite
Fig. 8. Arc-to-chord correction d. It is the included angle between the tangent of the
projected geodesic gSG0 and the straight line SG0 in the p-frame.
complicated, which therefore require a large amount of calculation.
If the accuracy requirement is relaxed, it is necessary and conve-
nient to use the more approximate correction equations. Although
the high-precision correction formulas may have an unlimited
number of approximate approaches, we only provide here our pre-
ferred simplified form.

In the high-precision earth curvature correction equation, the
calculation process of Ra is too complicated, and therefore we re-
place it with R. Consequently, Eq. (11) is converted into

hec ¼
D2

2ðRþ hS þ ZdgÞ
ð21Þ

Generally, R is substantially constant in a single survey area. There-
fore, it can further reduce the computation amount by only using
the R at the center position of the survey area.

In the length component, we also use R instead of Ra, and fur-
ther apply the small-angle approximation to Eq. (13) and remove
the high-order terms of Eq. (16). Then, by combining these two
equations, we can obtain

D0 ¼ k0RD
Rþ hS þ Zdg

1þ
3X2

S þ 3XSXdg þ X2
dg

6k2
0R2

 !
ð22Þ

In the angle component, the skew-normal correction f can be
ignored because the distortion magnitude is usually quite small,
especially when the ground elevation is close to zero. As for the
arc-to-chord correction d, we remove the high-order terms of Eq.
(20), then

d ¼ �Ydgð3XS þ XdgÞ
6k2

0R2
ð23Þ

Likewise, the traditional earth curvature correction and length
correction equations also can be regarded as the approximation
forms of the high-precision formulas. For example, in Legat’s cor-
rection equations for the airborne LiDAR data (Legat, 2006), the
earth curvature correction formula is given by

hec ¼
D2

2R
ð24Þ

and the length correction formula is

D0 ¼ 1� hS þ Zdg

R

� �
kD � kRD

Rþ hS þ Zdg
ð25Þ

where k is the point scale factor of the sensor center position, and it
can be given by Bomford (1980)

k ¼ k0 1þ X2
S

2k2
0R2
þ X4

S

24k4
0R4

 !
ð26Þ

It can be seen by comparing Eqs. (24)–(26) to Eqs. (21)–(23)
that Legat’s correction formulas are different from our proposed
practical formulas in three main aspects: (1) the hS + Zdg term is
omitted in the earth curvature correction equation; (2) the point
scale factor k is used to approximate the line scale factor K in the
length correction; and (3) the angle distortion is not considered.

4. Experiments

4.1. Accuracy evaluation

Real airborne LiDAR data are inevitably distorted by a variety of
systematic and random errors (e.g., range error and atmospheric
refraction), and they are very difficult to distinguish from the
datum scale distortion and the map projection distortions. There-
fore, only simulated data are used in this paper. The experimental
process is divided into three main procedures: First, we simulate



Table 1
Technical characteristics of experimental national map projection frame.

Category Parameter Value Unit

Helmert 7-
parameter

m 1.00005 –

(X, Y, Z) (370.9492, 282.6227, �4.7778) m
(x, u, j) (�0.0014, 0.0022, �0.0025) deg

Ellipsoid Type Krassovsky –
Map projection Type universal transverse Mercator –

Central meridian 117 deg

Fig. 9. Magnitudes of different direct georeferencing distortions in p-frame.

Y. Zhang, X. Shen / ISPRS Journal of Photogrammetry and Remote Sensing 84 (2013) 43–51 49
the laser scanning observations and trajectory data and further
transform the latter to the e-frame and p-frame. In the second step,
we perform the direct georeferencing process in the e-frame, then
transform the ground points to the geodetic coordinates of the na-
tional datum and further project them to the required p-frame. The
used transverse Mercator projection algorithm comes from the
GeographicLib library, which is an open source geographic coordi-
nate conversion library developed by Karney (2013). According to
the test results by Karney (2011), the maximum error of our used
map projection formula is only a few nanometers. Therefore, the
direct georeferencing results of the e-frame can be treated as the
Table 2
Error statistics of different correction schemes.

Relative flight height Datum scale correction Map projection correction

500 m No No
No Legat
Yes Legat
Yes Practical
Yes High-precision

2000 m No No
No Legat
Yes Legat
Yes Practical
Yes High-precision

8000 m No No
No Legat
Yes Legat
Yes Practical
Yes High-precision
true values. In the third step, we perform the direct georeferencing
process in the p-frame and compensate the datum scale distortion
and the map projection distortions by using different correction
schemes. Then, the calculated ground points are compared with
their true values, and the coordinate differences are the direct
georeferencing residuals in the national coordinates.

To verify the correctness of the proposed map projection
distortions model, the basic experimental strategy is to simulate
the adverse survey condition as far as possible. Table 1 shows the
definition of the national map projection frame, which comes
from a real case of aerial photogrammetric project. The geodetic
coordinate of the laser emission center is (30�N, 120�E), and
therefore the longitude difference is 3�. A hypothetical scanner-
less frame imaging LiDAR system with a field of view (FOV) of
approximately 73.86� � 73.86� is employed, which aims to
simulate the imaging coverage area of a Leica RC-30 camera. Five
datasets with different relative flight heights are simulated,
where the minimum and maximum values are 500 m and
8000 m, respectively. Every dataset includes a total of 11 � 11
ground points, and they are evenly distributed within the imag-
ing coverage area. All ground points have the same ellipsoidal
height of 1000 m.

Fig. 9 schematically shows the magnitudes of the datum scale
distortion and the map projection distortions in the elevation,
length, and angle components. Under the experimental conditions
of this paper, the length distortion is much larger than the other
three parts in almost all the scenarios. The height distortion signif-
icantly increases with the increasing flight height because, accord-
ing to Eq. (21), it is a quadratic function of the horizontal length D;
whereas the datum scale distortion and the length distortion (cf.
Eq. (22)) only linearly grow with the length and the horizontal
length of the DG vector, respectively. As for the angle distortion,
the magnitude is usually very small, especially when the relative
flight height is lower than 2000 m.

Table 2 presents the error statistics of different direct georefer-
encing correction schemes in the p-frame. It can be seen that most
distortions can be compensated by Legat’s map projection correc-
tion formulas, but the residuals are still significant in all scenarios.
When the relative flight height is low (500 m), almost all of the
residuals come from the datum scale distortion. The residuals in
the height component are constant, which is due to the fixed
ground heights in the simulated data. When the relative flight
height is very high (8000 m), the correction residuals of the map
projection distortions should also not be ignored, and they mainly
appear in the plane component. Our proposed high-precision
Mean (mm) Std. dev. (mm) Max. dev. (mm)

Plane Height Plane Height Plane Height

152.9 16.1 56.9 5.6 258.6 25.0
15.8 25.0 5.9 0.0 27.3 25.0

0.4 0.0 0.3 0.0 1.2 0.0
0.2 0.0 0.1 0.0 0.3 0.0
0.0 0.0 0.0 0.0 0.0 0.0

611.7 �41.9 227.7 89.0 1043.2 �254.9
63.2 100.0 24.2 0.2 118.4 100.5

6.5 0.0 4.1 0.2 17.0 0.5
0.6 0.0 0.3 0.2 1.1 �0.4
0.0 0.0 0.0 0.0 0.0 0.0

2446.8 �1871.1 914.9 1424.2 4313.5 �5278.4
263.6 400.2 131.7 3.6 634.1 407.4
103.3 0.4 64.8 3.6 263.2 7.7

2.7 0.0 1.2 3.6 5.6 �7.2
0.1 0.0 0.0 0.0 0.2 0.0



Fig. 10. Computational costs of different data processing procedures. The test
program ran on a 2.13 GHz Intel processor and was compiled with the Intel C/C++
compiler (version 12.0).
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correction approach can compensate almost all direct georeferenc-
ing distortions in the p-frame even for the extreme case of 8000 m
flight height above ground, and the correction accuracy of the prac-
tical approach is only slightly worse.
4.2. Computational performance

Computational efficiency is also a very important issue to eval-
uate the performance of different direct georeferencing ap-
proaches. For the direct georeferencing in the e-frame, it
requires the transformation of all ground points from e-frame to
p-frame. The map projection is the most time-consuming opera-
tion, and it depends largely on the map projection type and the
specific algorithm used. After careful testing two transverse Mer-
cator projection formulas (i.e., USGS formula and JHS formula)
from (International Association of Oil and Gas Producers, 2013)
and two algorithm implementations from the GeographicLib li-
brary (Karney, 2013), we finally chose USGS formula in our exper-
iment due to its lowest computational cost. As for the direct
georeferencing in the p-frame, it first requires transforming the
EOPs from e-frame to p-frame, and then performing the direct
georeferencing in the p-frame and the compensation of various
geometric distortions. The linear EOPs were also transformed by
the USGS formula, and the angular EOPs conversion formulas
came from Section 2.2.

As shown in Fig. 10, the single operation of transforming the
EOPs from e-frame to p-frame requires several times more time
than other calculation procedures. However, the typical measure-
ment frequency of airborne POS data is only a few hundred Hz,
whereas the pulse repetition frequencies (PRF) of the state-of-
the-art commercial airborne LiDAR systems (Petrie, 2011) are up
to 50–500 kHz. Therefore, the consumed time for transforming
the EOPs is almost negligible when compared to the correction
process of the map projection distortions. All of the three p-frame
DG schemes which use different map projection correction formu-
las require less computational effort than the DG approach in the
e-frame. Legat’s correction method has the lowest computational
cost, and it can save about 76% of time compared to the transfor-
mation of the ground points. Our proposed practical map projec-
tion correction approach is slower than the Legat’s method by
about 25%, whereas the high-precision correction approach is
much slower.
4.3. Discussion

After evaluating the computational accuracies and efficiencies
of different correction schemes, our recommendations for the the-
oretical and practical applications are as follows:

1. The datum scale correction is always required, but luckily it is
very easy to perform.

2. The accuracy of Legat’s map projection correction formulas can
meet the requirements of most aerial LiDAR data because cur-
rently, most commercial airborne LiDAR systems operate below
3000 m flight height (Petrie, 2011).

3. The practical map projection correction formulas can be used in
the direct georeferencing process of high-altitude aerial imag-
ery. But the correction algorithm should be reformulated
because the DG vector could not be directly acquired in the
photogrammetry.

4. The high-precision map projection correction approach is pri-
marily of theoretical, rather than practical interest. It proves
the validity of our proposed map projection distortions model,
and it also can be used to evaluate the accuracies of different
GPS/INS attitude transformation methods to the p-frame
(Bäumker and Heimes, 2002; Legat, 2006; Zhao et al., 2013).

5. Conclusions

In this paper, all of the major geometric distortion factors in the
georeferencing process of the national coordinates were identified
and properly modeled. According to our analysis, one datum scale
distortion and a total of six map projection distortion factors exist,
the latter of which can be further divided into three categories: (1)
the elevation component which includes the earth curvature dis-
tortion; (2) the length component which includes the horizontal-
to-geodesic length distortion and the geodesic-to-projected length
distortion; and (3) the angle component which includes the skew-
normal distortion, the normal-section-to-geodesic distortion, and
the arc-to-chord distortion. Accordingly, two groups of map pro-
jection correction formulas, i.e., the high-precision formulas and
the practical formulas, are derived to address the theoretical and
practical applications.

The simulated experiments show that the datum scale distor-
tion is numerically significant in all conditions of the testing flight
heights, and it should always be corrected. The high-precision
map projection correction formulas can compensate almost all
map projection distortions even under the extreme condition with
the relative flight height of 8000 m, which proves the correctness
of our proposed map projection distortions model. In the experi-
mental scenario with the relative flight height of 2000 m, the
maximum error of Legat’s map projection correction approach is
only about 1.7 cm, and therefore it is suitable for the direct geore-
ferencing of airborne LiDAR data with medium and low flying
height. Our proposed practical correction approach is a little
slower than Legat’s approach by about 25%, but the correction
accuracy is much better in the high flight height scenario. It can
be useful for the direct georeferencing process of the high-altitude
aerial imagery.
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Appendix A. Notation

The following symbols are used in this paper:
Category
 Symbol
 Meaning
Reference frame
 s
 Sensor frame

e
 Earth-centered earth-fixed frame

e0
 Eccentric earth-fixed frame

l
 Local level frame of the national

ellipsoid

p
 Map projection frame
Spatial position
 S
 Sensor center

G
 The ground point in a Cartesian

frame

G0
 The ground point in the map

projection frame

Variable
 T
 3D vector or coordinate
R
 3 � 3 Rotation matrix

u
 Geodetic latitude

k
 Geodetic longitude

k0
 The geodetic longitude of the

central meridian

h
 Ellipsoidal height

hec
 Earth curvature correction

e
 The first eccentricity of the

ellipsoid

q
 The curvature radius in the

meridian plane

t
 The curvature radius in the prime

vertical plane

Ra
 The curvature radius of the

normal section in a given azimuth

R
 The mean radius of curvature

m
 Datum scale factor

K
 Line scale factor

k
 Point scale factor

k0
 The point scale factor of the

central meridian

D
 The horizontal length of the DG

vector

D0
 The projected length of the DG

vector

S
 Geodesic distance

a
 Azimuth

c
 Grid convergence

f
 Skew-normal correction

n
 Normal-section-to-geodesic

correction

d
 Arc-to-chord correction

/
 The horizontal angle of the DG

vector

h
 Plane bearing
Appendix B. Derivation of earth curvature correction equation

As schematically shown in Fig. 6, the earth curvature correction
hec is the height difference between the ground point G in a Carte-
sian frame of the national datum and the corresponding projected
ground point G0. Given that the horizontal length of the DG vector
is always far shorter than the earth radius, G and F can be approx-
imately regarded as locating at a same arc with the radius (Ra + hG).
If we denote O as the ellipsoid center, we can then obtain
hec ¼ cos e � GP ¼ cos eðsece � OF� OGÞ

¼ ð1� coseÞðRa þ hGÞ �
1
2
e2ðRa þ hGÞ ðB1Þ

where e is the central angle in radians. According to the geometric
relationship in Fig. 6, it can be given by

e ¼ arctan
GE

Ra þ SF0 � SE

� �
¼ arctan

D
Ra þ hS þ Zdg

� �
� D

Ra þ hS þ Zdg
ðB2Þ

where Zdg is the height component of the DG vector, and it is always
negative. Submitting Eq. (B2) into Eq. (B1), we can finally get

hec ¼
D2

2ðRa þ hS þ ZdgÞ2
ðRa þ hGÞ

¼ D2

2ðRa þ hS þ ZdgÞ2
ðRa þ hS þ Zdg þ hecÞ

� D2

2ðRa þ hS þ ZdgÞ
ðB3Þ
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