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Abstract: 

In the digital conservation of the Dunhuang wall painting, bundle adjustment is a critical step in precise orthoimage 

generation. The error propagation of the adjustment model is accelerated because the near-planar photographic object 

intensifies correlation of the exterior orientation parameters and the less than 60 percent forward overlap of adjacent 

images weakens the geometric connection of the network. According to the photographic structure adopted in this 

paper, strong correlation of the exterior orientation parameters can be verified theoretically. In practice, the additional 

constraints of near-planarity and exterior orientation parameters are combined with bundle adjustment to control the 

error propagation. The positive effects of the additional constraints are verified by experiments, which show that the 

introduction of weighted observation equations into bundle adjustment contributes a great deal to the theoretical and 

actual accuracies of the unknowns as well as the stability of the adjustment model. 
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1. INTRODUCTION 

As an important cultural heritage of China, the Dunhuang wall painting is of great value for both historical 

investigation and arts appreciation. Under the construction of “Digital Dunhuang,” it’s an urgent task to reproduce the 

painting as a high precision orthoimage with close-range photogrammetric techniques, which involves image 

matching, bundle adjustment, ortho-rectification, color correction, etc. (Zhang et al., 2011). Bundle adjustment is 

performed to obtain the precise exterior orientation parameters and the coordinates of the object points, and is widely 

used for the digital surface model generation of cultural heritages (El-Hakim et al., 2004; Arias et al., 2005). Since the 

painting lies on a near-planar wall surface and the forward overlap between adjacent images is smaller than 60 

percent, the correlation of the exterior orientation parameters and the condition number of the normal matrix increase 

significantly, with the accuracy and reliability of the unknowns decreasing therefrom. Hence, the algorithm design of 

the bundle adjustment process needs to improve. 

To describe the influence of the photographic structure on the adjustment model, it’s an efficient way to analysis 

the correlation of parameters. The redundancy and relativity of the observations were analyzed based on derivative 

collinearity equations in generalized point photogrammetry, so were the minimal observations and accuracy 

distribution of the space resection (Zhang et al., 2005). Four relations among nine orientation parameters of two 

cameras were found to be in direct relative orientation, and a kind of “Five-Point” algorithm that was suitable for 

numerical implementation and which corresponded to the inherent complexity of the problem was proposed (Nistér, 

2004; Stewénius et al., 2006). Regarding the correlation problem of unknown parameters in bundle adjustment, 

experiments and statistical charts were adopted to analyze the variation of standard error and the correlation 

coefficient of the parameters that related to the photographic structure (Jacobsen, 1999; Lichti et al., 2010; Mass, 
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2009). Theoretical analysis of reliability and sensibility is also beneficial for the adjustment model selection and 

triangular network design. Measures can be taken to remove the correlation of the parameters and the singularity of 

the normal matrix, thus improving the quality of the solutions (Triggs et al., 2000). With regard to circular imaging 

particularly, Heikkinen (2004) took advantage of the circularity and coplanarity condition of projection centers to 

parameterize the equations in bundle adjustment. The circular image block method in real measuring tasks was 

evaluated in terms of accuracy and robustness. 

Relative control is a certain known geometric relationship among the unknown points in photogrammetric 

processing, which can enhance the intensity for photogrammetric work and for inspection of the accuracy and 

reliability for photogrammetry (Feng, 2001). In the field of computer vision as well, geometric relationships are 

commonly embodied in the motion of camera (Hernández et al., 2007), the relative position of stereo cameras (Malm 

et al., 2001), and the characteristic of object space, which contribute to camera self-calibration and 3D modeling. 

Different types of geometric constraints can be applied in case of redundancy in bundle adjustment, which include 

topology constraints (e.g., object point constraint, object line constraint, and coplanarity) and object constraints (e.g., 

parallelism, perpendicularity, and symmetry) (van den Heuvel, 1998). Least-squares estimates of the 3D points, 

camera position orientation are recovered precisely by exploiting planes, alignments, symmetries, orthogonalities, 

and other forms of geometrical regularity (Grossmann et al., 2005). The integration of parallelism constraint on 

planes and line-photogrammetric bundle adjustment results in a valid polyhedral description of the object, which 

offers the advantage of processing a model without real control points on the condition that the exterior orientation 

parameters are approximately known (Hrabácek et al., 2000). When an object is rotating around a single axis with 

varying camera internal parameters, the constant rotation angle and circular motion are employed to refine the camera 

parameters from coarse to fine (Cao et al., 2006).  
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Based on the photographic structure of the Dunhuang wall painting, this paper analyzes the correlation of the 

exterior orientation parameters, presents a novel bundle adjustment model with additional constraints of 

near-planarity and exterior orientation parameters, and assesses the effect of weighted observation equations on the 

theoretical and actual accuracies of the unknowns. This paper is organized as follows: In Section 2, the correlation 

coefficients of the exterior orientation parameters are calculated on an assumption of the geometric relationship. 

Section 3 presents several methods that introduce the planarity constraints into the adjustment model; and the design 

of the combined bundle adjustment is illustrated in detail. Experiments are carried out in Section 4 to measure the 

effect of the weighted observation equations in bundle adjustment. Finally, Section 5 presents our conclusions. 

2. PHOTOGRAPHIC STRUCTURE AND CORRELATION ANALYSIS 

2.1 Photographic structure 

There were more than 20,000 images of wall paintings captured in about 100 caves a few years ago without the 

purpose of photogrammetric processing at the time of data acquisition. However, these data are used for bundle 

adjustment and orthoimage generation during our work. The design and layout of the photographic structure is shown 

in Fig. 1: The test painting lies on a near-planar wall surface. A pre-calibrated digital camera is fixed on an orbital 

platform that is near-parallel to the painting. The images are captured along regular strips, with the forward overlap 

and sidelap between adjacent images maintained at 50 percent. The principal optical axes of the images are parallel 

with each other and perpendicular to the painting; and the origin of the object space coordinate system is set at the 

lower left corner of the painting, with the X-axis parallel to the track, the Y-axis pointing to the zenith, and the Z-axis 

perpendicular to the painting. 

According to the photographic structure of the painting, the geometric relationship can be simplified as imaging 
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on a plane to near-planar surface under the condition of normal case photography (i.e., the photographic distance and 

scale remain approximately constant). Owing to the small overlap between images, the geometric connection is weak 

and the adjustment model is unstable. The correlation problem among the parameters is intensified because of the 

near-planar photographic object, which is verified in Section 2.2 theoretically. Hence, additional constraints should be 

taken into consideration for a better solution of bundle adjustment. 

Fig. 1 Photographic structure of the painting (Zhang et al., 2011) 

2.2 Correlation analysis of exterior orientation parameters 

Based on the perspective projection between a three-dimensional space and a plane (Mikhail et al., 2001), the 

relationship between each object point on the painting and the corresponding image point can be described as follow: 
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where ( , , )X Y Z  and ( , , )s s sX Y Z  are the coordinates of the object point and the projection center in the 

object space coordinate system, respectively, ( , , )x y f−  the coordinates of the corresponding image point in the 

image space coordinate system, λ  the scale factor, R  the rotation matrix containing the rotation parameters 

11 12 33, ,...,r r r . 

The standard approach to construct R  is by using three sequential rotations: ϕ  about the Y-axis, ω  about 

the once-rotated X-axis, and κ  about the twice-rotated Z-axis (Mikhail et al., 2001). The rotation matrix R  then 

can be expressed as follows: 
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The rotation angles, including ,ϕ ω , and κ , are almost equal to zero under the approximate condition of 
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normal case photography. Linear terms are then selected to simplify the expression.  
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Regarding the geometric relationship of the photographic structure, the scale factor λ  can be considered as an 

invariant. There are three equations determined by each pair of conjugate points. These equations are expanded and 

simplified as follows: 
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 (5) 

In order to analyze the correlation of the exterior orientation parameters, it’s an efficient way to calculate the 

correlation coefficient between each two columns of the coefficient matrix of Eq. (5). The correlation coefficient may 

be viewed as a normalized version of the covariance function, which can be treated as a statistical indicator to reflect 

the closeness of the relationships between variables (Bertsekas et al., 2008). If the correlation coefficient between two 

columns is close to 1, the probability that the two columns meet with a linear relationship is close to 1. 

First, taking the correlation between the linear element sX  and the angular element ϕ  into consideration, 

the correlation coefficient between the corresponding two columns of Eq. (5) is: 
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Similarly, the correlation coefficient between two columns related to sX and ω  is close to 0, while the one 

related to sX  and κ  is calculated as follow:  
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If the image points are widely distributed within the image format, a relationship of the coordinates of the image 

points exists as follow: 

 2 2( )y n x y<< +∑ ∑  (8) 

Based on this, the correlation coefficient related to sX  and κ  is close to 0. 

If a linear relationship exists between two columns of the coefficient matrix of the linear equations, the linear 

relationship between the corresponding two unknowns can be derived. Therefore, when imaging on a plane to 

near-planar surface under the condition of normal case photography, the linear element sX  is highly correlated 

with the angular element ϕ , rather than with other angular elements. 

Similarly, the linear element sY  is highly correlated with the angular element ω  rather than with other 

angular elements. Within the restrictions of the photographic structure, when using bundle adjustment based on the 

collinearity equations (refer to Eq. (11)), strong correlations exist between the columns of the normal matrix 

corresponding to sX  and ϕ  and sY  and ω  of each image, respectively. Both the strong correlation of the 

exterior orientation parameters and the small overlap between the images intensifies the singularity of the normal 

equation, which seriously decreases the accuracy of the unknowns. 
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3. DESIGN OF BUNDLE ADJUSTMENT WITH ADDITIONAL CONSTRAINTS 

3.1 Methods of introducing planarity constraints 

One logical way of dealing with the strong correlation problem is to select or merge certain parameters in bundle 

adjustment, such as the additional parameters in camera calibration (Remondino et al., 2006), and the exterior 

orientation parameters of linear array scanner images (Gruen et al, 2005). Another approach is to take advantages of 

the position characteristic of the projection centers, for instance, the linear element sZ  is treated as a pseudo 

observation because the projection centers of all the images are nearly coplanar (Zhang et al., 2011). Moreover, the 

geometric constraints of the object space also can be taken into consideration. In this photographic structure, it is 

convenient to take advantage of the planarity constraints of the painting to strengthen the geometric connection and 

control the error propagation of the adjustment model.  

For a plane in any direction, the relationship of the object points can be expressed by the general form of a plane 

equation as follow:  

 2 2 20 ( 1)aX bY cZ d a b c+ + + = + + =  (9) 

where ( , , )X Y Z  are the coordinates of the object point on the painting in the object space coordinate system, 

, ,a b c  and d  of the plane equation parameters. 

There are two methods for introducing Eq. (9) into the adjustment model. The former is to introduce the 

planarity constraints as a true value in order to attain “adjustment by elements with constraints” (Fan, 2005); while 

the latter would introduce the planarity constraints as weighted observations in order to accomplish “adjustment by 

elements with pseudo observations” (Fan, 2005).  

Since the painting does not lie on a strict plane, the second method is more suitable for the photographic 
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structure. Then, Eq. (9) can be converted into error equations and linearized using the Taylor series expansion as 

follows:  
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where planeV  and er sV  are the correction terms of the observations; ,X YΔ Δ , and ZΔ  the correction terms of 

,X Y , and Z ; , ,a b cΔ Δ Δ , and dΔ  the correction terms of , ,a b c , and d ; and 0 0,a b , and 0c  the 

first-order partial derivatives of planarity constraints determined by ,X Y , and Z , respectively. 

The unknowns of the error equations include both the correction terms of the coordinates of the object points 

and the plane equation parameters. 

3.2 Adjustment with additional constraints 

The additional constraints combined in the bundle adjustment in this paper include the constraints of the exterior 

orientation parameters that are highly correlated in Section 2.2 and the constraints of near-planarity according to the 

second method in Section 3.1. In bundle adjustment, all the coordinates of the object points and the corresponding 

image points fit with the collinearity equations. The basic model is (Mikhail et al., 2001): 
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where the significance of all the parameters are the same as those in Eq. (1).  

Considered the strong correlations between sX  and ϕ , sY  and ω  of each image, respectively, ϕ  and 

ω  are treated as weighted observations. Considered the geometric constraints of the painting, Eq. (10) is also 

treated as the weighted observation equation in the adjustment model. After linearization, the observation equations 
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of the combined adjustment model have the following form:  
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where ,x yV  and ,ϕ ωV  the correction vectors of the observations; [   ]TX Y Z= Δ Δ ΔM  and 

[      ]Ts s sX Y Z ϕ ω κ= Δ Δ Δ Δ Δ ΔT  the correction vectors of the coordinates of the object points and exterior 

orientation parameters, respectively; ,ϕ ωT  the correction vector of ϕ  and ω ; =( a b c d)TΔ Δ Δ ΔN  the 

correction vector of plane equation parameters; , , , ,A B C D F  the designed matrix of the correction vectors 

above; 1 2,L L , and 3L  the constant items calculated by the approximate values of the unknowns; and 

1 2 3, ,P P P , and 4P  the weight matrices of the observation equations. 

The appropriate weight matrix of the error equations plays an important role in improving the accuracy of the 

unknowns and speeding up the convergence rates. The initial weight matrix of the collinearity equations is set to be 

the unit matrix. The weight of equation 2 2 2 1a b c+ + =  is set to be a large value diagonal matrix because of the 

absolute constraint relations. The initial weight matrices of the pseudo observation equations should consist with their 

a priori accuracies against the unit weight variance (Zhang et al., 2011), in which the coplanar state of the painting 

and the correlation coefficient of the exterior orientation parameters should be considered. 

The normal equation is described as follow: 

 
1 4 1 1 1

1 1 2 2 1 1 2 2

2 2 3 2 2 3 3

⎡ ⎤ ⎡ ⎤+ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥+ = +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥+ +⎣ ⎦⎣ ⎦ ⎣ ⎦

T T T

T T T T T T

T T T T T

A P A P A P B 0 T A P L
B P A B P B C P C C P D M B P L C P L

0 D P C D P D F P F N D P L F P L
 (13) 

The exterior orientation parameters of all the images, the coordinates of all the object points, and the four plane 

equation parameters need to be calculated meanwhile in the combined bundle adjustment model through total 
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iteration. 

If control points are considered in this adjustment model, the error equations determined by the control points 

need to be combined with Eq. (12). The linearized form is: 

 , 5 5G Gx y = −V GT L P  (14) 

where ,G Gx yV  is the correction vector of the observations, G  the designed matrix of the correction vector T ; 

5L  the constant item; and 5P  the weight matrix consistent with the control level. 

To verify the effect of the additional constraints on the bundle adjustment model, it is necessary to assess the 

theoretical and actual accuracies of the unknowns. Actual accuracy is calculated by the root mean square (RMS) error 

using the check points, while theoretical accuracy calculates the inverse matrix of the normal matrix and the extract 

diagonal elements. The expression of theoretical accuracy is (Fan, 2005): 

 0i iiσ σ= Q  (15) 

4. EXPERIMENTS AND RESULTS 

4.1 Data sources 

According to the photographic structure of the Dunhuang wall painting referenced in Section 2.1, a test painting 

is used for experiments in this paper. The length and width of the painting are about 4 m and 2.5 m, respectively, with 

a 0.13 m deflection at the top of the painting. There are 734 images captured along 16 strips at a distance of about 0.5 

m with 20,830 conjugate points matched. The image format, pixel size, and principal distance of the camera are 

35.9424 mm×23.9616 mm, 0.0064 mm, and 53 mm, respectively. The ground sample distance (GSD) is calculated as 

0.065 mm. There are 56 widely distributed object points measured by an electronic total station with a 1 mm + 1 ppm 

nominal accuracy of the distance measurement. Therefore, the plane and elevation accuracies of these points are 
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about 1.0 mm and 2.0 mm, respectively. 

Given an orientation standard, the initial values of the exterior orientation parameters in bundle adjustment are 

calculated by image matching and relative orientation of adjacent images. The initial values of the coordinates of 

object points are calculated through space intersection from multiple images. According to the photographic structure 

of the painting illustrated in Section 2.1, the principal optical axes of the images are parallel with each other and 

perpendicular to the painting, and the images are captured at a distance of about 0.5 m, so the initial values of the 

plane parameters , ,a b c , and d  are set at 0.0, 0.0, 1.0 and 50.0, respectively. The new approximations of the 

parameters are determined by a plus of the approximations with adjusted corrections in the last time during iterations. 

4.2 Experiment on correlation of exterior orientation parameters 

To verify the correlation problem of the exterior orientation parameters for the photographic structure, the 

correlation coefficient between the two columns of the error equations corresponding to a linear element and an 

angular element are calculated.  

Table 1 Correlation coefficient of exterior orientation parameters 

As shown in Table 1, the terms “Max”, “Min” and “Mean” stand for the maximum value, the minimum value 

and the arithmetic average value of the corresponding items, respectively. The correlation coefficients between the 

columns corresponding to sX  and ϕ , sY  and ω , respectively, are close to 1, while the others are relatively 

small. The results verify the theoretical derivation in Section 2.2, namely, strong correlations exist between sX  and 

ϕ  and sY  and ω , respectively. Hence, it is reasonable to treat ϕ  and ω  as weighted observations in bundle 

adjustment, by which to decrease the correlation and improve the geometric configuration of the adjustment model. 
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4.3 Experiment on Bundle Adjustment without Control Points 

Since it is an efficient way to reveal the error propagation, the minimally constrained block adjustment is 

employed in this section, with the exterior orientation parameters of the first image and the baseline with the second 

image on the first strip fixed. The weights of the constraints of near-planarity and exterior orientation parameters are 

set at 0.001 and 20, respectively, as the method illustrated in Section 2.2. Then, comparisons of the theoretical 

accuracy of the unknowns are made based on whether or not the weighted observation equations are introduced.  

Model I is bundle adjustment without these additional constraints, while Model II is bundle adjustment with 

them as the virtual observations. The unit weight RMS errors of Model I and Model II are 0.006286 and 0.007504, 

respectively, the condition numbers of the corresponding normal matrices are 1.5733*10^26 and 2.0302*10^24, 

respectively, and the iteration times are 14 and 7, respectively. Compared with the solutions of Model I, the unit 

weight RMS error of Model II increases to 1.2 pixels because of the quasi-planarity constraints; whereas, the 

condition number is reduced by about 500 times, and the iteration times are reduced by 50 percent. The results show 

that the additional constraints can not only speed up the convergence rate, but also improve the geometric 

configuration and stability of the adjustment model. 

Details regarding the theoretical accuracy statistics of the exterior orientation parameters and the coordinates of 

the object points are shown in Table 2. As can be seen, the solutions of Model II are better than those of Model I, as 

well as the theoretical accuracy of the exterior orientation parameters. In spite of a small increase in the minimum 

value, the theoretical accuracy of the object points in Model II is also improved and consistent with the GSD and the 

accuracy of image matching, which is usually 0.3 pixels.  

Table 2 Theoretical accuracy of unknowns in Model I and Model II (without control points) 

To illustrate the rapid decrease problem of the solutions in Model I, the 43 largest values of the theoretical 
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accuracy of the object points are selected, which are between 0.13477 and 1.12597 in the X direction, 0.09840 and 

1.32630 in the Y direction, and 0.35386 and 4.81030 in the Z direction. This problem is caused by the lack of 

geometric connection in a certain part of the adjustment model. However, this problem does not occur in Model II. 

The results show that the additional constraints can strengthen the geometric connection and the stability of the 

adjustment model, as well as improving the theoretical accuracy of the unknowns effectively. 

Furthermore, the theoretical accuracy distribution of the object points needs to be described. Taking the X and Z 

direction, for example, comparisons of the theoretical accuracy of the object points are made based on whether or not 

the weighted observation equations are introduced. Two-dimensional interpolation of the cubic spline surfaces is 

employed to describe the distribution, and the position of the first fixed image is marked out by a vertical red line. 

The theoretical accuracy distribution of the object points in Model I and Model II are shown in Fig. 2(a) to 2(d). For 

convenience of comparison, the 43 singular values are not considered. 

Fig. 2. Theoretical accuracy distribution of object points: (a) and (b), (c) and (d) are the RMS errors of Model I and 

Model II in the X and Z direction, respectively; (e) and (f), (g) and (h) are the RMS errors of Model III and Model IV 

in the X and Z direction, respectively. 

As can be seen, a growing trend of the theoretical accuracy is from the beginning position of the first fixed 

image that meets with the law of error propagation (i.e., the farther an object point is from the control condition, the 

less influence the control function exerts and the less accurate it is). The theoretical accuracy of the object points 

distributes uniformly in the interior area of the painting but grows worse rapidly in the edge area because the images 

near the edge are lack of geometric connection. There are several protruding portions because the corresponding 

image points are badly matched. When compared to the solutions of Model I, the plane accuracy of the object points 

in Model II is improved slightly and the elevation accuracy is noticeably better. Owing to the additional constraints, 

the error propagation of Model II in the Z direction is controlled effectively and the solutions distribute more 

homogeneously. Hence, it is useful to introduce these constraints into the adjustment model under the condition of 
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bundle adjustment without control points. 

4.4 Experiment on Bundle Adjustment with Control Points 

Widely distributed control points are normally laid out and participate in bundle adjustment in order to take 

control of error propagation. The effect of the additional constraints needs to be investigated as well. Fifteen of the 56 

object points measured by a total station (Section 4.1) are regarded as control points, while the others are regarded as 

check points. The weights of the constraints of near-planarity and exterior orientation parameters are the same as 

those in Section 4.3. Comparisons of the theoretical accuracy of the unknowns are made based on whether or not the 

weighted observation equations are introduced. 

Model III is bundle adjustment without these additional constraints, while Model IV is bundle adjustment with 

them as virtual observations. The unit weight RMS errors of Model III and Model IV are 0.006495 and 0.006901, 

respectively, the condition numbers of the normal matrix are 8.9732*10^21 and 1.3667*10^20, respectively, and the 

iteration times are 11 and 6, respectively. When compared to the solutions in Section 4.3, the unit weight RMS error 

and condition number are much better if the control points are considered in the adjustment model. Moreover, the 

solutions of Model IV are better than those of Model III. The results show that the control points can also speed up 

the convergence rate and improve the geometric configuration and stability of the adjustment model, while the 

additional constraints make the solutions even better. Details of the theoretical accuracy statistics of the exterior 

orientation parameters and the coordinates of the object points are shown in Table 3. 

Table 3 Theoretical accuracy of unknowns in Model III and Model IV (with control points) 

Owing to the widely distributed control points, the theoretical accuracy of the exterior orientation parameters 

and the coordinates of the object points in Table 3 are improved when compared to the results in Table 2. Also, the 

solutions of Model IV are better than those of Model III if the weighted observation equations are introduced into the 
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adjustment model. The results show that the additional constraints are significant also in bundle adjustment regardless 

of the positive effect of the control points. 

Similarly, if the control points are taken into consideration, comparisons of the theoretical accuracy of the 

unknowns in the X and Z direction are made based on whether or not the weighted observation equations are 

introduced. The theoretical accuracy distribution is shown in Fig. 2(e) to 2(h). The singular valves are not considered 

likewise. 

By comparisons of Fig. 2(a) to 2(d) and Fig. 2(e) to 2(h), improvement of the theoretical accuracy of the object 

points by the control points and the weighted observation equations are verified. The control points improve both the 

plane accuracy and elevation accuracy, while the additional constraints have greater effects on elevation accuracy 

than on plane accuracy, reaching a higher and more homogeneously distributed accuracy of the unknowns in spite of 

the control points. The combination of additional constraints and control points in bundle adjustment reach the best 

solutions in all the foregoing experiments. 

In order to verify the improvement of the actual accuracy of the unknowns related to the weighted observation 

equations, 41 check points are selected in Model III and Model IV. Comparisons of actual accuracy of the unknowns 

are made based on whether or not the weighted observation equations are introduced. The statistics are shown in 

Table 4. 

Table 4 Actual accuracy of check points in Model III and Model IV (with control points) 

The statistical regularities of actual accuracy shown in Table 4 are similar to those in Table 3, which illustrates 

that the additional constraints can not only improve the theoretical accuracy but also can improve the actual accuracy 

of the unknowns. However, the actual accuracy is worse than the corresponding theoretical accuracy because the 

theoretical accuracy of the unknowns is affected only by the quality of the observations and the geometric 
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configuration of the adjustment model, while the actual accuracy of the unknowns is affected by the quality and 

distribution of the control points and check points as well. As illustrated in Section 4.1, the plane and elevation 

accuracies of these points are 1.0 mm and 2.0 mm, respectively; therefore, it is reasonable to state that the actual 

accuracy is consistent with the control level.  

4.5 Experiment on Weights of Additional Constraints 

The weights of additional constraints of near-planarity and exterior orientation parameters are important to the 

stability of the adjustment model and the reliability of the solutions. For analysis, bundle adjustment without control 

points is employed in this paper, and the date sources are the same as those in Section 4.3. The weights of exterior 

orientation parameter constraints and near-planarity constraints are called Weight I and Weight II, respectively. 

Weight I is set at 1.0, 10.0 and 100.0, and Weight II is set at 0.0001, 0.001 and 0.01, respectively. Then nine tests are 

made and the unit weight RMS errors, condition numbers, iteration times, and mean value of theoretical accuracies in 

X, Y and Z directions are shown in Table 5, 

Table 5 Solutions under different weights of constraints (without control points) 

As can be seen, the unit weight RMS error increases slightly with the increase of Weight I and Weight II. When 

Weight I is kept constant, the condition number, iteration times and theoretical accuracies of Test II, Test V and Test 

VIII are better than the others if Weight II is set at 0.001. The theoretical accuracies in X, Y and Z directions are 

stable with the differences less than 0.005 mm. It’s important to set weight II consist with the coplanar state of the 

painting. If the near-planarity constraint is too weak, the convergence rate is slow down as well. On the contrary, if 

it’s set much larger beyond the actual conditions, the condition number increases significantly, which shows that the 

configuration of the adjustment model is unstable than the others. When Weight II is kept constant, the condition 

number and theoretical accuracies are getting better with the increase of Weight I, while the convergence rate is 
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getting slower. The exterior orientation parameters are strongly correlated as illustrated in Section 2.2 and 4.2. Hence, 

it’s an efficient way to improve the theoretical accuracy of the results by giving Weight I a big value, particularly in 

the Z direction. The selection of the weights of constraints of near-planarity and exterior orientation parameters 

should be based on an overall consideration of the condition number, the theoretical accuracies and the iteration 

times.  

5. CONCLUSIONS 

Considered the photographic structure of the Dunhuang wall painting, the object is nearly flat and the forward 

overlap between adjacent images is about 50 percent, which lead to the configuration defects in the network. In order 

to resolve this problem, strong correlation of the exterior orientation parameters is derived theoretically. A novel 

combined bundle adjustment model with additional constraints is presented in this paper. The exterior orientation 

parameter constraints are used to decrease the correlation problem and improve the geometric configuration of the 

adjustment model, while the near-planarity constraints are used to strengthen the geometric connection and control 

error propagation in the adjustment model. The experiments show that the weighted observation equations play an 

important role in improving the theoretical and actual accuracies of the unknowns, as well as the stability of the 

adjustment model.  

In practice, specifically dealing with the Dunhuang wall painting imagery in this paper, the additional constraints 

of near-planarity and the exterior orientation parameters are combined with the bundle adjustment to control the error 

propagation. The study can also be extended to other close-range photogrammetric applications which possess a 

similar geometric structure or the adjustment network is not strong enough. Furthermore, the strong correlation of the 

exterior orientation parameters can also be eliminated by merging the linear correlated components of the parameters 
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together during bundle adjustment. It awaits further studies on the accuracy improvement of the unknowns and 

comparison with the approach proposed in this paper. 
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Fig. 1 Photographic structure of the painting (Zhang et al., 2011) 

 

Table 1 Correlation coefficient of exterior orientation parameters 

Xs Ys Zs 
Item 

Max Min Mean Max Min Mean Max Min Mean 

ϕ  0.9998 0.9954 0.9990 0.0067 0.0000 0.0010 0.7522 0.0000 0.1346 

ω  0.0272 0.0000 0.0034 0.9997 0.9984 0.9991 0.6180 0.0090 0.4167 

κ  0.3057 0.0001 0.0422 0.6014 0.0002 0.0707 0.2572 0.0001 0.0293 

 

Table 2 Theoretical accuracy of unknowns in Model I and Model II (without control points) 

Model I Model II 
Item 

Max Min Mean Max Min Mean 

Xs(mm) 0.12032 0.02315 0.05673 0.10810 0.01850 0.05252 

Ys(mm) 0.15132 0.03526 0.08427 0.09570 0.02663 0.05062 

Zs(mm) 0.30727 0.06721 0.13930 0.04026 0.00556 0.02412 

ϕ (rad) 0.00162 0.00042 0.00074 0.00109 0.00029 0.00037 

ω (rad) 0.00164 0.00065 0.00112 0.00108 0.00040 0.00052 

κ (rad) 0.00049 0.00011 0.00021 0.00039 0.00010 0.00019 

X(mm) 1.12597 0.00227 0.04846 0.11803 0.00269 0.04781 

Y(mm) 1.32630 0.00257 0.04469 0.08769 0.00308 0.04003 

Z(mm) 4.81030 0.01159 0.13717 0.08758 0.01397 0.03390 
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(a)  RMS error of X (Model I)                            (b) RMS error of X (Model II) 

   
(c)  RMS error of Z (Model I)                           (d) RMS error of Z (Model II) 

   
(e)  RMS error of X (Model III)                          (f) RMS error of X (Model IV) 

   
(g)  RMS error of Z (Model III)                           (h) RMS error of Z (Model IV) 

Fig. 2. Theoretical accuracy distribution of object points: (a) and (b), (c) and (d) are the RMS errors of Model I and 

Model II in the X and Z direction, respectively; (e) and (f), (g) and (h) are the RMS errors of Model III and Model IV 

in the X and Z direction, respectively. 
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Table 3 Theoretical accuracy of unknowns in Model III and Model IV (with control points) 

Model III Model IV 
Item 

Max Min Mean Max Min Mean 

Xs(mm) 0.08468 0.01607 0.02524 0.04890 0.01524 0.02093 

Ys(mm) 0.08869 0.02249 0.03691 0.05340 0.02026 0.02825 

Zs(mm) 0.05368 0.00889 0.01718 0.01924 0.00726 0.01023 

ϕ (rad) 0.00151 0.00026 0.00042 0.00086 0.00025 0.00032 

ω (rad) 0.00141 0.00039 0.00061 0.00085 0.00035 0.00045 

κ (rad) 0.00041 0.00005 0.00011 0.00030 0.00005 0.00008 

X(mm) 0.37405 0.00305 0.00696 0.06051 0.00322 0.00648 

Y(mm) 0.41406 0.00304 0.00676 0.04232 0.00321 0.00625 

Z(mm) 1.24470 0.00592 0.02906 0.06472 0.00610 0.02143 

Table 4 Actual accuracy of check points in Model III and Model IV (with control points). 

Model III Model IV 
Item 

RMS Mean Max/Min RMS Mean Max/Min 

X(mm) 0.34848 0.04626 -1.04525 0.33093 0.02621 -0.94774 

Y(mm) 0.35017 0.03852 1.58983 0.32510 0.01870 1.48296 

Z(mm) 0.79274 0.39363 1.91129 0.47234 0.14471 -1.10434 

Table 5 Solutions under different weights of constraints (without control points) 

Item 
Weight 

I 

Weight 

II 

Unit 

weight 

RMS error

Condition 

number 

Iteration 

times 

Mean X

(mm) 

Mean Y 

(mm) 

Mean Z 

(mm) 

Test I 0.0001 0.006861 2.8977*10^24 7 0.04917 0.04274 0.06124 

Test II 0.001 0.007511 2.8386*10^24 6 0.04819 0.04014 0.06004 

Test III 

1.0 

0.01 0.008501 2.5300*10^26 6 0.05008 0.04350 0.06457 

Test IV 0.0001 0.006882 2.6975*10^24 9 0.04897 0.04110 0.03509 

Test V 0.001 0.007504 2.0692*10^24 7 0.04795 0.04011 0.03430 

Test VI 

10.0 

0.01 0.008656 1.7963*10^26 7 0.04949 0.04301 0.03459 

Test VII 0.0001 0.006983 1.8819*10^24 21 0.04395 0.03875 0.02740 

Test VIII 0.001 0.007544 1.7618*10^24 11 0.04380 0.03749 0.02716 

Test IX 

100.0 

0.01 0.008676 1.5151*10^26 15 0.04801 0.04026 0.02897 

 


