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A New Approach on Optimization of the Rational
Function Model of High-Resolution Satellite Imagery

Yongjun Zhang, Yihui Lu, Lei Wang, and Xu Huang

Abstract—Overparameterization is one of the major problems
that the rational function model (RFM) faces. A new approach
of RFM parameter optimization is proposed in this paper. The
proposed RFM parameter optimization method can resolve the
ill-posed problem by removing all of the unnecessary parameters
based on scatter matrix and elimination transformation strate-
gies. The performances of conventional ridge estimation and the
proposed method are evaluated with control and check grids
generated from Satellites d’observation de la Terre (SPOT-5) high-
resolution satellite data. Experimental results show that the preci-
sion of the proposed method, with about 35 essential parameters,
is 10% to 20% higher than that of the conventional model with
all 78 parameters. Moreover, the ill-posed problem is effectively
alleviated by the proposed method, and thus, the stability of the
estimated parameters is significantly improved.

Index Terms—Elimination transformation, high-resolution
satellite (HRS) imagery, ill-posed problem, rational function
model (RFM), ridge estimation, scatter matrix.

I. INTRODUCTION

H IGH-RESOLUTION satellite (HRS) imagery has already
been widely used in photogrammetry and remote sens-

ing applications, such as land source monitoring, stereo map-
ping, and orthophotograph generation. However, owing to the
dynamic nature of pushbroom sensors, the ephemerides and
attitudes of satellite sensors are functions of time. The rigor-
ous physical sensor model of satellite imagery is extremely
complex and is very difficult to implement in digital pho-
togrammetric workstations. Moreover, rigorous physical sensor
models differ from each other among different satellite sensors,
thereby causing specific problems for the automatic processing
of satellite imagery. The corresponding physical sensor model
has to be developed if a new pushbroom sensor is launched.

For the aforementioned disadvantages, replacing a rigorous
physical sensor model by a generalized sensor model, which
is independent of sensors, is necessary. The generalized model
must be mathematically simple and straightforward to express
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the geometric relationship between a ground point and its
corresponding image point.

A rational function model (RFM) is the ratio of two cubic
polynomials with 80 rational polynomial coefficients (RPCs)
which can describe the geometric relationship between a nor-
malized object point and its image coordinates [1], [2]. Usually,
two of the 80 coefficients are set to be 1.0, and there is
subsequently a total of 78 parameters. RFM is independent of
sensors, mathematically simple, and computationally fast.

There have been many achievements related to the accuracy
of RFMs versus rigorous physical sensor models. Tao and
Hu proposed the iterative and direct least squares solutions of
RFMs under terrain-dependent and terrain-independent compu-
tation scenarios and demonstrated that RFMs can fit rigorous
physical sensor models with high accuracy for both aerial pho-
tograph and SPOT data [1]. The “terrain-independent” scheme
was adopted by Grodecki and Dial [2] to replace the IKONOS
physical sensor model with RPCs. Experimental results by
Grodecki and Dial showed that the maximum difference be-
tween the RFM and the physical sensor model is no larger than
0.04 pixel, and the root-mean-square error (rmse) is smaller
than 0.01 pixel [2]. Moreover, it has already been verified
that the RFM can achieve accuracy similar to that of the
rigorous physical sensor model by several spaceborne sensors,
such as QuickBird [3], Indian Resource Satellite-P6 [4], etc.
Martha et al. observed that RPCs alone without ground control
points (GCPs) are sufficient for the volume estimation in objec-
tive change detection [5].

The RPCs provided by satellite imagery vendors are usu-
ally derived without ground control information. The inherent
biases of satellite orbit and attitude are introduced into the
RPCs and thus will influence the absolute accuracy of geo-
referencing. There are many successful solutions to reducing
the error of georeferencing by image-space correction models,
such as affine transformation [3] and second-order polynomial
transformation [6], [7], together with using various numbers
of GCPs [8]–[10], or digital elevation models [11]. A generic
method was used by Xiong and Zhang to refine the RPCs with
GCPs [12] and in bundle block adjustment [13]. Achievements
in the literature show that RFM can usually achieve accuracy
similar to that of the rigorous physical sensor model if the
proper GCPs are available.

However, it is known that the simultaneous determination
of the 78 coefficients of RFM is an ill-posed problem, so
the ridge estimation strategy is usually adopted to obtain
reasonable RPC solutions [1]. However, the automatic de-
termination of the optimal regularization parameter of ridge
estimation is very difficult to obtain [1]. Typically, many
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potential solutions are computed with different regularization
values, and then, the best one is selected by the L-curve-based
method [14], [15].

A new RFM parameter estimation method based on scat-
ter matrix and stepwise regression is proposed in this paper.
The conventional strategy of RFM parameter computation is
presented in the next section. Then, the new model of RFM
parameter estimation based on scatter matrix and stepwise
regression is discussed in detail. Two data sets are used for
experiments in Section IV, and finally, the conclusions are
outlined in Section V.

II. CONVENTIONAL STRATEGY OF RFM
PARAMETER COMPUTATION

The RFM uses the ratio of two cubic polynomials to rep-
resent the rigorous geometric sensor model of satellite im-
agery. To improve the numerical stability, both the image-space
and object-space coordinates are normalized into the range of
(−1, +1) [2]. The model has the following general form as
presented by Grodecki and Dial [2]:{

Sr = NumL(P,L,H)
DenL(P,L,H)

Sc =
NumS(P,L,H)
DenS(P,L,H)

(1)

where (Sr, Sc) and (P,L,H) are the normalized coordi-
nates of the image-space and object-space points, respectively.
The four polynomials NumL(P,L,H), DenL(P,L,H),
NumS(P,L,H), and DenS(P,L,H) have the following gen-
eral form [2]:

NumL(P,L,H)

= a0 + a1L+ a2P + a3H + a4LP + a5LH + a6PH

+ a7L
2 + a8P

2 + a9H
2 + a10PLH + a11L

3

+ a12LP
2 + a13LH

2 + a14L
2P + a15P

3

+ a16PH2 + a17L
2H + a18P

2H + a19H
3

DenL(P,L,H)

= 1 + b1L+ b2P + b3H + b4LP + b5LH + b6PH

+ b7L
2 + b8P

2 + b9H
2 + b10PLH + b11L

3

+ b12LP
2 + b13LH

2 + b14L
2P + b15P

3

+ b16PH2 + b17L
2H + b18P

2H + b19H
3

NumS(P,L,H)

= c0 + c1L+ c2P + c3H + c4LP + c5LH + c6PH

+ c7L
2 + c8P

2 + c9H
2 + c10PLH + c11L

3

+ c12LP
2 + c13LH

2 + c14L
2P + c15P

3

+ c16PH2 + c17L
2H + c18P

2H + c19H
3

DenS(P,L,H)

= 1 + d1L+ d2P + d3H + d4LP + d5LH + d6PH

+ d7L
2 + d8P

2 + d9H
2 + d10PLH + d11L

3

+ d12LP
2 + d13LH

2 + d14L
2P + d15P

3

+ d16PH2 + d17L
2H + d18P

2H + d19H
3

where ai, bi, ci, and di (i = 0, 1, 2, . . . , 19) are the coefficients
of the RFM parameters with b0 = 1 and d0 = 1.

Equation (1) can be converted into the following linear form
with n being the number of observations:

⎡
⎢⎢⎣
1 L1 · · · H3

1 −Sr1L1 · · · −Sr1H
3
1

1 L2 · · · H3
2 −Sr2L2 · · · −Sr2H

3
2

...
...

...
...

...
...

...
1 Ln · · · H3

n −SrnLn · · · −SrnH
3
n

⎤
⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
a1
...

a18
a19
b1
b2
...

b18
b19

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎡
⎣ Sr1

...
Srn

⎤
⎦ = 0 (2)

⎡
⎢⎢⎣
1 L1 · · · H3

1 −Sc1L1 · · · −Sc1H
3
1

1 L2 · · · H3
2 −Sc2L2 · · · −Sc2H

3
2

...
...

...
...

...
...

...
1 Ln · · · H3

n −ScnLn · · · −ScnH
3
n

⎤
⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0
c1
...

c18
c19
d1
d2
...

d18
d19

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎡
⎣ Sc1

...
Scn

⎤
⎦ = 0. (3)

From the mathematical point of view, (2) and (3) have no
relationship when solving their corresponding RPCs since they
represent the along-track (line) and cross-track (sample) direc-
tions of the sensor model, respectively. The two equations can
be solved independently with the same strategy. The strategy of
solving (2) will be discussed in the following.

Equation (2) can be represented by the following matrix
form:

G · β = Sr (4)

where

Sr =

⎛
⎜⎜⎝

Sr1

Sr2
...

Srn

⎞
⎟⎟⎠ G =

⎛
⎜⎜⎝

1 G1,1 · · · G1,38

1 G2,1 · · · G2,38

...
... · · ·

...
1 Gn,1 · · · Gn,38

⎞
⎟⎟⎠

with Gi,j (i = 1, 2, . . . , n; j = 1, 2, . . . , 38) being the corre-
sponding elements of the coefficient matrix in (2), and β =
(a0 · · · a19 b1 · · · b19)T.

The least squares estimation β̂ of the unknowns’ vector β
can be obtained by the following normal equation:

GTGβ̂ = GTSr. (5)
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The extended form of the aforementioned normal equation
can be represented as follows:

nao +

(
n∑

i=1

Gi,1

)
a1 + · · ·+

(
n∑

i=1

Gi,19

)
a19

+

(
n∑

i=1

Gi,20

)
b1 + · · ·+

(
n∑

i=1

Gi,38

)
b19 =

n∑
i=1

Sri

(
n∑

i=1

Gi,1

)
ao +

(
n∑

i=1

G2
i,1

)
a1 + · · ·

+

(
n∑

i=1

Gi,1Gi,19

)
a19 +

(
n∑

i=1

Gi,1Gi,20

)
b1 + · · ·

+

(
n∑

i=1

Gi,1Gi,38

)
b19 =

n∑
i=1

Gi,1Sri

· · ·(
n∑

i=1

Gi,38

)
ao +

(
n∑

i=1

Gi,38Gi,1

)
a1 + · · ·

+

(
n∑

i=1

Gi,38Gi,19

)
a19 +

(
n∑

i=1

Gi,38Gi,20

)
b1 + · · ·

+

(
n∑

i=1

G2
i,38

)
b19 =

n∑
i=1

Gi,38Sri. (6)

It is well known that the above model is overparame-
terized [1], which means that not all of the 78 parameters
are necessary. Usually, a biased estimation method, such as
ridge estimation, is used to resolve the ill-posed problem of the
normal matrix when computing RPCs. A certain real number,
called the regularization parameter, is added to the diagonal
elements of the normal matrix in (5) before the normal matrix
is inversed. However, automatic determination of the best regu-
larization parameter is still a difficult task.

In this paper, a new approach of RPC computation is pre-
sented. The scatter matrix and stepwise regression strategies are
used to resolve the problem to be solved.

III. OPTIMIZATION OF RFM PARAMETERS BASED ON

SCATTER MATRIX AND STEPWISE REGRESSION

Elimination transformation or sweep transformation [14] can
be used to eliminate the redundant parameters of linear models
and thus obtain unbiased estimation of the necessary unknown
parameters. How to estimate the unknown parameters β̂ under
the least squares criteria will be addressed in the following.

The first row in (6) can be converted into the following form:

ao = Sr − a1G1 − · · · − a19G19 − b1G20 − · · · − b19G38

(7)

where Gj = (1/n)
∑n

i=1 Gi,j (j = 1, 2, . . . , 38) and Sr =
(1/n)

∑n
i=1 Sri.

Substituting (7) into (6) except the first row, we can obtain

⎛
⎜⎜⎝

L1,1 · · · L1,m

L2,1 · · · L2,m

... · · ·
...

Lm,1 · · · Lm,m

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

a19
b1
...

b19

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

L1,r

L2,r

...
Lm,r

⎞
⎟⎟⎠ (8)

where Lj,k =
∑n

i=1(Gi,j −Gj)(Gi,k −Gk) (j, k =
1, 2, . . . ,m), Lj,r =

∑n
i=1(Gi,j −Gj)(Sr,i − Sr) (j =

1, 2, . . . ,m), and m is the number of unknowns in the above
equation. Here, m = 38 because the unknown ao is eliminated
by substituting (7) into (6).

The (m+ 1)th-order scatter matrix can be constructed as
follows:

L=

[
GTG GTSr

ST
r G ST

r Sr

]
=

⎛
⎜⎜⎜⎜⎝

L1,1 · · · L1,m L1,m+1

L2,1 · · · L2,m L2,m+1

... · · ·
...

...
Lm,1 · · · Lm,m Lm,m+1

Lm+1,1 · · · Lm+1,m Lm+1,m+1

⎞
⎟⎟⎟⎟⎠ .

(9)

l
(0)
i,j , l(0)i,m+1, and l

(0)
m+1,m+1 are used to represent the elements

of the above matrix

l
(0)
i,j =GTG

=

n∑
t=1

(Gt,i −Gj)(Gt,j −Gj) (i, j = 1, . . . ,m)

l
(0)
i,m+1 =GTSr

=
n∑

t=1

(Gt,i −Gi)(Srt − Sr) (i = 1, . . . ,m)

l
(0)
m+1,m+1 =ST

r Sr =

n∑
t=1

(Srt − Sr)
2.

The stepwise regression strategy is adopted to select the
necessary unknowns in (2). The sum of the squares of partial
regression is treated as the importance measurement of a certain
unknown. The unknown selection procedure is an iterative
process. The initial number of unknowns is zero. In a certain
iteration, the unknown with the maximum sum of squares of
partial regression is selected as the potential candidate and
verified by significance testing with F -distribution. The un-
known is accepted into the equation if the significance value
is Fin(1, n− t− 2) ≥ Fout(1, n− t− 1) (t is the number of
accepted unknowns). Here, Fin(1, n− t− 2) and Fout(1, n−
t− 1) are calculated by the distribution table of the F -test with
significance levels αin (to introduce an unknown) and αout (to
remove an unknown), respectively.

Note that, once there are three or more unknowns in the
equation, we must test if a certain already accepted unknown
should be rejected when an unknown is accepted into the
equation. The iteration is terminated when no unknown can
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be accepted or rejected. The detailed procedures of stepwise
regression can be explained as follows.

1) Computing the sum of squares of partial regression of
each unknown.

P
(0)
j =

(
l
(0)
j,m+1

)2

/l
(0)
j,j (j = 1, 2, . . . ,m). (10)

Here, we assume that P
(0)
i1 = max

j=1,2,...,m
P

(0)
j with i1

being the serial number of the unknown with the maxi-
mum sum of squares of partial regression and βi1 is the
unknown corresponding to P

(0)
i1 .

2) Verifying whether βi1 can be introduced into the
equation.

F
(0)
1 =

P
(0)
i1

Q(i1)/(n− 2)
=

P
(0)
i1 (n− 2)

l
(0)
m+1,m+1 − P

(0)
i1

. (11)

βi1 is introduced into the equation if F
(0)
1 >

Fin(1, n− 2). Here, n− 2 is the number of degrees of
freedom with one unknown; Q(i1) is the sum of squares
of the i1th unknown residues. Elimination transforma-
tion is performed on the initial matrix l(0) with (i1, i1)
being the pivot element, and thus, L(1) = Ti1L

(0) can
be obtained. Otherwise, the unknown selection process
is terminated.

3) Computing the sum of squares of partial regression after
t times of transformation.

Supposing that t unknowns are accepted, the matrix
L(t) = Tit · · ·Ti1L

(0) can be obtained after t times of
elimination transformation are applied on the initial ma-
trix L(0). The sum of squares of partial regression of each
unknown can be computed by

P
(t)
i =

(
l
(t)
i,m+1

)2 /
l
(t)
i,i (i = 1, 2, . . . ,m). (12)

Here, we assume that βj0 is the unknown that has the
maximum influence on Sr but has not been included in
the equation.

4) Verifying whether βj0 can be introduced into the
equation

F
(t)
1 =

P
(t)
j0

Q(i1, . . . , it, j0)/(n− t− 2)
=

P
(t)
j0 (n− t− 2)

l
(t)
m+1,m+1 − P

(t)
j0

.

(13)

βj0 is accepted if F
(t)
1 ≥ Fin(1, n− t− 2); then, a

new matrix L(t+1) = Tj0L
(t) can be obtained by elimi-

nation transformation of L(t) with (j0, j0) being the pivot
element. However, the unknown selection process is ter-
minated if F (t)

1 < Fin(1, n− t− 2). Here, (n− t− 2) is
the number of degrees of freedom with t unknowns, and
Q(i1, . . . , it, j0) is the sum of squares of the unknowns’
residues with number (i1, . . . , it, j0).

5) Verifying whether βi0 should be rejected out from the
equation.

As long as three or more unknowns are introduced into
the equation, we must test if a certain already accepted

Fig. 1. Spatial grids of the first data set.

unknown should be rejected when more unknowns are
accepted into the equation. Here, we assume that βi0

is the unknown that has already been included in the
equation and has the minimum influence on Sr.

F
(t)
2 =

P
(t)
i0

Q(i1, . . . , it)/(n− t− 1)
=

P
(t)
i0 (n− t− 1)

l
(t)
m+1,m+1

. (14)

If F
(t)
2 ≤ Fout(1, n− t− 1), βi0 should be rejected,

and a new matrix L(t+1) = Ti0L
(t) can be obtained by

elimination transformation on L(t) with (i0, i0) being the
pivot element. Otherwise, the program returns to step 4 to
verify whether more unknowns can be introduced.

After all of the essential unknowns are introduced into
the equation, the optimum linear regression equation can
be obtained. Supposing that h (h ≤ m) unknowns are
introduced into the equation, the final matrix L(h) can be
obtained by h times of elimination transformation on L(0)

L(h) = Tih · · ·Ti1L
(0). (15)

The frontal m elements of the last column of
matrix L(h) are the final least squares solution of the
unknown vector β.

IV. EXPERIMENTAL RESULTS

To verify the correctness and feasibility of the proposed
approach, two experiments were performed with spatial grids
generated by SPOT-5 HRS data. The two test data sets and the
experimental results will be discussed in the following.

A. Test Data Sets

The first data set is generated by the rigorous sensor model
of SPOT-5 HRS imagery. The original image size is 12 000 ×
12 000 pixels. The elevation of the spatial grids varies from
200 to 2200 m. There are totally five layers with 500-m height
interval for control and check points, as shown in Fig. 1. There
are 552 image points evenly distributed in the image plane.
One-half of them are used as control points, and the other half
are used as check points for the experiment. A spatial ray can
be determined for each image point by the projection center
and its image coordinate. The corresponding spatial coordinate
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Fig. 2. Spatial grids of the second data set. Control grids are shown in (a);
check grids are provided in (b).

of an image point can be calculated by the intersection between
the ray and a level plane with known elevation.

The second data set is also generated from SPOT-5 HRS
imagery, but only the central part (i.e., 6000 pixels) of each
scanner line is used for the experiment, as shown in Fig. 2.
The image size for the experiment is 6000 × 6000 pixels. The
image plane is divided into regular grids with 200 × 200 pixel
intervals, so there are 900 points in the image plane. The mini-
mum and maximum elevations are 0 and 9000 m, respectively.
A total of 11 layers of spatial grids is evenly distributed in the
range of the elevations. The six odd layers are used as control
points, and the other five even layers are used as check points
for the experiment.

B. Results of Stepwise Optimization of RFM Parameters

The aforementioned two data sets are both used to compute
the corresponding RFM parameters with the proposed stepwise
optimization strategy. The remaining items of the original
78 RFM parameters with the two data sets are shown in Tables I
and II, respectively. “Sample” and “Line” in the two tables rep-
resent the cross- and along-track directions, while “Numerator”
and “Denominator” represent the numerator and denominator
of the cubic polynomials, respectively. Each number in the
two tables denotes the corresponding original serial number of
the kept RFM parameters. When compared to the conventional

TABLE I
ORIGINAL SERIAL NUMBER OF COMPUTED RFM

PARAMETERS WITH THE FIRST DATA SET

TABLE II
ORIGINAL SERIAL NUMBER OF COMPUTED RFM

PARAMETERS WITH THE SECOND DATA SET

ridge estimation method that computes all of the 78 parameters,
only 31 and 35 of them are kept by the proposed approach.

The computing efficiency of the proposed method is also
superior to that of the conventional ridge estimation based on
the L-curve method. The proposed method only requires about
30 iterations to obtain the optimal solution, while the L-curve
method usually requires more than 200 iterations [15].

The precision of the calculated RFM parameters directly
influences the possible applications of HRS imagery. In order
to evaluate whether the precision of the computed RFM pa-
rameters by the proposed method is comparable to that by the
conventional method, the error statistics of the calculated RFM
parameters for the two methods are compared with each other.
As shown in Tables III and IV, the precision of the computed
RFM parameters by the proposed method is 10% to 20%
higher than those of the conventional method, regardless of the
maximum/minimum residues or the rmses. Introducing more
parameters than those listed in Tables III and IV contributes
very little to further improvement. These results show that the
proposed method is more accurate and advantageous than the
conventional method.

However, the precision of the RFM of the second data set is
higher than that of the first data set. For example, the maximum
residue of the first data set is about 0.15 pixel, while it is smaller
than 0.05 pixel for the second data set, which occurs because the
first data set has a wider field of view and fewer control points
compared to the second data set. It is reasonable to conclude
that, the more control points there are, the narrower the field
of view and therefore the higher the precision of the RFM.
Furthermore, the rmses of the along-track (line) direction of
both data sets are larger than those of the cross-track (sample)
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TABLE III
PRECISION OF RFM COMPUTATION WITH THE FIRST DATA SET (PIXELS)

TABLE IV
PRECISION OF RFM COMPUTATION WITH THE SECOND DATA SET (PIXELS)

TABLE V
CONDITION INDECES OF NORMAL MATRICES WITH THE FIRST AND SECOND DATASETS

direction, which coincides with the fact that the major error of
the SPOT-5 imagery exists in the along-track direction.

The condition index is a common criterion to evaluate the
status and stability of the normal matrix. The condition indices
of the normal matrices with the two data sets is shown in
Tables V. It can be seen that the condition index of the original
normal matrix is on the E + 11 level, while it is on the E + 7
level for ridge estimation. However, after all of the insignificant
RFM parameters have been rejected by the proposed method,
the condition index of the normal matrix is in the range of
100–2000. It shows that the proposed method significantly
decreases the condition index and thus improves the stability
of the normal matrix.

V. CONCLUSION AND DISCUSSIONS

A novel method for automatic RFM parameter optimization
by stepwise selection of the necessary parameters based on

scatter matrix and elimination transformation has been pro-
posed. The proposed method can fit the rigorous sensor model
of HRS imagery with the least essential parameters, and thus,
the ill-posed problem of RFM parameter estimation caused by
overparameterization is significantly alleviated.

The experimental results show that 10% to 20% higher pre-
cision can be obtained by the proposed method with only about
35 essential parameters compared to the conventional ridge es-
timation with its 78 parameters. The achieved rmses of the pro-
posed method with the first data set are both about 0.025 pixel
and 0.036 pixel for the cross- and along-track directions, re-
spectively. However, the rmses with the second data set are
both about 0.007 pixel and 0.020 pixel for the cross- and
along-track directions, respectively, which was caused by the
first data set having a wider field of view and fewer control
points.

The condition index of the normal matrix to estimate the
RFM parameters with the proposed method is usually smaller
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than 2000, which means that the ill-posed problem of the
normal matrix is also significantly alleviated.

However, although the rmses of the proposed method and
the conventional ridge estimation are both satisfying, one can
see that the rmses of the along-track direction are about two
times of those of the cross-track direction for both methods,
indicating that there are still systematic residues in the along-
track direction. The reason for these residues is that the geome-
tries in the along- and cross-track directions are different (i.e.,
perspective projection in the cross-track direction and close to
parallel projection in the along-track direction). Further investi-
gation is planned to achieve more consistent results against the
rigorous sensor model.
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