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a b s t r a c t

Relative orientation based on the coplanarity condition is one of the most important procedures in photo-
grammetry and computer vision. The conventional relative orientation model has five independent param-
eters if interior orientation parameters are known. The model of direct relative orientation contains nine
unknowns to establish the linear transformation geometry, so there must be four independent constraints
among the nine unknowns. To eliminate the influence of over parameterization of the conventional direct
relative orientation model, a new relative orientation model with four independent constraints is proposed
in this paper. The constraints are derived from the inherent orthogonal property of the rotation matrix of
the right image of a stereo pair. These constraints are completely new as compared with the known liter-
ature. The proposed approach can find the optimal solution under least squares criteria. Experimental
results show that the proposed approach is superior to the conventional model of direct relative orienta-
tion, especially at low altitude and close range photogrammetric applications.
� 2011 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

Relative orientation is the process of recovering the position
and orientation of one image with respect to the other in a certain
image space coordinate system (Läbe and Förstner, 2006). It is a
classic topic in both photogrammetry and computer vision com-
munities (Huang and Faugeras, 1989; Faugeras and Maybank,
1990; Wang, 1990; Philip, 1996; Zhang, 1998; Mikhail et al.,
2001; Stewénius et al., 2006). A pioneer eight point algorithm of
relative orientation in computer vision, which is quite similar to
the conventional model of direct relative orientation in photo-
grammetry, is proposed by Higgins (1981) although constraints
among the eight unknowns are not considered. Many attentions
are concentrated on resolving the fundamental or essential matrix
with five conjugate points (Huang and Faugeras, 1989; Faugeras
and Maybank, 1990; Philip, 1996; Nistér, 2004; Stewénius et al.,
2006). Faugeras and Maybank (1990) proved that the five point
algorithm has at most 10 solutions. Because of noises in the image
coordinates, the essential matrix will not be exactly decomposable.
This may introduce large errors in the estimation of rotation and
translation parameters. Better accuracy can be achieved if the
decomposability constraints are imposed (Huang and Faugeras,
1989). An iterative method was used by Horn (1990) to determine
baseline and rotation parameters with an initial guess of rotation
angles. However, initial guesses of rotation angles are not always
reasonable in all cases especially at low altitude and close range
Society for Photogrammetry and R
applications. Nistér (2004) and Stewénius et al. (2006) improved
the five point algorithm so that it can operate correctly even in
the case of critical surfaces. The five point algorithm proposed by
Stewénius et al. (2006) includes six steps. Processes of establishing
linear equations from the epipolar constraint, building up 10 third-
order polynomial equations with the rank and trace constraint,
computing the Gröbner basis on the 10 � 20 matrix, computing
the 10 � 10 action matrix, parameter back-substitution with the
left eigenvectors of the action matrix and five parameter decompo-
sition are used to compute the five relative orientation parameters.
Their experiments with large point sets show that the five point
algorithm provides the most consistent results.

Relative orientation is also the prerequisite of bundle adjustment
(Kraus, 1993; Mikhail et al., 2001; Nistér, 2004), which can achieve
the best accuracy of the data (Triggs et al., 2000; Alamouri et al.,
2008). However, bundle adjustment often could not obtain the glob-
ally optimal solution with inaccurate approximations of unknowns,
especially when there are some outliers (Stewénius et al., 2006).
There are also methods on the absolute pose determination and
3D reconstruction with point and line correspondences (Liu et al.,
1990; Kumar and Hanson, 1994; Taylor and Kriegman, 1995; Li
et al., 2007). In the case of photographic configurations with large
oblique angles, such as low altitude and close range applications,
the approximate angular elements cannot be set as zero. Therefore,
direct relative orientation which needs no initial values becomes
one of the best choices. However, due to the correlation character-
istics among unknowns, it usually brings down the accuracy of rel-
ative orientation and even leads to erroneous solutions in some bad
geometric configurations (Stewénius et al., 2006).
emote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
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Usually, homogeneous algebraic representation and singular va-
lue decomposition strategy are used in most relative orientation
algorithms of computer vision, while error equation of mathematic
model and iterative least squares adjustment are used in photo-
grammetry. In this paper, a new direct relative orientation model
from the photogrammetric point of view is proposed. Different from
the epipolar constraint of essential matrix in computer vision com-
munities that taking normalized image points as observations, origi-
nal focal plane coordinates of conjugate points and the
corresponding focal lengths are used in the linear model. The new
model is composed of four constraints together with the conven-
tional model of direct relative orientation. The four constraints are
derived from the inherent orthogonal property of rotation matrix.
Overview of conventional direct relative orientation is given in the
next section. Principle of ill-posed problem that caused by over
parameterization is discussed in Sections 3. The proposed new mod-
el of direct relative orientation with constraints and practical solving
procedures are thoroughly addressed in Sections 4 and 5, respec-
tively. Then several experiments are performed and compared with
the ground truth in detail. Finally, conclusions are briefly outlined.

2. Conventional model of direct relative orientation

Given two images of a scene taken from different viewpoints, a
stereo model can be created to reestablish the original epipolar
geometry. The mathematic model of relative orientation can be ex-
pressed by coplanarity equation (Wang, 1990; Mikhail et al., 2001):

F ¼
Bx By Bz

u v w

u0 v 0 w0

�������
������� ¼ 0 ð1Þ

where Bx, By and Bz are baseline parameters of a stereo pair, (u v
w)T = (x y �f)T and (u0 v0 w0)T = R � ðx0 y0 � f 0ÞT coordinates of conju-
gate points in the image space coordinate system, (x, y), (x

0
, y

0
) the

original focal plane coordinates of conjugate points,

R ¼
a1 a2 a3

b1 b2 b3

c1 c2 c3

0
@

1
A the rotation matrix composed of three angles

u;x;j, f and f0 the focal lengths of two images, respectively.

Eq. (1) can be transformed into the following linear form of
Eq. (2). It is similar to the basic equation of fundamental or essen-
tial matrix (Hartley and Zisserman, 2000) used in computer vision,
except that f and f0 explicitly exist in the following equation.

L1yx0 þ L2yy0 � L3yf 0 þ L4fx0 þ L5fy0 � L6ff 0 þ L7xx0 þ L8xy0 � L9xf 0

¼ 0 ð2Þ
where

L1 ¼ Bx � c1 � Bz � a1 L2 ¼ Bx � c2 � Bz � a2 L3 ¼ Bx � c3 � Bz � a3

L4 ¼ Bx � b1 � By � a1 L5 ¼ Bx � b2 � By � a2 L6 ¼ Bx � b3 � By � a3

L7 ¼ Bz � b1 � By � c1 L8 ¼ Bz � b2 � By � c2 L9 ¼ Bz � b3 � By � c3

ð3Þ

The coefficients Liði ¼ 1;2; . . . ;9Þ in Eq. (2) can only be deter-
mined up to a scale, so there are eight independent parameters.
Different from known methods in computer vision communities
that usually set the last element of fundamental matrix as 1.0, usu-
ally L5 of Eq. (2) is set to be 1.0 in photogrammetry for the conve-
nience of setting up error equations and minimizing vertical
parallaxes. Suppose L0

i ¼ Li=L5ði ¼ 1;2; . . . ;9Þ and L0
5 ¼ 1, then

Eq. (2) becomes:

L0
1yx0 þ L0

2yy0 � L0
3yf 0 þ L0

4fx0 þ fy0 � L0
6ff 0 þ L0

7xx0 þ L0
8xy0 � L0

9xf 0 ¼ 0

ð4Þ
It is the basic mathematic model of conventional direct relative
orientation. This model can be used to directly calculate the eight
unknowns L0

1; L
0
2; L

0
3; L

0
4; L

0
6; L

0
7; L

0
8; L

0
9 without initial values. The base-

line parameter Bx has no influence on building up a stereo model, it
can be assumed to be known, for example the mean x-parallax. So
parameters, By and Bz can be obtained by the following equations:

L2
5 ¼ 2B2

x=ðL
02

1 þ L02

2 þ L02

3 þ L02

4 þ L02

5 þ L02

6 � L02

7 � L02

8 � L02

9 Þ
Li ¼ L0

i � L5ði ¼ 1;2; � � �;9Þ
By ¼ �ðL1L7 þ L2L8 þ L3L9Þ=Bx

Bz ¼ ðL4L7 þ L5L8 þ L6L9Þ=Bx

ð5Þ

Elements of the rotation matrix R can be computed by Eqs. (3)
and (5). Finally, three rotation angles can be decomposed by the
definition of R (Wang, 1990; Mikhail et al., 2001). There are two
sets of possible solutions about the rotation angles /, x, j. One
of the two solutions is the true configuration, another one is the
twisted pair by rotating the right image 180 degrees around the
baseline. It is very easy to find the correct solution with the fact
that the photographic object is in front of the camera.
3. Ill-Posed problem caused by over parameterization

Over parameterization usually results in ill-posed problem
when constraint relationships among unknowns are not consid-
ered (Faugeras and Maybank, 1990). Small errors in observations
may be enlarged and therefore the solution is often seriously
biased from the ground truth. Suppose there is a mathematic mod-
el with the following form:

F1ðXFÞ ¼ 0 ð6Þ

where XF is a n-dimensional vector, i.e., there are n independent
parameters in the above model. A new m-dimensional m P n vector
YF can be obtained by applying a certain transformation YF ¼ TðXFÞ.
So we can get the following model that takes YF as parameter:

F2ðYFÞ ¼ 0 ð7Þ

The model F2ðYF ¼ 0Þ is over parameterized in the case of m > n.
There must be m� n conditional equations GðYFÞ ¼ 0 among the
elements of vector YF. It is a typical model of adjustment with
functional constraints when solving the equations F2ðYFÞ ¼ 0 and
the conditional equations GðYFÞ ¼ 0 . The unbiased least squares
solution is:

Y1 ¼ NþBBBT
FlF � NþBBCT

FN�1
CC CFNþBBBT

FlF � NþBBCT
FN�1

CC WF ð8Þ

where Y1 is the solution of the unknown vector YF, NþBB is the
pseudo-inverse (Hartley and Zisserman, 2000) of ðBT

FBFÞ, i.e.,
NþBB ¼ ðB

T
FBFÞþ, N�1

CC ¼ ðCFNþBBCT
FÞ
�1, BF is the design matrix of the un-

known vector YF, CF is the coefficient matrix of the unknown vector
YF corresponded to the conditional equations GðYFÞ ¼ 0, lF and WF

are the vectors of constant items of the two kinds of equations
which can be calculated by the observations and the approximate
values of unknowns. The approximate value of YF has to be pro-
vided. Usually it can be set to be zero in linear cases.

However, the adjustment model to solve F2ðYFÞ ¼ 0 is a typical
model of adjustment of observation equations if the condition
GðYFÞ ¼ 0 is not considered. The least squares solution is just the
first item of the right side of Eq. (8), i.e., Y2 ¼ NþBBBT

FlF. In the case
of over parameterization, especially when there are also some
outliers in observations, the least squares solution can be a biased
estimation if the constraints among the unknown parameters are
not been considered. The conventional model of direct relative
orientation is obviously over parameterized, which means the
achieved solution is not always reliable.
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4. Model of direct relative orientation with constraints

As described in Section 2, there are eight unknowns
L0

1; L
0
2; L

0
3; L

0
4; L

0
6; L

0
7; L

0
8; L

0
9 in the conventional model of direct relative

orientation. As can be seen in Eq. (5), the scaling degeneracy of the
nine coefficients does not exist anymore as long as Bx is fixed. In
this section, we will start form Eq. (2) that contains nine unknowns
to derive the new model. As we know, there should be only five
independent parameters (By, Bz, u, x, j) in the model of relative
orientation if the interior parameters are known (Tang and Heipke,
1996; Zhang, 1998). So there must be four independent constraints
among the nine unknowns.

Usually the well known epipolar equation x0TEx ¼ 0, rank-two
constraint det(E) = 0, and trace constraint 2EETE� traceðEETÞE ¼ 0
are used in computer vision to solve the linear model of essential
matrix E (Nistér, 2004; Stewénius et al., 2006). Here x0 and x are
the normalized image coordinates of conjugate points, E = TR with
T and R the translation and rotation matrix of relative orientation.
Actually, the essential matrix E has close relation with the
Liði ¼ 1;2; . . . ;9Þ coefficients except that the subscripts need to be
switched, since both of them are based on the coplanarity
constraint.

The above trace constraint is deduced from the orthogonal prop-
erty of rotation matrix RRT ¼ I but with matrix form. As can be seen,
the components of the trace constraint yield nine homogeneous
polynomial equations of degree 3 which must be satisfied by the
coefficients of E (Faugeras and Maybank, 1990). However, it is well
known that there are five independent unknowns in relative orien-
tation and thus the 10 constraints should be theoretically correlated.
Actually, the rank-two constraint and the trace constraint used by
Stewénius et al. (2006) are correlated with each other, which have
already been proved by Faugeras and Maybank (1990). Detailed
proof of correlation among the nine homogeneous polynomial equa-
tions of the trace constraint will be given in the following.

Suppose the essential matrix E has the following general form:

E ¼
e1 e2 e3

e4 e5 e6

e7 e8 e9

0
B@

1
CA ¼

0 �Bz By

Bz 0 �Bx

�By Bx 0

2
64

3
75R ¼ TR ð9Þ

where Bx, By and Bz are the translation parameters, T the translation
matrix of relative orientation, R the rotation matrix of the right im-
age of a stereo pair.

The product EET can be obtained with the following form:

EET ¼
B2

z þ B2
y �BxBy �BxBz

�BxBy B2
x þ B2

z �ByBz

�BxBz �ByBz B2
x þ B2

y

2
664

3
775

¼
e2

1 þ e2
2 þ e2

3 e1e4 þ e2e5 þ e3e6 e1e7 þ e2e8 þ e3e9

e1e4 þ e2e5 þ e3e6 e2
4 þ e2

5 þ e2
6 e4e7 þ e5e8 þ e6e9

e1e7 þ e2e8 þ e3e9 e4e7 þ e5e8 þ e6e9 e2
7 þ e2

8 þ e2
9

0
B@

1
CA
ð10Þ

The trace constraint 2EETE� traceðEETÞE ¼ 0 has the following
form:

2

B2
z þ B2

y �BxBy �BxBz

�BxBy B2
x þ B2

z �ByBz

�BxBz �ByBz B2
x þ B2

y

2
664

3
775

e1 e2 e3

e4 e5 e6

e7 e8 e9

0
B@

1
CA

� 2 B2
x þ B2

y þ B2
z

� � e1 e2 e3

e4 e5 e6

e7 e8 e9

0
B@

1
CA ¼ 0 ð11Þ
The following nine constraints can be deduced when the above
equation is expanded.

ðB2
z þ B2

yÞe1 � BxBye4 � BxBze7 ¼ ðB2
x þ B2

y þ B2
z Þe1

ðB2
z þ B2

yÞe2 � BxBye5 � BxBze8 ¼ ðB2
x þ B2

y þ B2
z Þe2

ðB2
z þ B2

yÞe3 � BxBye6 � BxBze9 ¼ ðB2
x þ B2

y þ B2
z Þe3

� BxBye1 þ ðB2
x þ B2

z Þe4 � ByBze7 ¼ ðB2
x þ B2

y þ B2
z Þe4

� BxBye2 þ ðB2
x þ B2

z Þe5 � ByBze8 ¼ ðB2
x þ B2

y þ B2
z Þe5

� BxBye3 þ ðB2
x þ B2

z Þe6 � ByBze9 ¼ ðB2
x þ B2

y þ B2
z Þe6

� BxBze1 � ByBze4 þ ðB2
x þ B2

yÞe7 ¼ ðB2
x þ B2

y þ B2
z Þe7

� BxBze2 � ByBze5 þ ðB2
x þ B2

yÞe8 ¼ ðB2
x þ B2

y þ B2
z Þe8

� BxBze3 � ByBze6 þ ðB2
x þ B2

yÞe9 ¼ ðB2
x þ B2

y þ B2
z Þe9

ð12Þ

It can be easily deduced that there are only three independent ones
among the above nine constraints when correlated equations are
removed.

�Bye4 � Bze7 ¼ Bxe1

�Bye5 � Bze8 ¼ Bxe2

�Bye6 � Bze9 ¼ Bxe3

ð13Þ

Multiplying Bx on both sides of Eq. (13), replacing �BxBy and
�BxBz by the corresponding items in Eq. (10), we can get the fol-
lowing three constraints:

ðe1e4 þ e2e5 þ e3e6Þe4 þ ðe1e7 þ e2e8 þ e3e9Þe7 ¼ B2
x e1

ðe1e4 þ e2e5 þ e3e6Þe5 þ ðe1e7 þ e2e8 þ e3e9Þe8 ¼ B2
x e2

ðe1e4 þ e2e5 þ e3e6Þe6 þ ðe1e7 þ e2e8 þ e3e9Þe9 ¼ B2
x e3

ð14Þ

Up to now, it is clear that the nine homogeneous polynomial
equations of the trace constraint are correlated.

Different from the epipolar constraint of essential matrix in
computer vision communities that taking normalized image points
as observations, original focal plane coordinates of conjugate
points are used in this paper. Focal lengths f and f0 are also re-
mained in Eq. (2). The four independent constraints of the pro-
posed method will be directly deduced from the orthogonal
property of rotation matrix R in the following.

The orthogonal property of R can be ensured by the following
equations:

a2
1 þ a2

2 þ a2
3 ¼ 1 a1b1 þ a2b2 þ a3b3 ¼ 0

b2
1 þ b2

2 þ b2
3 ¼ 1 a1c1 þ a2c2 þ a3c3 ¼ 0

c2
1 þ c2

2 þ c2
3 ¼ 1 b1c1 þ b2c2 þ b3c3 ¼ 0

ð15Þ

where ai; bi; ciði ¼ 1;2;3Þ are the nine elements of the rotation ma-
trix R which is already described in Eq. (1). The following four for-
mulae can be obtained from the expression of Liði ¼ 1;2; . . . ;9Þ in
Eq. (3) and the orthogonal property of rotation matrix in Eq. (15):

L2
1 þ L2

2 þ L2
3 ¼ B2

x þ B2
z

L2
4 þ L2

5 þ L2
6 ¼ B2

x þ B2
y

L2
7 þ L2

8 þ L2
9 ¼ B2

y þ B2
z

L1L4 þ L2L5 þ L3L6 ¼ By � Bz

ð16Þ

As described in Section 2, the baseline parameter Bx can be de-
fined as the mean x-parallax of conjugate points while calculating
the initial values of nine coefficients Liði ¼ 1;2; . . . ;9Þ. Taking the
expressions of By and Bz in Eq. (5) into account, the four indepen-
dent constraints among the nine coefficients of Eq. (2) can be
obtained:
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L2
1 þ L2

2 þ L2
3 ¼ B2

x þ ðL4L7 þ L5L8 þ L6L9Þ2=B2
x

L2
4 þ L2

5 þ L2
6 ¼ B2

x þ ðL1L7 þ L2L8 þ L3L9Þ2=B2
x

L2
7 þ L2

8 þ L2
9 ¼ ðL1L7 þ L2L8 þ L3L9Þ2=B2

x þ ðL4L7 þ L5L8 þ L6L9Þ2=B2
x

L1L4 þ L2L5 þ L3L6 ¼ �ðL1L7 þ L2L8 þ L3L9Þ � ðL4L7 þ L5L8 þ L6L9Þ=B2
x

ð17Þ

The above four equations are the constraints among the nine un-
knowns of direct relative orientation. So the proposed new model of
direct relative orientation with constraints is composed of Eqs. (2)
and (17). The proposed new model chooses the original nine
parameters of direct relative orientation as unknowns, and four
constraints are combined to avoid the problem of over
parameterization.

5. Practical procedure of solving the problem

General procedure of solving relative orientation parameters of
the proposed new model is composed of three steps. Firstly, the
conventional direct relative orientation is performed to get approx-
imate values of the nine unknowns. Then four constraints are com-
bined into the conventional model to avoid the problem of over
parameterization. Finally, the five relative orientation parameters
are decomposed by the computed nine unknowns.

Dividing both sides of Eq. (2) by L5f, adding y to both sides and
moving y0 to the right side, one can obtain the nonlinear equation
of vertical parallax:

yx0

f
L1

L5
þ yy0

f
L2

L5
� yf 0

f
L3

L5
þ fx0

f
L4

L5
þ y� ff 0

f
L6

L5
þ xx0

f
L7

L5
þ xy0

f
L8

L5
� xf 0

f
L9

L5

¼ y� y0 ð18Þ

Note that the above equation minimizes vertical parallaxes be-
tween images. In the cases of geometric configurations with verti-
cal epipolar lines, the above equation fails to solve the problem.
However, this can be resolved by minimizing the horizontal paral-
laxes. L0

4 ¼ 1 can be assumed in the conventional model to obtain
the initial values of the nine coefficients with the similar strategy
to that in Section 2. Then dividing both sides of Eq. (2) by L4f, add-
ing x to both sides and moving x0 to the right side, one can obtain
the nonlinear equation of horizontal parallax:

yx0

f
L1

L4
þ yy0

f
L2

L4
� yf 0

f
L3

L4
þ xþ fy0

f
L5

L4
� ff 0

f
L6

L4
þ xx0

f
L7

L4
þ xy0

f
L8

L4
� xf 0

f
L9

L4

¼ x� x0 ð19Þ
Fig. 1. Overview of the photogr
Each pair of conjugate image points provides one observation
equation. Therefore at least nine pairs of conjugate points are re-
quired to solve the above equations. The general error equation
of Eqs. (18) and (19) can be linearized into the following form
according to the model of adjustment of observation equations:

V ¼ BX � l ð20Þ

where V is the correction vector of all observations, B the design
matrix of unknown vector X and 1 the vector of constant items of
error equations which can be calculated by observations and
approximate values of unknowns.

The constraint Eq. (17) can be linearized as:

CX �WX ¼ 0 ð21Þ

The elements of coefficient matrix C can be obtained by the par-
tial derivatives of corresponding unknowns, WX is the vector of
constant items by incorporating the approximate values of
Liði ¼ 1;2; . . . ;9Þ into Eq. (17).

The mathematical model of the proposed method is the combi-
nation of Eqs. (20) and (21). According to the principle of least
squares adjustment with functional constraints (Mikhail et al.,
2001), the normal equation can be written as follows when all
observations are assumed to have the same weight (Wang, 1990;
Mikhail et al., 2001):

BTB CT

C f0

" #
�

X
K

� �
� BTl

WX

" #
¼ 0 ð22Þ

The unknown vector X and connection vector K can be resolved
by inversing the above normal equation. We can get the correction
vector V by substituting X into error Eq. (20). Then the precision
evaluation and gross error detection can be performed by analyz-
ing the residues of observations and the variance and co-variance
matrix which can be computed by the inversion of the normal ma-
trix of Eq. (22). Note that the computing of Liði ¼ 1;2; . . . ;9Þ coeffi-
cients is an iterative process to detect outliers and get precise
solution. Iteration is terminated if the root mean square error of
unit weight or the corrections of all unknowns are smaller than
the given threshold. Finally, the five elements (By, Bz, u, x, j) of rel-
ative orientation can be decomposed with the same strategy as
that of the conventional relative orientation (Wang, 1990; Mikhail
et al., 2001).

In summary, our approach includes three steps: getting an ini-
tial solution of the conventional linear model; improvement of the
nine coefficients by incorporating the derived four constraints; and
decomposition of the five parameters with the nine coefficients. As
compared with the five point algorithm proposed by Stewénius
aphic area of aerial images.
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et al. (2006) which includes six steps and manipulations of 10 � 20
matrices, the computation efficiency of our approach is also
superior.

6. Experiments and results

To verify the correctness and effectiveness of the proposed new
model of direct relative orientation with constraints, three test
data sets of conjugate points from aerial, low altitude and terres-
trial close range images are used for experiments, respectively.
For each type of images, conventional direct relative orientation
Fig. 2. Differences between results of the two methods and the ground truth with aeria
means those of the new method.

Fig. 3. Overview of the photograph
and the proposed direct relative orientation with constraints are
both performed and compared with the ground truth obtained
by bundle adjustment.

6.1. Results of relative orientation with aerial images

Aerial images of 20 stereo pairs are taken by Z/I Imaging DMC
camera with pixel size of 12 lm. The photographic area is shown
in Fig. 1. Mean ground resolution of the aerial images is about
0.25 m. In order to get reliable relative orientation results with
redundant observations, more than 100 conjugate points are
l images. 1 in the above figure means results of the conventional method while 2

ic area of low altitude images.
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automatically matched for each stereo pair, although only nine is
theoretically necessary to calculate the nine coefficients. There is
no outlier in conjugate points since the test data has already been
processed by bundle adjustment. Unit weight root mean square er-
rors of each stereo pair for the two methods mentioned above are
all smaller than 0.3 pixels. The ground truth of relative orientation
parameters are calculated from the results of bundle adjustment.

For the convenience of comparison, baseline length Bx is fixed as
the mean x-parallax of conjugate points of each stereo pair for both
the two methods. It is around 36.0 mm since the nominal overlap
between adjacent images is 60%. Differences between results of the
two methods and the ground truth are given in Fig. 2. By1 and Bz1
Fig. 4. Differences between results of the two methods and the ground truth with low alti
means those of the new method.

Fig. 5. Overview of the terres
represent the differences of baseline parameters By and Bz of the
conventional method against the ground truth; phi1, omega1 and
kappa1 represent the differences of angular parameters u, x, and
j of the conventional method against the ground truth. By2, Bz2,
phi2, omega2 and kappa2 represent the differences of correspond-
ing translation and rotation parameters of the new method against
the ground truth. Units of translation and rotation parameters are
mm and radian, respectively.

It can be seen from Fig. 2 that the differences between results of
the proposed method and the ground truth are much smaller than
that between results of the conventional method and the ground
truth. It shows that although the conventional direct relative
tude images. 1 in the above figure means results of the conventional method while 2

trial photographic object.



Fig. 6. Photographic stations of terrestrial object and convergent angles.
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orientation requires no initial values of unknown parameters, the
precision of decomposed five elements cannot be guaranteed in
all cases. Sometimes it will generate imprecise relative orientation
parameters because of the over parameterization problem, such as
the results of the first and 16th stereo pair. However, the proposed
new model starts from the results of conventional direct relative
Fig. 7. Differences between results of the two methods and the ground truth with terr
method while 2 means those of the new method.
orientation and takes additional constraints into account while
doing least squares adjustment to overcome the problem of over
parameterization, so the computed relative orientation parameters
are closer to the ground truth.

6.2. Results of relative orientation with low altitude images

Low altitude images of nine stereo pairs are acquired by a pre-
calibrated non-metric digital camera Kodak Pro SLR with
24 � 36 mm image format and 8 lm pixel sizes. The low altitude
images are photographed with 80% forward overlap by an un-
manned airship on which the camera with 24 mm lens is mounted.
Flying height is 150 m above the ground, so the ground resolution is
about 0.05 m. The photographic area of low altitude images is
shown in Fig. 3. There are significant projection distortions of pho-
tographed objects above the ground, such as buildings and trees.
Conjugate points are obtained by automatic image matching with-
out any further processing, such as relative orientation and bundle
adjustment, about 2% of them are outliers. The minimum number of
conjugate points of a stereo pair is 126. The two methods men-
tioned above are used for experiments with these low altitude
images. Robust estimation with data snooping technique (Baarda,
1968) is adopted to detect and remove outliers for both the two
methods. The ground truth of relative orientation parameters is cal-
culated from the results of bundle adjustment. Bx of each model is
also given by mean x-parallax. It is around 5.0 mm since the overlap
of the adjacent images is about 80%. There are significant changes of
overlap and orientation angles between adjacent images. Unit
weight root mean square errors of all stereo pairs for the two meth-
ods are all smaller than 0.5 pixels.
estrial close range images. 1 in the above figure means results of the conventional
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Differences between results of the two methods and the ground
truth are given in Fig. 4. Definition of each symbol in Fig. 4 is the
same as that in Fig. 2. It can be seen that the differences of baseline
component Bz of the stereo pairs 3, 4 and 6 obtained by the conven-
tional method are larger than a half of Bx, which is only about
5.0 mm as mentioned above. Obviously, the computed results of
the aforementioned three models are completely wrong. It shows
that the conventional direct relative orientation cannot get reason-
able relative orientation parameters when there are large varia-
tions of relative orientation parameters together with outliers.
However, direct relative orientation with constraints can give more
stable and reasonable results of relative orientation. Results of the
proposed method are precise enough to be used as initial values for
subsequent computations, such as bundle block adjustment.
6.3. Results of relative orientation with terrestrial close range
images

Terrestrial close range images of 15 stereo pairs are acquired by
the same camera as that in Section 6.2 but with 50 mm lens. The ter-
restrial photographic object, an engineering scene, is shown in Fig. 5.
There are totally four photographic stations. Four images are taken
from each station, so totally 16 images are photographed. Fig. 6
shows the photographic stations and directions of principle axes of
each station. The mean photographic distance is about 230 m, so
the mean ground resolution is 0.036 m. The minimum number of
conjugate points of a stereo pair is 206. There are no outliers in con-
jugate points since the test data has already been processed by bun-
dle adjustment with enough ground control points. The two
methods mentioned above are used for experiments with these
close range images. Bx of each model is also computed by mean x-
parallax. There are significant changes of translation and rotation
angles between adjacent images because of large convergent angle.
The ground truth of relative orientation parameters is also calcu-
lated from the results of bundle adjustment. The unit weight root
mean square error of each model is around 0.5 pixels.

Differences between results of the two methods and the ground
truth are given in Fig. 7. Definition of each symbol in Fig. 7 is the
same as that in Fig. 2. As can be seen, the maximum difference of
relative orientation parameters between the conventional method
and the ground truth is about 0.6 mm and 0.013 rad, respectively,
while the maximum difference of relative orientation parameters
between the proposed method and the ground truth is only
0.2 mm and 0.007 rad, respectively. It shows that the result of di-
rect relative orientation with constraints is also quite better than
that of the conventional direct relative orientation.
7. Conclusions

A new approach of direct relative orientation with constraints
based on the conventional model of direct relative orientation is
proposed in this paper. The proposed new approach incorporates
four non-linear constraints among the nine unknowns of the con-
ventional model of direct relative orientation to reduce the over
parameterization problem. The constraints are derived from the
inherent orthogonal property of rotation matrix. General proce-
dure of the proposed method includes three steps, conventional di-
rect relative orientation, least squares adjustment with constraints,
and finally five relative orientation parameters decomposition.
Gross error detection with data snooping techniques is applied
by analyzing the residues of observations and the variance and
co-variance matrix of unknowns, which can be computed by inver-
sion of the normal matrix.

In terms of aerial and terrestrial stereos with no outliers, results
of the conventional method and the proposed method are both
reasonable when compared with the ground truth. However, the
results of the proposed method are quite better than that of the
conventional method in some cases. In the case of conjugate points
of low altitude images with a few percent outliers, some results of
the conventional method are completely wrong. However, the pro-
posed method can give reliable results without any human interac-
tion. That means the proposed method can be used in applications
where no initial information available, such as close range or low
altitude oblique photography.

Ten constraints are usually used on the nine elements of essen-
tial matrix in computer vision literatures. However, it is well
known that there are only five independent unknowns in relative
orientation if the intrinsic parameters are known, so there should
be definitely four independent constraints among the nine ele-
ments. The proof, that the 10 constraints in the known literature
are related and only four of them are independent, are given for
the first time. It seems that the four but not the 10 constraints
should be used to recover the essential matrix.

Generally, the limitation of our method is similar to that of the
conventional eight-point algorithms. It is possible to fail in degen-
erate cases of computer vision applications. However, degenerate
situations such as planar scenes and critical surfaces are not com-
mon for photogrammetry since it mainly deals with natural ter-
rains. In the general over determined cases, the performance of
our method is theoretically superior to the five point algorithm
and the conventional eight-point algorithm because the correct
number of constraints is applied. Further work will be made to
fully investigate the differences, performances, advantages and dis-
advantages about the proposed model and the available five point
algorithm.
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